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 Operations with Electric Vehicles (EVs) on logistic companies and power utilities are increasingly 
related due to the charging stations representing the point of standard coupling between 
transportation and power networks. From this perspective, the Multi-depot Electric Vehicle 
Routing Problem (MDEVRP) is addressed in this research, considering a novel hybrid 
matheheuristic approach combining exact approaches and a Chu-Beasley Genetic Algorithm. An 
existing conflict is shown in three objectives handled through the experimentations: routing cost, 
cost of charging stations, and increased cost due to energy losses. EVs driving range is chosen as 
the parameter to perform the sensitivity analysis of the proposed MDEVRP. A 25-customer 
transportation network conforms to a newly designed test instance for methodology validation, 
spatially combined with a 33 nodes power distribution system. 
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Nomenclature 
Sets:  
  𝑉  Set of customers 𝑉  Set of depots 𝑉 Set containing customers and depots 𝑉 = 𝑉 ∪ 𝑉     𝐾 Set of vehicles 
  
Parameters:  
  𝑑𝑖𝑠𝑡  Distance from 𝑖 to 𝑗   𝑄 Load capacity of the vehicle 𝑑𝑒𝑝_𝑠𝑡𝑎𝑟𝑡 Vector of depot nodes 𝑑𝑒𝑝_𝑒𝑛𝑑 Copy vector of depot nodes 𝑠𝑒𝑞 Sequence of the nodes visited by a vehicle 𝑄  Battery capacity of the Electric Vehicle (EV) 𝑇 Study timeframe for the operation variables 



  

 

556 𝐴𝐹 Annualization factor 𝛽 Cost per traveled kilometer [𝑈𝑆𝐷/𝑘𝑚] Ɣ Cost of a charging station [𝑈𝑆𝐷]  𝑡  Operation time of a charging station during the charge of an EV [ℎ𝑜𝑢𝑟𝑠] 𝑆  Base power [𝑘𝑊]  𝛺 Cost per kWh of energy [𝑈𝑆𝐷] 𝛼 Penalty factor 
  
Variables:  
  𝑥  Binary decision variable that takes the value of 1 if vehicle 𝑘 travels from node 𝑖 to node 𝑗; and 0 Y  Binary decision variable that takes the value of 1 if customer 𝑖 is visited by the vehicle 𝑘 𝑑  Demand at node 𝑖 𝑡  Remaining merchandise to be delivered at arc 𝑖, 𝑗 by vehicle 𝑘 𝑍  Value of infeasibility of a solution in a population of the Chu-Beasley Genetic Algorithm (CBGA) 𝑑 ( ) Distance traveled at node 𝑖 [𝑘𝑚] 𝑍  Distance traveled by the EV along the sequence described in vector 𝑠𝑒𝑞 [𝑘𝑚] 𝐸𝑅  Charging stations installed  ∆  Increase in energy losses of the power distribution system respect to the benchmark case [𝑘𝑊ℎ] 𝑓  Cost of routing of the EVs [𝑈𝑆𝐷] 𝑓  Cost of installed charging stations [𝑈𝑆𝐷]  𝑓  Cost of ∆  [𝑈𝑆𝐷] 𝐹  Value of the Objective Function (Total Cost) [𝑈𝑆𝐷] 𝑍  Value of fitness function [𝑈𝑆𝐷] 

 

1. Introduction 

 
Transportation electrification represents a remarkable measure to face global warming. According to the Net Zero Emissions 
(NZE) scenario explained in (International Energy Agency, 2021), a 1.5°C stabilization in temperature rising is forecasted for 
2050 due to zero CO2 levels released to the atmosphere. This fact is framed into a more electrified vehicle fleet, in which the 
NZE scenario pledges 60% of the share of Electric Vehicles EVs sales by 2030 and almost 100% for 2050, being an ambitious 
goal of 250 million and 1600 millions of EVs for 2030 and 2050 respectively. Non-economic barriers such as insufficient 
recharging infrastructure and unreliable grids affect the EVs deployment. Particularly, the participation of EVs charging 
infrastructure in developing economies and emerging markets is only 0.3% worldwide. Furthermore, by 2030 the EV 
investment, considering electric cars and charging infrastructure, must be 25 times the present investment, boosted by clear 
targets regarding funding improvement and new business models. These are mainly supported by tax incentives and credit 
lines implemented by green banks and finance institutions.    
   
