
  

* Corresponding author  
E-mail: fdchou@tpts7.seed.net.tw  (F.-D. Chou) 
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)  
2023 Growing Science Ltd.  
doi: 10.5267/j.ijiec.2023.4.001 
 
 

 
 

International Journal of Industrial Engineering Computations 14 (2023) 539–554 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
Joint optimization of production and maintenance scheduling for unrelated parallel machine using 
hybrid discrete spider monkey optimization algorithm 

 

 

Yarong Chena,b, Liuyan Zhonga, Chunchun Shena, Jabir Mumtaa and Fuh-Der Choua* 
 
 
 

aSchool of Mechanical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang, China 
bSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology, China 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received January 21 2023 
Received in Revised Format  
March 5 2023  
Accepted April 4 2023 
Available online  
April, 4  2023 

 This paper considers an unrelated parallel machine scheduling problem with variable maintenance 
based on machine reliability to minimize the maximum completion time. To obtain the optimal 
solution of small-scale problems, we firstly establish a mixed integer programming model. To solve 
the medium and large-scale problems efficiently and effectively, we develop a hybrid discrete 
spider monkey optimization algorithm (HDSMO), which combines discrete spider monkey 
optimization (DSMO) with genetic algorithm (GA). A few additional features are embedded in the 
HDSMO: a three-phase constructive heuristic is proposed to generate better initial solution, and an 
individual updating method considering the inertia weight is used to balance the exploration and 
exploitation capabilities. Moreover, a problem-oriented neighborhood search method is designed 
to improve the search efficiency. Experiments are conducted on a set of randomly generated 
instances. The performance of the proposed HDSMO algorithm is investigated and compared with 
that of other existing algorithms. The detailed results show that the proposed HDSMO algorithm 
can obtain significantly better solutions than the DSMO and GA algorithms. 
 
 

© 2023 by the authors; licensee Growing Science, Canada 

Keywords: 
Unrelated parallel machine 
scheduling  
Hybrid discrete spider monkey 
optimization  
Mixed integer programming 
model  
Variable maintenance  
Makespan 

 

 

1. Introduction 

 
The production scheduling problem encompasses various branches, and one of the significant ones is the parallel machine 
scheduling problems (PMSPs). In the literature, PMSPs are typically classified to three groups: identical parallel machines 
(Pm), uniform parallel machines (Qm) and unrelated parallel machines (Rm) (Cheng & Sin, 1990). The category of unrelated 
PMSPs (UPMSPs) encompasses a broader scope than the other two categories, as it involves various machines carrying out 
identical tasks but with varying processing abilities or capacities. With the development of intelligent manufacturing industries, 
such as computerized numerical control machine tools, industrial robots, unrelated parallel machine production has become 
the most common operating mode of enterprises. Solving real-life UPMSPs is a major challenge for industrial experts and 
researchers, not only because they are mostly NP-hard but also, more importantly, because of the special characteristics or 
requirements they have in practice. 
 
Abundant research has been conducted to address UPMSPs with different production environments, performance measures 
and solution methods (Pfund, Fowler, & Gupta, 2004). Azizoglu & Kirca (1999) and Lin et al. (2011) addressed the basic 
UPMSP. Rodriguez et al. (2013) and Wang & Alidaee (2019) studied the large-scale UPMSP. Fanjul-Peyro et al. (2019) and 
Rocha et al. (2008) studied the UPMSP with machine and job sequence-dependent setup times. Wang et al. (2020) addressed 
the UPMSP with random rework. Considering the development of globalization and distributed manufacturing, Lei et al. 



  

 

540

(2020) and Lei et al. (2021) addressed the distributed UPMSP. Having a single objective tends to minimize the makespan (Lin, 
Pfund, & Fowler, 2011; Fanjul-Peyro, Ruiz, & Perea, 2019; Lei et al., 2020), the total weighted flow time (Pfund, Fowler, & 
Gupta, 2004), the total weighted completion time (TWCT) (Lin, Pfund, & Fowler, 2011; Rodriguez et al., 2013; Wang & 
Alidaee, 2019), the total weighted tardiness (Lin, Pfund, & Fowler, 2011), the makespan added to the weighted tardiness 
(TWT) (Rocha et al., 2008) and the expected TWT (Wang et al., 2020). The bi-objective (makespan and total tardiness) 
optimization problem is minimized simultaneously (Lei, Yuan, & Cai, 2021), and the multi-objective problem is to minimize 
the makespan simultaneously, TWCT and TWT (Lin & Ying, 2015; Lin et al., 2016). Furthermore, exact algorithms based on 
branch and bound (B&B) (Pfund, Fowler, & Gupta, 2004; Rocha et al., 2008) and mathematical programming (Fanjul-Peyro, 
Ruiz, & Perea, 2019; Rocha et al., 2008; Wang et al., 2020), heuristics (Lin, Pfund, & Fowler, 2011) and meta-heuristics, such 
as GAs (Lin, Pfund, & Fowler, 2011) and modified GAs (Wang et al., 2020), iterated greedy metaheuristics (Rodriguez et al., 
2013), tabu search (TS) (Wang & Alidaee, 2019), simulated annealing (SA) (Wang et al., 2020), the imperialist competitive 
algorithm (ICA) with memory (Lei et al., 2020) and an improved artificial bee colony (ABC) algorithm (Lei, Yuan, & Cai, 
2021), have been proposed. 
 
It is noted that all the above studies assume that machines are continuously available over the scheduling horizon. However, 
in a real manufacturing environment, machines may not be available because of maintenance operations (Zhang et al., 2020), 
tool replacement (Dang et al., 2021), machine breakdowns (Kim & Kim, 2020), etc. UPMSPs with maintenance have been 
extensively studied in recent years for various maintenance activities and performance measures. For the UPMSP with at most 
one maintenance activity on each machine, Cheng et al. (2011) proved that the two problems of minimizing the total 
completion time and the total machine load can be optimally solved in polynomial time, Hsu et al. (2013) proposed models 
for the same problem as in reference (Cheng et al.,2011) considering three basic types of ageing effects and proved that the 
models could be solved optimally in polynomial time, and Lu et al. (2018) proposed an ABC-TS algorithm to find an 
approximately optimal solution in a reasonable time. For the UPMSP considering multiple maintenance activities and ageing 
effects simultaneously, Yang et al. (2012) applied the group balance principle to determine the optimal positions of the 
maintenance activities and the number of jobs in each group in the scheduling sequence on each machine. Tavana et al. (2015) 
presented an integrated three-stage model with the fuzzy analytic hierarchy process, the technique for order of preference by 
similarity to ideal solution, and goal programming. Gara-Ali et al. (2016) proposed a general model for the UPMSP with 
different maintenance systems and several performance criteria. For the UPMSP with multiple maintenance activities and 
sequence-dependent setup times, Avalos-Rosales et al. (2018) proposed a mathematical formulation with valid inequalities to 
obtain optimal solutions for small to medium instances and an efficient meta-heuristic algorithm based on a multistart strategy 
for solving larger instances. Lei and Yang (2022) proposed a multisubcolony ABC algorithm to simultaneously minimize the 
makespan and total tardiness. Lei and Yi (2021) presented a differentiated shuffled frog leaping algorithm and used its strong 
exploration ability to minimize the makespan. Wang & Pan (2019) presented a novel ICA with an estimation of distribution 
algorithm to simultaneously minimize the makespan and total tardiness. In addition, the distributed UPMSP with preventive 
maintenance (Lei & Liu, 2020), UPMSP with additional resources and maintenance (Lei & He, 2022) and UPMSP with 
release times and maintenance activities (Pang, Tsai, & Chou, 2021) have been researched. 
 