As an effort to decrease carbon emissions in the supply chain and freight distribution management, logistic companies have 
been introducing zero-emission and eco-friendly vehicles in their fleets, including the last mile delivery (Zhang et al., 2020, 
Cataldo-Díaz et al., 2021). The main challenges around replacing freight vehicles with EVs are the high acquisition cost, 
waiting times for recharging, and short driving range (Juvvala & Sarmah, 2021). This latter induces range anxiety, defined as 
the EV driver’s fear of running out of power before reaching the destination or another charging facility. The range anxiety 
can be diminished by either increasing EVs battery autonomy or deploying more charging stations (Pevec et al., 2020). Battery 
autonomy and range performance in EVs are mainly affected by external factors, i.e., driving patterns, climatic conditions, 
topography, and payload weight in the case of EVs for freight transportation (Christensen et al., 2017). On the other hand, the 
EVs range from 100 to 400 km, and internal factors affect this feature in EVs, related to battery cell configuration and power 
and energy density (Sharma et al., 2020). Hence, the EVs are required to refuel more often than the conventional vehicles due 
to the short distance traversed, especially for goods delivery operations (Juan et al., 2016). 
 
Due to the limited travel autonomy of EVs for freight transportation, it is necessary to provide the appropriate location of 
charging stations, acting as range extenders of EVs batteries, considering the integration of power distribution and 
transportation networks. Optimal routing schemes are essential by the end of logistic companies to provide suitable decision-
making results. In this regard, the Multi Depot Electric Vehicle Routing Problem (MDEVRP) is an alternative to design proper 
routes for EVs used in freight transportation. The MDEVRP extends the well-known Capacitated Vehicle Routing Problem 
CVRP with EVs (Paz et al., 2018), using multiple depots where the vehicles start to complete their routes, along which the 
goods are delivered to the customers. The electric nature of the vehicles makes them detour to charging stations one or several 
times during the route, depending on the battery autonomy.    
 
Under the context of power networks, deploying well-planned charging facilities is highly desirable. Improvised charging of 
EVs at the power distribution system PDS can cause a higher peak load, voltage deviations at nodes, and violations in the 
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thermal limit of transformers and lines (Arias-Londoño et al., 2020). Random charging station locations could impose capacity 
issues for the grid operators and compromise network reliability. 
 
In this paper, a model referred to describe the MDEVRP is proposed considering the optimal charging station location, the 
transportation costs, and the power distribution networks. This paper is an extension of the published works proposed by 
(Arias-Londoño et al., 2021), (Arias et al., 2018), and (Londoño & Granada-Echeverri, 2019) being the value-added 
development of a methodology combining the Multi-depot Vehicle Routing Problem MDVRP solution applied with EVs and 
a metaheuristic technique for charging stations located in the power network. The proposal is split into two stages. In the first 
stage, an exact technique is used to solve the goods distribution problem, i.e., the MDVRP was given to the customers, and 
their demands are solved using CPLEX. Once the routes are obtained, a Chu Beasley Genetic Algorithm CBGA is executed 
for each route by considering the location of charging stations. 
 
The main contributions of this research are the following: 

• We consider three objectives under conflict: EVs routing cost, installation of charging stations cost, and the cost of 
energy losses in the power distribution system.  

• A novel hybrid matheuristic approach combining exact techniques and a metaheuristic procedure based on a genetic 
algorithm is proposed for the logistics and EVS charging stations location subproblems. 

• We propose a new instance including the same spatial framework, the transportation, and distribution network, from 
the specialized literature, for algorithmic validation purposes.     

 
The remainder of this study is organized as follows: Section 2 presents the literature review related to the green vehicle routing 
problem within multiple depots and the metaheuristics that have been used for solution purposes. The mathematical model 
for the Multi Depot Vehicle Routing Problem (MDVRP) is described in Section 3. Then,  Section 4 described the hybrid 
methodology proposed for solving the MDEVRP. In Section 5, the CBGA is presented for solving the MDEVRP. The test 
system used to validate the hybrid methodology and the computational experiments are discussed in Section 6. Concluding 
remarks are shown in Section 7.   
 