Regarding the above works on the UPMSP with maintenance, three types of maintenance activities are generally assumed: 
periodically fixed, flexible and variable. For scheduling with fixed maintenance activities, the starting time and duration of 
each maintenance activity are predefined or given beforehand (Avalos-Rosales et al., 2018; Lei & Yang, 2022; Lei & Yi, 2021; 
Wang & Pan, 2019; Lei & He, 2022). For scheduling with flexible maintenance activities, the maintenance operation must be 
performed within a preplanned time window (Lei & Liu, 2020; Beldar et al., 2022) or below a specific threshold (Pang, Tsai, 
& Chou, 2021), and the duration is fixed (Pang, Tsai, & Chou, 2021) or related to the starting time of the maintenance (Beldar 
et al., 2022). For scheduling with variable or deteriorating maintenance activities, the maintenance starting times are treated 
as decision variables, and the maintenance duration is assumed to increase with the starting time (Cheng, Hsu, & Yang, 2011; 
Hsu et al., 2013; Lu et al., 2018) or is fixed (Yang et al., 2012; Tavana et al. 2015). However, in a real production environment, 
the starting time of a maintenance activity sometimes depends only on the reliability of the machine. To the best of our 
knowledge, scheduling with this kind of maintenance is very rare in the literature. Therefore, we considered the UPMSP with 
reliability-based maintenance in this paper, which assumes that the machine’s status follows a discrete degradation process, 
and if the machine’s reliability is less than the minimum acceptable level or threshold before starting job processing, the 
maintenance operation must be performed. 
 
Additionally, a large number of meta-heuristics based on swarm intelligence, such as the GA (Lin, Pfund, & Fowler, 2011) , 
SA (Wang et al., 2020; Lin & Ying, 2015), ABC (Lei, Yuan, & Cai, 2021; Lei & Yang, 2022; Lei & Liu, 2020; Lei & He, 
2022), TS (Wang & Alidaee, 2019), ICA (Lei et al., 2020), and hybrid algorithm ABC-TS (Lu et al., 2018), have been 
developed to deal with UPMSPs with maintenance. However, the application of meta-heuristics such as spider monkey 
optimization (SMO) has not been fully investigated. The SMO algorithm proposed by Bansal et al. (2014) is a swarm 
intelligence optimization algorithm inspired by the intelligent foraging behaviour of fission-fusion social structure-based 
animals. Since SMO has ability to trade-off between exploration and exploitation, SMO and its variants have been widely 
used to solve complex real-world optimization problems; these variants include numerical optimization and continuous 
constrained optimization (Sharma et al., 2016; Gupta et al., 2017). Cheruku et al. (2017) proposed a SMO-based rule miner 
(SM-RuleMiner) by incorporating a unique fitness function based on diabetes classification. In 2017, Sharma et al. suggested 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 541

a method for determining the ideal placement and size of capacitors using a combination of a SMO approach based on a 
limaçon curve and a local search strategy inspired by the same curve. In recent years, SMO has been successfully applied to 
solve discrete optimization problems. Mumtaz et al. (2020) proposed a hybrid SMO algorithm for multilevel planning and 
scheduling problems of assembly lines. Yue et al., (2023) proposed a hybrid Pareto spider monkey optimisation algorithm for 
a two-stage flexible printed circuit board flow shop to minimize TWC and energy consumption simultaneously. Xia et al., 
(2021) introduced discrete SMO as a solution method for a vehicle routing problem involving uncertain demands. Their 
findings demonstrate that SMO exhibits strong global search capabilities. 
 
This paper presents the HDSMO, a hybrid DSMO algorithm that employs a combination of discrete spider monkey 
optimization and GA techniques to effectively tackle the UPMSP problem with variable maintenance. To generate feasible 
initial solution, a three-phase constructive heuristic is proposed. To balance the exploration and exploitation capabilities of 
DSMO, an individual updating method considering the inertia weight is used. To enhance the search efficiency, a problem-
oriented neighbourhood search method is applied. Experiments are conducted to compare the performance based on 
computational time and solution quality of HDSMO, DSMO, and GA on three different scales of the problem. 
 
The research contributions of this paper can be summarized as follows. A DSMO algorithm composed of the spider monkey 
algorithm and GA is proposed. A hybrid DSMO algorithm is proposed with an initial solution generation method, discrete 
individual updating method and neighbourhood search method. In addition, the proposed methods have been evaluated and 
compared with the SMO and GA algorithms in a set of instances. 
 
The subsequent sections of this paper are structured as follows. In Section 2, the UPMSP with maintenance considered in this 
study is presented, along with its mathematical model. The DSMO, and a proposed HDSMO that includes initial population 
generation, individual update, and neighbourhood search are presented in Section 3. The experimental results are presented 
in Section 4, where the proposed algorithm's validity is analyzed. In Section 5, conclusion and future research directions are 
provided. 

2. Preliminaries 

2.1. Problem description 

A set 𝐽 = {𝐽 ,⋯ , 𝐽 ⋯ , 𝐽 } of 𝑛 jobs is to be processed on 𝑚 unrelated parallel machines 𝑀 , 𝑖 = 1,⋯ , m. Let 𝑛  denote the 
number of jobs assigned to 𝑀 , and let ∑ 𝑛 = n. We assume, as in most practical situations, that 𝑚 < n. The jobs are all 
available for processing at time zero. In this paper, we assume that a machine’s reliability follows an exponential distribution, 
and we let L represent the cumulative processing time of the job being continuously processed or the age of the machine. 
Then, the reliability 𝑅 of the machine is equal to 𝑒 , and 𝜆 is the machine failure rate. If the reliability falls below the 
threshold 𝑟  before starting a job’s processing, a maintenance operation must be performed to restore the machine to its 
original condition. Because both the frequency and location of the maintenance activities are decision variables, we define 
this maintenance activity as the variable maintenance like reference (Beldar et al., 2022). Using the three-field notation α|𝛽|𝛾 
introduced by Graham et al. (1979), we denote our problem by Rm/nr, VM/C  , where 𝑛𝑟  denotes that the jobs are 
nonresumable, VM  denotes variable maintenance, and the objective is to minimize the maximum completion time. The 
decision is to determine the allocation and sequence of 𝑛 jobs on 𝑚 machines and the maintenance activity arrangements. 
Since problem Rm/nr, VM/𝐶  is NP-hard (Lu et al., 2018), approximate methods are needed to solve real-size instances. 
 
To obtain the near-optimal solution of the studied problem, two principles need to be followed. One is to allocate job  𝐽  to the 
machine with the smallest processing time as often as possible, where the total processing times of the jobs allocated to the 
machines should be as close as possible. The second is to sequence the job on machine 𝑀   to minimize the number of 
maintenance operations. Assume that all jobs between two maintenance operations are grouped into a batch; if the machine’s 
reliability is equal to the threshold 𝑟  before starting the last job in the batch, we define the batch as fully loaded. The decision 
regarding job sequencing in machine 𝑀  is equivalent to the job-grouping batch decision. 
 
Property: The batch is almost fully loaded, and the longer the processing time of the last job, the less maintenance is needed, 
meaning that a better solution can be obtained. 
 
Proof: Suppose batch 𝐵   on machine 𝑀  , consisting of n   jobs, can be divided into two sub-batches, job 𝐽   and the 
remaining n − 1 jobs. Assume that the processing time of job  𝐽  is 𝑝 = max 𝑝 , 𝐽 ∈ 𝐵  and the total processing time 

of the n − 1 jobs is 𝑡 = ∑ 𝑝 , where 𝑒 > 𝑟  and 𝑒 > 𝑟 . If job  𝐽  is processed after the other n −1 jobs, the completion time of batch 𝐵  is 𝐶𝑇 = ∑ 𝑝 , as shown in Fig. 1(a). If we swap job   𝐽  with any job before 

it, the completion time of batch 𝐵  is likely to be 𝐶𝑇 = ∑ 𝑝 + 𝑥 ∗ 𝑡 , and the number of maintenance operations is 



  

 

542𝑥 0, as shown in Fig.1(b). Because the continuous processing time of the first n − 1 jobs becomes longer after the swap, 
the machine reliability before starting job number n  in the batch is probably lower than the threshold 𝑟 , and maintenance 
is needed. Thus, 𝐶𝑇 − 𝐶𝑇 0. 

 
Fig. 1. An example of different job sequences for job-grouping batch 

2.2. Mixed integer programming model 

Indices and variables 
 𝑖: 𝑖 = 1,2,3, … ,𝑚, the machine index 𝑗: 𝑗 = 1,2,3, … ,𝑛, the job index 𝑘: 𝑘 = 1,2,3, … ,𝑛, the job position index in a machine 𝑆𝑇 : the start time at the 𝑘  position of machine 𝑀  𝐶𝑇 : the completion time at the 𝑘  position of machine 𝑀  𝑡 : the time required for maintenance 𝜆: the failure rate in the exponential distribution of machine reliability 𝑟 : the threshold of machine reliability 𝐿 : the age of machine 𝑀  in position k before processing a job 𝐿 : the age of machine 𝑀  in position k after processing a job 𝑅 : the reliability of machine 𝑀  in position k before processing a job 𝑝 : the processing time of job 𝐽  in machine 𝑀  𝐶 : the largest completion time of the m machines 
 
Decision variables 
 𝑋 = 1  if job J  is performed at k  position of machine M       0  Otherwise                                                                                    𝑌 = 1   if maintenance is applied after k  position of machine M              0   Otherwise                                                                                                         
 
Mathematical model 
 𝑚𝑖𝑛. 𝐶     (1) ∑ 𝑋 1 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 1,2, … ,𝑛     (2) ∑ ∑ 𝑋 = 1,∀ 𝑗 = 1,2, … ,𝑛   (3) 𝑆𝑇 = 0, ∀ 𝑖 = 1,2, … ,𝑚 (4) 𝐿 = 0,∀ 𝑖 = 1,2, … ,𝑚  (5) 𝐶𝑇 = ∑ 𝑝 ∗ 𝑋 ,∀ 𝑖 = 1,2, … ,𝑚  (6) 𝑆𝑇 𝐶𝑇 + 𝑡 ∗ 𝑌 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 2,3, … ,𝑛  (7) 

𝐶𝑇 𝑆𝑇 + ∑ 𝑝 ∗ 𝑋 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 2,3, … ,𝑛   (8) 

𝐿 𝐿 + ∑ 𝑝 ∗ 𝑋 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 2,3, … ,𝑛   (9) 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 543𝐿 = 𝐿 1 − 𝑌 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 2,3, … ,𝑛  (10) 

𝑅 = 𝑒 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 2,3, … ,𝑛  (11) 

𝑅 𝑟 ,∀  𝑖 = 1,2, … ,𝑚𝑘 = 2,3, … ,𝑛       (12) 𝐶 𝐶𝑇 ,∀ 𝑖 = 1,2, … ,𝑚  (13) 

In this model, the objective is to minimize 𝐶 , as shown in Eq. (1). Constraints (2) and (3) ensure that each job can only be 
processed at one position of one machine and that each position of one machine can only be occupied by one job. Constraint 
(4) specifies the start time of each machine at the first position. Constraint (5) specifies the age of the machine at the first 
position before processing the job. Constraint (6) specifies the completion time of each machine at the first position. The start 
and completion times for each machine at each position are defined by constraints (7) and (8). Constraints (9) and (10) define 
the age of the machine. Constraints (11) and (12) define the reliability function and threshold of the machine. Constraint (13) 
defines the maximum completion time of each machine. 

3. HDSMO algorithm for the UPMSP with variable maintenance 

3.1. Encoding and decoding of individuals 

According to the definition of the proposed problem, the encoding only needs to specify which machine each job will be 
processed on; thus, the chromosome can be depicted as a vector that has a length of n + m − 1, where n denotes the total 
number of jobs and m  indicates the total number of machines. For instance:  𝐽 ,⋯ , 𝐽 , 0,⋯ ,0,⋯ ,0, 𝐽 ,⋯ , 𝐽  , 
where the sequence of jobs processed on a single machine is represented by a string of numbers that are divided by 0, while 
the allocation of jobs to various machines is indicated by 0. An encoding example for a solution of a problem with 15 jobs 
and 4 machines is illustrated in Fig. 2. 

 
Fig. 2. An example of encoding 

 

The decoding process calculates the objective value and fitness of individual 𝑆𝑀 . Assume the completion time 𝐶𝑇  is 0 and 
the set of completion times is 𝑀𝐶 = {∅}. The decoding process is shown in Algorithm 1. 

Algorithm 1: Decoding 
0 Input: n, m, 𝑟 , 𝑝 , 𝜆, 𝑡 , 𝑀𝐶 = {Φ} 
1 Initialize the age and reliability of machine 𝑀 , 𝐿 = 0, 𝑅 = 1 
2 For spider monkey individuals ℎ = 1 to 𝑁 do 
3   For machines 𝑖 = 1 to 𝑚 do 
4      For machine job positions 𝑘 = 1 to 𝑛 , select job 𝐽  
5       If 𝑅 𝑟 , set 𝐿 = 𝐿 + 𝑝 , 𝐿 = 𝐿 , 𝐶𝑇 = 𝐶𝑇 + 𝑝  
6       Else set 𝐿 = 𝑝 , 𝐶𝑇 = 𝐶𝑇 + 𝑡 + 𝑝  
7      End for 
8      𝐶𝑇 = 𝐶𝑇 ，𝑀𝐶 = 𝑀𝐶 ∪ {CT } 
9   End for  
10  𝐶 = max{𝐶𝑇 ,𝐶𝑇 ∈ 𝑀𝐶}，𝑓 =  
11 End for 

3.2. Proposed DSMO algorithm 

Empirical studies have demonstrated that the SMO algorithm exhibits strong performance when applied to continuous 
optimization (Bansal et al., 2014; Gupta et al., 2017). However, the problem 𝑅𝑚/𝑛𝑟,𝑉𝑀/𝐶  is a combination optimization 
problem. The proposed DSMO algorithm incorporates distinct update techniques for discrete individuals during the local 
leader phase, global leader phase, and local leader decision phase. The following process outlines how these methods can 
facilitate the inheritance of genes from both the global optimal individual and the local optimal individual by an individual. 
3.2.1 Local leader phase 

In this stage, each individual 𝑆𝑀  updates its position with the information of 𝐿𝐿 , which is the local optima in group 𝑙, and 
an individual 𝑆𝑀 , which is different from 𝑆𝑀  in group 𝑙, as shown in Eq. (14). The individual is updated in two steps. First, 



  

 