2. Literature Review 
 
The MDEVRP has not been primarily addressed to our knowledge in the specialized literature. Instead, different contributions 
are found with a green vehicle routing problem with multiple depots. In (Wang et al., 2021a), the authors propose a hybrid 
methodology using genetic algorithm and column generation to solve the multi-depot EV scheduling problem. In (Paz et al., 
2018), the MDEVRP is addressed as an extension of the Vehicle Location Routing Problem with multiple depots considering 
partial charging, battery swap stations, and time windows constraints. The mathematical models proposed are solved using 
CPLEX over a set of modified instances. Combined with the MDEVRP, (Zhu et al., 2020) include the demand as two-
dimensional weighted items framed within the bin packing problem. Variable Neighborhood Search and Space Saving 
Heuristic algorithms are combined to solve vehicle routing and packing problems simultaneously. A practical logistic 
distribution case is considered in the numerical experiments for managerial decision purposes.    
 
The concept of Green Vehicle Routing Problem GVRP (Lin et al., 2014) has been studied as a variation of the VRP, 
characterized by introducing environmental and economic costs in the objective, via the implementation of effective routes 
following financial indexes and environmental concerns. Unlike the Electric Vehicle Routing Problem EVRP, the GVRP 
involves a set of refueling stations and a set of alternative fuel vehicles AFVs, which corresponds to a broader approach 
(Normasari & Lathifah, 2021). 
 
The Multi-depot Green Vehicle Routing Problem MDGVRP has been addressed by (Jabir et al., 2017). The work proposes 
and develops mathematical models that minimize economic and emission costs, considering managerial decisions related to 
the allocation of customers to depots and the assignment of the corresponding routes. An efficient ant colony optimization 
algorithm ACO is used to solve small and medium-size instances, while large-scale instances are solved using an integrated 
algorithm between ACO and VNS. Likewise, the proposed model (Li et al., 2019) applies an improved ACO algorithm to 
solve conflicting objectives, including revenue maximization and cost minimization. This latter encompasses traveling time 
and reduction of CO2 emissions. As mentioned above, the ACO algorithm is a suitable option for solving the MDGVRP even 
though the problem is NP-hard, which is noticeable (Li et al., 2019). The proposal includes a two-stage algorithm, being the 
first stage the decomposition of the original problem into several GVRP for complexity reduction with the K-means clustering 
algorithm. The second stage is problem-solving, with an efficient, improved ACO algorithm that uses an adaptive pheromone 
incremental updating strategy. 
 
Further diversified work is presented in (Wang et al., 2019), where the MDGVRP is solved within a multi-heuristic 
framework. Heuristics such as Clarke and Wright savings and Sweep algorithm are used together with the Multi-Objective 
Particle Swarm Optimization Algorithm. In (Wang et al., 2021b), a hybrid evolutionary algorithm is proposed composed of 
the VNS combined with a crossover operator and a population updating strategy to enhance search diversification. Similarly, 
the MDGVRP is formulated in (Sadati & Çatay, 2021) as a mixed-integer linear programming model, solved using a hybrid 
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proposal combining the VNS and Tabu search tested over a dataset from the literature to study the computational performance 
and provide managerial insights. The MDGVRP is presented in (Fan et al., 2021) and solved via a hybrid genetic algorithm 
and the VNS to generate an initial solution. The integer programming model is focused on a time-dependent approach with 
time windows considering temporal-spatial distance based on historical traffic information of the customer's distribution 
network.    
 
More generally, various mathematical model proposals have been proposed for the MDVRP, and some alternative 
formulations are suggested by Ramos et al., (2020). The two-commodity flow formulation for the MDVRP extends the CVRP 
in conjunction with the travelling salesman problem. Two different commodities have to be delivered and collected at each 
customer node. Conversely, the classical three-index formulation, rendered as an equivalence of the previously mentioned 
model, involves a binary decision variable that indicates whether a vehicle traverses an arc between two customers. 
 
Subtour elimination procedure has been proposed by several approaches, such as the Dantzig-Fulkerson-Johnson constraint, 
the Miller-Tucker-Zemlin formulation, transit load constraint, and arrival time constraint. Recent publications have framed 
the MDVRP from different perspectives, such as transportation efficiency and water distribution. In (Wang et al., 2021a), 
multiple depots' pick-up and delivery problems are addressed to maximize vehicle utilization and minimize logistics operating 
costs. The efficiency in logistics transportation is improved by using a customer splitting scheme to balance the spatial demand 
distribution. A similar context is found in (Medeiros Vieira et al., 2021) to face the problem of water distribution to drought-
affected populations at a large scale. Water sources represent the depots, and each set of demand points is assigned to a single 
water source. The procedure is applied to a real case of water distribution in the Brazilian territory, which includes operational 
priorities of humanitarian aid for disaster relief scenarios. 
 