544

the selected parent individual 𝑆𝑀  is attracted toward the local leader by Eq. (15). Second, the generated individual 𝑆𝑀 , after 
Step 1, is updated with the randomly selected individual 𝑆𝑀  to avoid premature stagnation, as shown in Eq. (16). 
 𝑆𝑀 = 𝑝 ⨂𝑓 𝑝 ⊗ 𝑔 𝑆𝑀 , 𝐿𝐿 , 𝑆𝑀    (14) 𝑆𝑀 = 𝑝 ⊗ 𝑔 𝑆𝑀 , 𝐿𝐿 = 𝑔 𝑆𝑀 , 𝐿𝐿      𝑝 > 𝑝𝑆𝑀                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (15) 𝑆𝑀 = 𝑝 ⊗ 𝑓 𝑆𝑀 , 𝑆𝑀 = 𝑓 𝑆𝑀 , 𝑆𝑀         𝑝 < 𝑝𝑆𝑀                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (16) 

 

where 𝑝   and 𝑝   are uniformly distributed random numbers in the range [0,1]. 𝑝   and 𝑝   are the crossover rates, and 𝑝 ,𝑝 ∈ 0,1  ; 𝑝 = 𝑝 + 0.4/𝑀𝑎𝑥𝑡 . We set the initial value to 0.1 in this paper, and 𝑀𝑎𝑥𝑡  is the maximum number of 
iterations. 𝑔 𝑆𝑀 ,𝐿𝐿  and 𝑓 𝑆𝑀 , 𝑆𝑀  represent the crossover operations between individuals, and two kinds of crossover 
operators are designed. One retains the genes of the two parent individuals 𝑆𝑀  and 𝐿𝐿 , and the rest of the genes are randomly 
sequenced, as shown in Fig. 3 (a). The other operation is for two parent individuals without the same genes; a random interval 
in 1,𝑛 + 𝑚 − 1  is selected for crossover by mapping, as shown in Fig. 3 (b). The fitness value of the generated individual 𝑆𝑀  is calculated, and if the fitness of the new individual is better than that of the old one, then 𝑆𝑀  is replaced with the 
new individual 𝑆𝑀 . 

 

 
Fig. 3. Two kinds of crossover operations, (a) with the same genes and (b) without the same genes 

 

3.2.2 Global leader phase 

During the global leader phase, as demonstrated in Eq. (17), the status of the individual 𝑆𝑀   is revised, similar to the local 
leader phase. The differences are as follows: (a) the update probability 𝑝  of the individual 𝑆𝑀  is dependent on its fitness, as 
shown in Eq. (18); (b) the individual 𝑆𝑀  updates its position according to the experience of the global leader, 𝐺𝐿, and another 
random individual, 𝑆𝑀 , in the population, as shown in Eq. (19) and Eq. 20 .  𝑆𝑀 = 𝑝 ⨂𝑓 𝑝 ⊗ 𝑔 𝑆𝑀 ,𝐺𝐿 , 𝑆𝑀                        (17) 𝑝 = 0.9 + 0.1 = 0.9 + 0.1                    (18) 
𝑆𝑀 = 𝑝 ⊗ 𝑔 𝑆𝑀 ,𝐺𝐿 = 𝑔 𝑆𝑀 ,𝐺𝐿       𝑝 < 𝑝𝑆𝑀                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (19) 
𝑆𝑀 = 𝑝 ⊗ 𝑓 𝑆𝑀 , 𝑆𝑀 = 𝑓 𝑆𝑀 , 𝑆𝑀      𝑝 < 𝑝𝑆𝑀                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20) 

where 𝑝   and 𝑝   are uniformly distributed random numbers in the range [0,1]. 𝑝   is the crossover rate, and 𝑝 ∈ 0,1  . 𝑔 𝑆𝑀 ,𝐺𝐿  and 𝑓 𝑆𝑀 ,𝑆𝑀  represent the crossover operations between two individuals. The crossover operators are the 
same as in the local leader phase. 
 

3.2.3 Global leader learning phase and local leader learning phase The 𝐺𝐿  updates its position by using a greedy selection process, and 𝑆𝑀 ,  having the best fitness among all the spider 
monkeys, is selected as the new position of the 𝐺𝐿. If the position of the 𝐺𝐿 remains unchanged, then let the global limit count 
be 𝑛 = 𝑛 + 1. Like the global leader learning phase, the positions of the 𝐿𝐿s in all the groups are updated, selecting the 𝑆𝑀  with the best fitness in each group. If the position of the 𝐿𝐿 remains unchanged, then let the local limit count be 𝑛 =𝑛 + 1. 
 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 545

3.2.4 Local leader decision phase and global leader decision phase 
 

If the 𝐿𝐿 position of a group is not updated for a predetermined number of iterations, i.e., 𝑛 > 𝑛 , then the positions of the 
spider monkeys are updated by using information from both the 𝐿𝐿 and 𝐺𝐿 based on the probability 𝑝  through Eq. (21). 
 𝑆𝑀 = 𝑝 ⨂𝑓 𝑝 ⊗ 𝑔 𝑆𝑀 ,𝐺𝐿 ,𝐿𝐿                            (21) 
 
Similar to the local leader decision phase, if the global limit count is larger than the global leader limit, that is, 𝑛 > 𝑛 , 
then the population is split into subgroups until the number of groups reaches the maximum allowed number of groups 𝑀𝐺, 
and then they are combined to form a single group again. 

3.3 HDSMO algorithm 

An HDSMO algorithm integrating the merits of DSMO with three improvements is presented in this section. First, a three-
phase heuristic is proposed to generate a better initial solution. Second, the position update method considering the inertial 
weight is proposed to balance the exploration and exploitation capabilities of DSMO. Third, a problem-oriented 
neighbourhood search method with jump and swap operations is designed to improve the search efficiency of the HDSMO 
algorithm. The flowchart of HDSMO is shown in Fig. 4. 
 

 
Fig. 4. Flow chart of the HDSMO algorithm 

3.3.1 Initial population generation method 

Based on the two-phase scheduling heuristic (Lin, Pfund, & Fowler, 2011) and the properties of the addressed problem, a 
three-phase heuristic is designed to generate the initial solutions. 

 
Step 1: Apply the following linear programming relaxation model to generate a partial schedule. If 𝑋 = 1, job 𝐽  is 

assigned to machine 𝑀 ; otherwise, job 𝐽  is not assigned to any machine. 
  𝑚𝑖𝑛 𝐶  (22) ∑ 𝑝 𝑋 𝐶 ,∀𝑖 = 1,2, … ,𝑛  (23) ∑ 𝑋 = 1 ,∀𝑗 = 1,2, … ,𝑛   (24) 0 𝑋 1,∀  𝑖 = 1,2, … ,𝑚𝑗 = 1,2, … ,𝑛  (25) 



  

 

546

Step 2: For an unassigned job 𝐽 , set 𝑚𝑎𝑥 ,…, {𝑋 } = 1 and 𝑋 = 0 for all 𝑘 𝑖 to obtain a complete schedule. 
Step 3: A group of 𝑛  jobs are assigned to machine 𝑀  in batches considering the machine’s reliability threshold to obtain 

the solution of the proposed problem. The total processing time of batch 𝐵  is estimated by 𝑡 = + ∑
. Then, the 

lower bound of the batch number 𝑛  is estimated by Eq. (26). 
 

𝑛 = ⎩⎪⎨
⎪⎧ 𝑝 𝑑𝑖𝑣 𝑡 − 1           𝑝 𝑚𝑜𝑑 𝑡 = 0

𝑝 𝑑𝑖𝑣 𝑡                                                            𝑒𝑙𝑠𝑒 

 
 

(26) 

 
Assuming 𝑈𝑆𝐽  is the set of unscheduled jobs on machine 𝑀  sequenced by the longest processing time rule,  𝐿𝐽  is the first 𝑛  jobs in the set 𝑈𝑆𝐽 , and 𝑆𝐽  is the remaining 𝑛 − 𝑛  jobs. The process of job-grouping batch is shown in Fig.5. 

 
Fig.5. The process of job-grouping batch 

3.3.2 Local leader and global leader update with the inertia weight 

The balance between global and local search throughout the course of a run is critical to the success of an evolutionary 
algorithm (Nickabadi et al., 2011). For the basic DSMO algorithm, the old individual position is totally inherited, which is 
not good for the solution search. The inertia weight is proposed to balance the exploration and exploitation characteristics of 
DSMO. The method of updating individuals is improved by considering the inertia weight 𝑝  given in Eqs. (27) and (28), 
and the individual position update with inertia weight is shown in Eq. (29), which represents the inheritance judgement of the 
individual 𝑆𝑀  to the previous position. 
 𝑆𝑀 = 𝑝 ⨂𝑓 𝑝 ⊗ 𝑔 𝑝 ⊗ 𝑣 𝑆𝑀 ,𝐿𝐿 , 𝑆𝑀  (27) 𝑆𝑀 = 𝑝 ⨂𝑓 𝑝𝑟𝑜𝑏 ⊗ 𝑔 𝑝 ⊗ 𝑣 𝑆𝑀 ,𝐺𝐿 , 𝑆𝑀  (28) 𝑆𝑀 = 𝑝 ⊗ 𝑣 𝑆𝑀 = 𝑣 𝑆𝑀            𝑝 < 𝑝𝑆𝑀               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (29) 

 
where 𝑝  is a random number in the interval [0,1] and when 𝑝 < 𝑝 , operation 𝑣 𝑆𝑀  is performed by mutation. For the 
individuals in the first and last 50% of the generation population, the mutation operations of order reversal and two-point 
exchange were adopted, respectively, as shown in Fig.6. 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 547

 
Fig.6. Two kinds of mutation operations: (a) order reversal and (b) swap 

 

3.3.3 Neighbourhood search 

For permutation problems, insert or jump and pairwise swap moves are widely used (Chen et al., 2021; Zhang & Chen, 2022) 
to improve the search efficiency. Two types of neighbourhood operators are defined in this paper to efficiently explore the 
solution space: ⑴ move one job from one batch to another batch of a machine or from one machine to another machine if it 
decrease the completion time, which is called a jump; (2) exchange two jobs from different batches of a machine or different 
machines if it decrease the completion time, which is called a swap. 
 
For a spider monkey individual 𝑆𝑀  , intra-machine or inter-machine neighbourhood search is applied according to the 
deviation rate of the makespan. It is calculated from the maximum and minimum completion times of the parallel machine 𝐷 =  . When 𝐷 0.1 , the intra-machine neighbourhood search operation is applied; otherwise, the inter-
machine neighbourhood search operation is performed. If the objective function value of the neighbouring solution is better 
than that of the current solution, the current solution is updated. Otherwise, the current solution is retained. 
 
Define 𝑛  as the number of batches on machine 𝑀  and n  as the number of jobs in batch 𝐵 . 𝑀 ∗ and 𝑀 # represent the 
machines with the longest completion time and the shortest completion time, respectively. The jump and swap operations are 
performed sequentially for an individual 𝑆𝑀 , and a limit ∆𝐶𝑇 is set for stopping the neighbourhood search between machines. 
The process of the jump and swap operations is shown in Fig. 7. 

4. Parameter tuning and computational experiments 

4.1. Data generation 

In this section, we present the computational experiments on the performance of the proposed algorithm. To evaluate the 
effectiveness of the proposed HDSMO algorithm, HDSMO is compared with the DSMO algorithm and GA. The algorithms 
were programmed by using MATLAB R2020a software, and the MIP model was implemented on the LINGO 18.0 x64 
platform. All programs were run on an Intel(R) Xeon(R) Gold 6242R @3.10 GHz CPU, 64.0 GB RAM workstation. 
 

 



  

 

548

 
Fig.7. The main processes of the jump and swap operations 

 
The machine parameters, job parameters, and maintenance activity parameters are utilized in the execution of the experiments. 
The parameters of the machine consist of the number of machines 𝑚, whereas the parameters of the job comprise the quantity 
of jobs 𝑛 , and the time for processing 𝑝  ; and the maintenance activity parameters include the threshold 𝑟 = 0.4 , 
maintenance time 𝑡 , and machine failure rate, λ. The instances and experimental parameters are shown in Table 1, as were 
also shown in reference (Avalos-Rosales et al., 2018). We used 4 machines with 20 jobs (n20m4) to represent the problem 
instances. For each combination of problem instance sizes, 10 instances were randomly generated. 
 
Table 1  
Instances and experimental parameters 

Size 𝑚 𝑛 𝑝  𝜆 𝑡  
Small 2,3 6,8,10,12 𝑈 1,100  0.007 10 

Medium 3,4,5 15,20,25,30,35,40,50,60 𝑈 1,100  0.0035 20 
Large 10,15,20 100,150,200,250 𝑈 1,100  0.0035 20 

4.2. Parametric tuning 

Proper adjustment of the parameters is crucial for optimizing the algorithm's performance, hence employing suitable 
techniques to tune these parameters is essential. A set of 15 typical examples are selected from the problems in Table 1, and 
the Taguchi method is employed to establish the algorithm's parameters for problems of varying scales (Yue et al., 2019). 
Taking the HDSMO algorithm as an example, the parameters of the algorithm include the population size N, the maximum 
number of iterations 𝑀𝑎𝑥𝑡, crossover rates 𝑝  and 𝑝  and the inertia weight 𝑝 . The parameters and levels of the HDSMO 
algorithm determined by the pre-experiment are shown in Table 2. 
 
Table 2  
The parameters and levels for the HDSMO algorithm 

Parameters Small Medium Large 
N 30,50,80,100 100,200,300,350 200,300,450,500 𝑀𝑎𝑥𝑡 50,100,150,200 100,200,300,400 200,300,400,500 𝑝  0.2,0.3,0.4,0.5 0.3,0.4,0.5,0.6 0.5,0.6,0.7,0.8 𝑝  0.2,0.3,0.4,0.5 0.3,0.4,0.5,0.6 0.5,0.6,0.7,0.8 𝑝  0.05,0.1,0.15,0.2 0.1,0.2,0.25,0.3 0.2,0.25,0.3,0.35 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 549

Taking the makespan as the response variable, each parameter combination experiment is run 10 times. The number of 
orthogonal experiments under 5 parameters and 4 levels is L 4  , and the total number of experiments required is 
16*15*10=2400. The orthogonal experimental design was generated in Minitab, and the signal-to-noise (S/N) ratio analysis 
result of the HDSMO algorithm under the three instance sets is shown in Fig. 8. 

 

  

 
Fig. 8. The mean S/N results for the makespan of the HDSMO algorithm 

 
For each parameter, the level with the largest S/N ratio is selected. According to the same method, the Table 3 illustrates the 
determined parameter values for various algorithms, obtained through experimental analysis of the parameters in the GA and 
DSMO algorithms. 
 
Table 3  
Parameter values for different algorithms 

Parameter 
GA DSMO HDSMO 

Small Medium Large Small Medium Large Small Medium Large 
N 100 350 500 100 300 450 80 350 200 

 200 400 500 100 400 500 200 300 500 
/  0.4 0.3 0.5 0.3 0.6 0.8 0.3 0.4 0.5 
/  0.15 0.2 0.2 0.5 0.6 0.8 0.4 0.6 0.7 

 / / / / / / 0.2 0.3 0.35 
 

4.3. Computational experiments and discussion 

The computational results are shown in Tables 4-6 for all the test instances. The objective value of 𝐶 , and the relative 
percentage deviation (PD) is applied to compare the three evaluated methods, together with the average computation time 
(CT) in seconds. The PD values were calculated by 𝑃𝐷 = ∗∗ . 𝐶∗  is the optimal solution obtained from the MIP 
model of the small-scale problems and the best solution obtained by different algorithms for the medium- and large-scale 
problems. Due to the low efficiency of the MIP models, the medium- and large-scale problems only include the computation 
times of the heuristics and intelligent algorithms. 
 