3. Mathematical formulation of the MDVRP 
 
The mathematical model for the MDVRP can find the optimal routes of the vehicles with minimum traveled distance. The 
proposed mathematical model is the first stage of the proposed methodology. The MDVRP is mathematically defined by a 
complete graph 𝐺 = (𝑉,𝐴) where 𝑉 = 1, … ,𝑛 + 𝑤  is the set of vertices and 𝐴 = (𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗  is the set of arcs. 
The set of vertices V is split into two subsets: 𝑉 = 1, … ,𝑛  and 𝑉 = 𝑛 + 1, … ,𝑛 + 𝑤  that represent the sets of customers 
and depots respectively. Each depot has a maximum number of available vehicles with maximum load capacity, belonging to 
set 𝐾. Each vertex 𝑖 belonging to the set of customers 𝑉  has a non-negative demand 𝑑 . it is necessary to distance matrix 𝑑𝑖𝑠𝑡 ,  associated with the set of arcs to quantify the objective function, 𝐴. In the MDVRP, the performed routes are obtained 
at minimum cost in such a way that: each route starts and ends in the same depot, each customer is visited by just one vehicle, 
and the route demand cannot exceed the vehicle capacity. Accordingly, the equations that represent the mathematical model 
for the MDVRP fitted to the purposes of this research are presented as follows: 
 min𝑍 = 𝑑𝑖𝑠𝑡 · 𝑥   (1) 

 
Subject to: Y = 1 ∀𝑖 ∈ 𝑉  (2) 

𝑥∈ = Y  ∀𝑖 ∈ 𝑉  ∀𝑘 ∈ 𝐾 (3) 

𝑥∈∈ = 1 ∀𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (4) 

𝑥∈ − 𝑥∈ = 0 ∀ℎ ∈ 𝑉 ∀𝑘 ∈ 𝐾 (5) 

𝑑 · 𝑥 ≤ 𝑄∈∈  ∀𝑘 ∈ 𝐾 (6) 

𝑥∈ ≤ 1 
∀𝑖 ∈ 𝑉  𝑖 ∈ 𝑑𝑒𝑝_𝑠𝑡𝑎𝑟𝑡(𝑘) ∀𝑘 ∈ 𝐾 

(7) 
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𝑥∈ ≤ 1 
∀𝑗 ∈ 𝑉  𝑗 ∈ 𝑑𝑒𝑝_𝑒𝑛𝑑(𝑘) ∀𝑘 ∈ 𝐾 

(8) 

𝑥∈ = 0 
∀𝑗 ∈ 𝑉  𝑗 ∉ 𝑑𝑒𝑝_𝑠𝑡𝑎𝑟𝑡(𝑘) ∀𝑘 ∈ 𝐾 

(9) 

𝑥∈ = 0 
∀𝑖 ∈ 𝑉  𝑖 ∉ 𝑑𝑒𝑝_𝑒𝑛𝑑(𝑘) ∀𝑘 ∈ 𝐾 

(10) 

𝑥 − 𝑥
∈ _ ( )∈∈ = 0∈∈ _ ( )  ∀𝑘 ∈ 𝐾 

 (11) 

𝑡∈ ≤ 𝑡 − 𝑑𝑖𝑠𝑡 · 𝑥∈ + 𝑄 · ⎣⎢⎢
⎡1 − 𝑥∈ ⎦⎥⎥

⎤
 ∀𝑞 ∈ 𝑉  ∀𝑘 ∈ 𝐾 (12) 

𝑡 ≥ 0 

∀𝑖 ∈ 𝑉 ∀𝑞 ∈ 𝑉 𝑖 ≠ 𝑞 ∀𝑘 ∈ 𝐾 

(13) 

𝑡 ≤ 𝑄 · 𝑥  

∀𝑖 ∈ 𝑉 ∀𝑞 ∈ 𝑉 𝑖 ≠ 𝑞 ∀𝑘 ∈ 𝐾 

(14) 