 



  

 

550

Table 4  
The performance of the algorithms (Small) 

n*m* 
MIP GA DSMO HDSMO 

CT 𝐶  PD CT 𝐶  PD CT 𝐶  PD CT 𝐶  PD 

n6m2 35.97 103.7 0.000 1.74 103.7 0.000 0.90 103.7 0.000 3.23 103.7 0.000 
n6m3 42.44 69.0 0.000 1.62 69.0 0.000 1.03 70.5 0.022 4.23 69.0 0.000 
n8m2 8385.64 140.7 0.000 1.42 140.7 0.000 0.98 141.7 0.007 3.45 140.7 0.000 
n8m3 9029.06 95.5 0.000 2.24 96.4 0.009 1.14 98.5 0.031 4.39 95.7 0.002 
n10m2 12618.35 192.6 0.000 1.57 193.6 0.005 1.19 198.4 0.030 3.96 193.6 0.005 
n10m3 16229.79 95.1 0.000 1.73 98.0 0.030 1.32 99.0 0.041 4.65 96.2 0.012 
n12m2 18000 232.0 0.000 1.77 234.6 0.011 1.37 232.8 0.003 4.77 234.4 0.010 
n12m3 12663.53 110.0 0.000 1.92 122.1 0.110 1.50 121.8 0.107 4.93 110.8 0.007 

Average 9625.60 129.8 0.000 1.75 132.3 0.021 1.18 133.3 0.030 4.20 130.5 0.005 

 
Table 5  
The performance of the algorithms (Medium) 

n*m* 
GA DSMO HDSMO 

CT 𝐶  PD CT 𝐶  PD CT 𝐶  PD 
n15m3 12.013 142.6 0.038  23.903 143.0 0.041  35.889 137.4 0.000  
n15m4 13.310 104.2 0.113  24.662 103.6 0.107  38.062 93.6 0.000  
n15m5 14.655 81.5 0.101  26.396 80.6 0.089  43.520 74.0 0.000  
n20m3 13.966 200.6 0.109  30.210 186.2 0.029  40.427 180.9 0.000  
n20m4 14.109 152.4 0.290  31.145 134.8 0.141  42.148 118.1 0.000  
n20m5 14.989 122.3 0.353  32.093 112.8 0.248  44.811 90.4 0.000  
n25m3 15.691 270.5 0.199  36.585 253.8 0.125  44.602 225.6 0.000  
n25m4 16.355 190.0 0.412  37.994 168.9 0.255  45.163 134.6 0.000  
n25m5 17.809 167.0 0.678  39.057 154.7 0.555  47.673 99.5 0.000  
n30m3 18.437 352.4 0.309  42.712 338.9 0.259  51.462 269.2 0.000  
n30m4 19.499 242.8 0.456  43.592 238.9 0.432  50.455 166.8 0.000  
n30m5 18.533 206.1 0.748  45.173 200.6 0.701  52.502 117.9 0.000  
n35m3 19.060 392.9 0.367  49.476 380.5 0.324  58.653 287.4 0.000  
n35m4 20.973 299.0 0.633  49.605 274.7 0.500  55.618 183.1 0.000  
n35m5 20.987 241.5 0.876  50.236 228.4 0.775  56.479 128.7 0.000  
n40m3 21.207 479.1 0.336  54.224 452.2 0.261  73.937 358.5 0.000  
n40m4 22.250 388.2 0.705  55.300 389.9 0.712  60.991 227.7 0.000  
n40m5 22.251 304.6 0.977  56.555 299.3 0.942  60.889 154.1 0.000  
n50m3 25.193 621.3 0.409  66.772 616.1 0.398  90.185 440.8 0.000  
n50m4 25.016 482.4 0.867  67.643 487.8 0.888  72.982 258.4 0.000  
n50m5 24.789 421.4 1.127  68.049 429.7 1.169  71.131 198.1 0.000  
n60m3 27.651 823.6 0.484  78.053 763.8 0.376  106.277 555.0 0.000  
n60m4 31.557 608.4 0.824  79.492 620.2 0.860  92.450 333.5 0.000  
n60m5 30.809 505.4 1.403  79.655 502.9 1.391  80.324 210.3 0.000  

Average 20.046 325.0 0.534  48.691 315.1 0.482  59.026 210.2 0.000  
 
 
 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 551

Table 6  
The performance of the algorithms (Large) 

n*m* 
GA DSMO HDSMO 

CT 𝐶  PD CT 𝐶  PD CT 𝐶  PD 
n100m10 121.056 524.2 3.831  289.134 533.4 3.916  138.101 108.5 0.000  
n100m15 140.514 416.1 5.700  304.562 386.7 5.227  158.355 62.1 0.000  
n100m20 179.374 330.0 7.108  329.983 320.3 6.870  169.284 40.7 0.000  
n150m10 173.622 850.0 4.296  420.129 806.6 4.026  182.417 160.5 0.000  
n150m15 190.879 663.7 7.025  442.539 624.1 6.547  205.575 82.7 0.000  
n150m20 216.270 533.6 9.011  461.788 492.9 8.248  224.662 53.3 0.000  
n200m10 215.577 1172.6 4.678  546.221 1156.8 4.602  247.991 206.5 0.000  
n200m15 230.929 891.1 7.618  569.715 865.2 7.368  241.927 103.4 0.000  
n200m20 255.377 732.1 10.386  587.604 678.1 9.546  265.533 64.3 0.000  
n250m10 257.126 1495.7 4.964  677.538 1462.2 4.830  292.197 250.8 0.000  
n250m15 221.977 1142.5 8.075  693.807 1082.0 7.594  293.251 125.9 0.000  
n250m20 233.510 956.0 11.529  717.169 849.1 10.128  308.877 76.3 0.000  
Average 203.018 809.0 7.019  503.349 771.5 6.575  227.348 111.2 0.000  

It can be concluded from Table 4 that the MIP model can obtain the optimal solutions of all the small-scale test problems, 
while CT greatly increases with the increase in the number of machines and jobs. HDSMO and GA can obtain the optimal 
solutions for 3 of 8 instances, and the average PD of HDSMO is smaller than GA. HDSMO outperforms DSMO and GA in 
terms of 𝐶  and PD, while DSMO and GA outperform HDSMO in terms of CT. Since HDSMO, SMO and GA can almost 
obtain near-optimal solutions of the test problems, the difference in the 𝐶  and PD values of the three algorithms is not 
large. Tables 5 & 6 show that HDSMO clearly outperforms DSMO and GA in terms of 𝐶   and PD, and GA clearly 
outperforms DSMO in terms of CT for the medium- and large-scale problems. It can be inferred that HDSMO is the most 
promising solution method for solving medium- and large-scale problems, and it can obtain better 𝐶  and PD within a 
relatively longer CT than GA, and much shorter CT than SMO. The reason lies in the fact that the HDSMO algorithm balances 
the exploration and exploitation capabilities of search through three improvements compared with DSMO. To verify whether 
there is a significant difference in the performance of the four evaluated algorithms, an ANOVA test on the mean was applied 
to compare the solution approaches, and the results are shown in Table 7. Since the significance is less than 0.05, it indicates 
that there was a statistically significant difference in the performance of the different solution methods. 
 
Table 7  
Significance test of the PD values of different algorithms (ANOVA: α=0.05) 

Algorithms Sum of Squares df Mean Square F p value 
Between Algorithms 1371.859 2 685.929 104.197 .000 

Within Algorithm 8663.222 1316 6.583   
Total 10035.081 1318    

The boxplot diagram at the 95% confidence level for 𝐶  and PD are shown in Fig. 9. MIP is just for the small problems. 
According to the ANOVA test and the boxplot diagram, we can find that the performance of HDSMO is significantly superior 
to that of the other two algorithms in the stability and near optimality of the solution, especially for the medium- and large-
scale problems. 

 
(a)𝑪𝒎𝒂𝒙 



  

 

552

 
(b) PD 

Fig. 9. Boxplot diagram of different algorithms  

As stated in Section 3.3.3, the neighbourhood search (NS) is designed to balance the exploration and exploitation capabilities 
of the algorithm. The convergence curves of the five algorithms, GA, DSMO, HDSMO and two hybrid approaches with NS, 
that is, GA+NS and DSMO+NS, are analyzed to further investigate the effectiveness of NS. The results of classical instances 
for different scale problems are shown in Fig.10. 
 

It can be seen from the Fig.10 that HDSMO is clearly superior to the other solution approaches in terms of both the 𝐶  and 
convergence speed for all the test problems, and the performance of DSMO and GA is relatively similar with respect to the 
quality of the solution for medium- and large-scale problems. In addition, DSMO+NS (or GA+NS) outperforms DSMO in 
terms of both the solution quality and convergence. Generally, it can be inferred that NS can balance the exploration and 
exploitation capabilities of the DSMO algorithm for the problem proposed in this paper, and HDSMO is superior to the other 
solution methods with respect to both the solution quality and convergence speed. 

 
Fig.10. Convergence curves of the algorithms for the three scale problems 

5. Conclusions 
To jointly optimize production and maintenance scheduling for the unrelated parallel machines problem, in this paper, a MIP 
model of the problem is constructed, and Lingo@ is used to solve the small-scale problem. According to the properties of the 
addressed problem and the “job-allocating and batch-grouping” decision-making method, a hybrid discrete SMO algorithm 
is proposed to solve medium- and large-scale problems. The experimental results show that the HDSMO algorithm 
outperforms the GA and DSMO algorithms in terms of the makespan, with slightly more computation time for the medium- 
and large-scale problems. In addition, the statistical analysis shows that HDSMO is robust to the size of the problems. 
Meanwhile, a convergence curves comparison of the different algorithms shows that HDSMO is a promising solution method 
for solving medium- and large-scale problems, and the neighbourhood search method proposed in this paper is effective in 
improving the convergence of the algorithm. 
 
UPMSPs with maintenance are very common in real-life production environments, where the practical constraints and 
performance requirements are diverse and complex. Future research will focus on a hybrid DSMO algorithm study for 
UPMSPs with dynamic event constraints, such as job release times, urgent jobs, sequence-dependent setup times and multi-
objective optimization problems. In addition, smart scheduling algorithms integrating the HDSMO and reinforcement learning 
methods will be investigated to ensure a quick and reasonable response for dynamic events. 

Acknowledgments 
This work was supported by the National Natural Science Foundation of China (No.51705370). 

Disclosure statement 
No potential conflict of interest was reported by the authors. 



Y. Chen et al. / International Journal of Industrial Engineering Computations 14 (2023) 553

Data availability 
The data that support the findings of this study are available from the corresponding author upon reasonable request. 

References 
Avalos-Rosales, O., Angel-Bello, F., Álvarez, A., & Cardona-Valdés, Y. (2018). Including preventive maintenance activities 

in an unrelated parallel machine environment with dependent setup times. Computers & Industrial Engineering, 123,364-
377. https://doi.org/10.1016/j.cie.2018.07.006. 

Azizoglu, M., & Kirca, O. (1999). Scheduling jobs on unrelated parallel machines to minimize regular total cost functions. 
IIE Transactions, 31,153-159. https://doi.org/10.1023/A:1007516602473. 

Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider Monkey Optimization algorithm for numerical optimization. 
Memetic Computing, 6,31-47. https://doi.org/10.1007/s12293-013-0128-0. 

Beldar, P., Moghtader, M., Giret, A., & Ansaripoor, A.H. (2022). Non-identical parallel machines batch processing problem 
with release dates, due dates and variable maintenance activity to minimize total tardiness. Computers & Industrial 
Engineering, 168,108135. https://doi.org/10.1016/j.cie.2022.108135. 

Chen, Y., Huang, P., Huang, C., Huang, S., & Chou, F.-D. (2021). Makespan minimization for scheduling on two identical 
parallel machines with flexible maintenance and nonresumable jobs. Journal of Industrial and Production Engineering, 
38(4),271-284. https://doi.org/10.1080/21681015.2021.1883131. 

Cheng, T.C.E., Hsu, C.-J, & Yang, D.-L. (2011). Unrelated parallel-machine scheduling with deteriorating maintenance 
activities. Computers & Industrial Engineering, 60(4),602-605. https://doi.org/10.1016/j.cie.2010.12.017. 

Cheng, T. C. E., & Sin, C.C.S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal 
of Operational Research, 47(3), 271-292. https://doi.org/10.1016/0377-2217(90)90215-W. 

Cheruku, R., Edla, D. R., & Kuppili, V. (2017). SM-RuleMiner: Spider monkey based rule miner using novel fitness function 
for diabetes classification. Computers in biology and medicine, 81, 79-92. 
https://doi.org/10.1016/j.compbiomed.2016.12.009. 

Dang, Q.-V., van Diessen, T., Martagan, T., & Adan, I. (2021). A matheuristic for parallel machine scheduling with tool 
replacements. European Journal of Operational Research, 291(2), 640-660. https://doi.org/10.1016/j.ejor.2020.09.050. 

Fanjul-Peyro, L., Ruiz, R., & Perea, F. (2019). Reformulations and an exact algorithm for unrelated parallel machine 
scheduling problems with setup times. Computers & Operations Research, 101,173-182. 
https://doi.org/10.1016/j.cor.2018.07.007. 

Gara-Ali, A., Finke, G., & Espinouse, M.-L. (2016). Parallel-machine scheduling with maintenance: Praising the assignment 
problem. European Journal of Operational Research, 252(1),90-97. https://doi.org/10.1016/j.ejor.2015.12.047. 

Gupta, K., Deep, K., & Bansal, J. C. (2017). Spider monkey optimization algorithm for constrained optimization problems. 
Soft Computing, 21,6933-6962. https://doi.org/10.1007/s00500-016-2419-0. 

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A.H.G.R. (1979). Optimization and approximation in deterministic 
sequencing and scheduling: a survey. Annals of Operations Research, 5,287-326. https://doi.org/10.1016/S0167-
5060(08)70356-X. 

Hsu, C.-J., Ji, M., Guo, J.-Y., &Yang, D.-L. (2013). Unrelated parallel-machine scheduling problems with aging effects and 
deteriorating maintenance activities. Information Sciences, 253,163-169.https://doi.org/10.1016/j.ins.2013.08.053. 

Kim, Y. -H., & Kim, R. -S. (2020). Insertion of new idle time for unrelated parallel machine scheduling with job splitting and 
machine breakdowns. Computers & Industrial Engineering, 147,106630. https://doi.org/10.1016/j.cie.2020.106630. 

Lei, D., & He, S. (2022). An adaptive artificial bee colony for unrelated parallel machine scheduling with additional resource 
and maintenance. Expert Systems with Applications, 205,117577. https://doi.org/10.1016/j.eswa.2022.117577. 

Lei, D., & Liu, M. (2020). An artificial bee colony with division for distributed unrelated parallel machine scheduling with 
preventive maintenance. Computers & Industrial Engineering,141,106320. https://doi.org/10.1016/j.cie.2020.106320. 

Lei, D., & Yang, H. (2022). Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-
colony artificial bee colony. Applied Soft Computing,125, 109154. https://doi.org/10.1016/j.asoc.2022.109154. 

Lei, D., & Yi, T. (2021). A novel shuffled frog-leaping algorithm for unrelated parallel machine scheduling with deteriorating 
maintenance and setup time. Symmetry, 13(9) ,1574. https://doi.org/10.3390/sym13091574. 

Lei, D., Yuan, Y., & Cai, J. (2021). An improved artificial bee colony for multi-objective distributed unrelated parallel machine 
scheduling. International Journal of Production Research, 59(17),5259-5271. 
https://doi.org/10.1080/00207543.2020.1775911. 

Lei, D., Yuan, Y., Cai, J., & Bai, D. (2020). An imperialist competitive algorithm with memory for distributed unrelated 
parallel machines scheduling. International Journal of Production Research, 58(2),597-
614.https://doi.org/10.1080/00207543.2019.1598596. 

Lin, Y. K., Pfund, M. E., & Fowler, J. W. (2011). Heuristics for minimizing regular performance measures in unrelated parallel 
machine scheduling problems. Computers & Operations Research,38(6),901-
916.https://doi.org/10.1016/j.cor.2010.08.018. 

Lin, S. W., Ying, K. C. (2015). A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel 
machine scheduling problems. International Journal of Production Research, 53(4),1065-
1076.https://doi.org/10.1080/00207543.2014.942011. 

Lin, S. W., Ying, K. C., Wu, W. J., & Chiang, Y.I. (2016). Multi-objective unrelated parallel machine scheduling: a Tabu-
enhanced iterated Pareto greedy algorithm. International Journal of Production Research, 54(4),1110-1121. 



  

 

554

https://doi.org/10.1080/00207543.2015.1047981. 
Lu, S., Liu, X., Pei, J., T. Thai, M., & M. Pardalos, P. (2018). A hybrid ABC-TS algorithm for the unrelated parallel-batching 

machines scheduling problem with deteriorating jobs and maintenance activity. Applied Soft Computing, 66,168-182. 
https://doi.org/10.1016/j.asoc.2018.02.018. 

Mumtaz, J., Guan, Z., Yue, L., Zhang, L., & He, C. (2020). Hybrid spider monkey optimisation algorithm for multi-level 
planning and scheduling problems of assembly lines. International Journal of Production Research, 58(20),6252-6267. 
https://doi.org/10.1080/00207543.2019.1675917. 

Nickabadi, A., Ebadzadeh, M. M., & Safabakhsh, R. (2011). A novel particle swarm optimization algorithm with adaptive 
inertia weight. Applied soft computing, 11(4), 3658-3670. https://doi.org/10.1016/j.asoc.2011.01.037. 

Pang, J, Tsai, Y. -C., & Chou, F.-D. (2021). Feature-extraction-based iterated algorithm to solve the unrelated parallel machine 
problem with periodic maintenance activities. IEEE Access, 9, 139089-139108. 
https://doi.org/10.1109/ACCESS.2021.3118986. 

Pfund, M., Fowler, J. W., & Gupta, J. N. D. (2004). A survey of algorithms for single and multi-objective unrelated parallel-
machine deterministic scheduling problems. Journal of the Chinese Institute of Industrial Engineers, 21(3), 230-241. 
https://doi.org/10.1080/10170660409509404. 

Rocha, P. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2008). Exact algorithms for a scheduling problem with 
unrelated parallel machines and sequence and machine-dependent setup times. Computers & Operations Research, 
35(4),1250-1264. https://doi.org/10.1016/j.cor.2006.07.015. 

Rodriguez, F. J., Lozano, M., Blum, C., & García-Martínez C. (2013). An iterated greedy algorithm for the large-scale 
unrelated parallel machines scheduling problem. Computers & Operations Research,40(7),1829-1841. 
https://doi.org/10.1016/j.cor.2013.01.018. 

Sharma, A., Sharma, A., Panigrahi, B.K., Kiran, D., & Kumar, R. (2016). Ageist spider monkey optimization algorithm. 
Swarm and Evolutionary Computation, 28,58-77. https://doi.org/10.1016/j.swevo.2016.01.002. 

Sharma, A., Sharma, H., Bhargava, A., Sharma, N., & Bansal, J. C. (2017). Optimal placement and sizing of capacitor using 
Lima limaçon inspired spider monkey optimization algorithm. Memetic Computing, 9,311-331. 
https://doi.org/10.1007/s12293-016-0208-z. 

Tavana, M., Zarook, Y., & Santos-Arteaga, F. J. (2015). An integrated three-stage maintenance scheduling model for unrelated 
parallel machines with aging effect and multi-maintenance activities. Computers & Industrial Engineering, 83,226-236. 
https://doi.org/10.1016/j.cie.2015.02.012. 

Wang, H., & Alidaee, B. (2019). Effective heuristic for large-scale unrelated parallel machines scheduling problems. Omega, 
83,261-274. https://doi.org/10.1016/j.omega.2018.07.005. 

Wang, X., Li, Z., Chen, Q., & Mao, N. (2020) Meta-heuristics for unrelated parallel machines scheduling with random rework 
to minimize expected total weighted tardiness. Computers & Industrial Engineering, 145,106505. 
https://doi.org/10.1016/j.cie.2020.106505. 

Wang, M., & Pan, G. (2019). A novel imperialist competitive algorithm with multi-elite individuals guidance for multi-object 
unrelated parallel machine scheduling problem. IEEE Access, 7,121223-121235. 
https://doi.org/10.1109/ACCESS.2019.2937747. 

Xia, X., Liao, W., Zhang, Y., & Peng, X. (2021). A discrete spider monkey optimization for the vehicle routing problem with 
stochastic demands. Applied Soft Computing, 111,107676. https://doi.org/10.1016/j.asoc.2021.107676. 

Yang, D.-L., Cheng, T. C. E., Yang, S.-J., & Hsu, C.-J. (2012). Unrelated parallel-machine scheduling with aging effects and 
multi-maintenance activities. Computers and Operations Research, 39(7),1458-
1464.https://doi.org/10.1016/j.cor.2011.08.017. 

Yue, L., Guan, Z., Zhang, L., Ullah, S., & Cui, Y. (2019). Multi objective lotsizing and scheduling with material constraints 
in flexible parallel lines using a Pareto based guided artificial bee colony algorithm. Computers & Industrial Engineering, 
128,659-680. https://doi.org/10.1016/j.cie.2018.12.065. 

Zhang, X., & Chen, L. (2022). A general variable neighborhood search algorithm for a parallel-machine scheduling problem 
considering machine health conditions and preventive maintenance. Computers & Operations Research, 143,105738. 
https://doi.org/10.1016/j.cor.2022.105738. 

Zhang, X., Liu, S. C., Lin, W. C., & Wu, C.C. (2020). Parallel-machine scheduling with linear deteriorating jobs and preventive 
maintenance activities under a potential machine disruption. Computers & Industrial Engineering, 145,106482. 
https://doi.org/10.1016/j.cie.2020.106482. 

  
 

 

   

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

  