𝑡 ≤ 𝑑∈∈∈_ ( )
 ∀𝑘 ∈ 𝐾 (15) 

 
Equation (1) represents the objective function, which minimizes the distance traveled by the vehicles. Expressions (2) and (3) 
guarantee that each customer is visited by one vehicle. In Eq. (4), the number of arcs entering a customer node is equivalent 
to one. Eqs. (5) guarantee that the number of arcs entering a node equals the number of arcs leaving the same node, either a 
customer or a depot. Expressions (6) establish that the sum of the customers’ demands belonging to a route must be less than 
the load capacity of the vehicle visiting such route. Eq. (7) and Eq. (8) assure that if a vehicle leaves a determined depot, it 
returns to the same depot. On the other side, Eq. (9) and Eq. (10) avoid the vehicles not arriving at a different depot from 
which they depart. Equation (11) guarantees that the number of arcs leaving and entering a depot node is equal. Expressions 
(12) to (14) keep track of the merchandise flow through the arcs of the route, eliminating the subtours. Lastly, Eq. (15) assures 
that the total demand of the customers is greater or equal than the sum of the flows through the arcs. 
 
4. Proposed Hybrid Approach  

 
The MDVRP model presented in section 3 is solved by using CPLEX. A CBGA based metaheuristic is implemented to solve 
the optimal placement of the EVs charging stations, considering the routes provided by the exact method and spatial location 
of the power distribution nodes. In Figure 1, the two-stage general procedure is presented to solve the MDEVRP, framed 
within a logistics stage where the route sequence for each EV is found. This latter, together with the power distribution network 
parameters, represent the input for the electric stage, in which the new sequence for each route is obtained, taking into account 
the charging stations installed, the new routing cost, and the increase of the energy losses in the power network due to the 
additional load. The proposed CBGA for this particular problem is explained in the following sections.   
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Fig. 1. General procedure to solve the MDEVRP 

 
5. Chu-Beasley Genetic Algorithm CBGA 
 
A genetic algorithm is a solution technique based on the intelligent probabilistic search that simulates the evolution of the 
species. As the species evolve, better individuals are introduced in the population with improved features. Genetic operators, 
i.e., selection, crossing, and mutation, are applied at each generation of individuals or solutions. The latter is evaluated 
according to a fitness measure, also called fitness function. The CBGA was initially designed to solve the generalized 
assignment problem (Chu & Beasley, 1997), with reports of its adjustment to other types of problems with noticeable results. 
Unlike the traditional genetic algorithm, the CBGA presents some features that make it competitive to solve large-size 
problems.   
 
5.1 Problem codification 
 
On the other hand, problem codification plays an important role when implementing the CBGA or any metaheuristic 
technique. A binary codification represents the solution for this problem, which is explained based on the route sequence 
depicted in Fig. 2. 
 

  
Fig. 2. Sequence of EV route Fig. 3. Coverage radius 
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According to Fig. 2, the EV route is given by the following sequence: 50 − 9 − 7 − 2 − 5 − 8 − 10 − 6 − 3 − 50, which 
depot is the node at 50. Dotted lines represent the power distribution circuit, and the candidate nodes for charging stations are 
the circles. Now let us consider in Fig. 3 a preset coverage radius that provides the candidate nodes for charging stations for 
each customer node, i.e., once an EV leaves the customer at node 2, the possible charging stations for battery recharge are 20, 
23, 30, and 31.   Then, notice Fig. 4, an example of the possible charging station nodes that the EV can go to once leaving 
each customer node, considering the coverage radius.  
 

 
Fig. 4. Solution example for the modified route sequence 

 
The first row in the array presented in Fig. 4 corresponds to the customer's nodes in the route sequence provided by solving 
the exact technique. The second row shows the power network nodes the EV can recharge once leaving the customer. The 
third row shows a solution example representing a final solution involving the charging stations. Under this scenario, the 
modified route is given by the following sequence: 50 − 27 − 9 − 7 − 29 − 2 − 5 − 21 − 8 − 24 − 10 − 6 − 28 − 3 − 50. 
See Figure 5 that the coverage radius is applied for each customer node, considering that the EV can only go to a recharge 
station after leaving a customer. 
 

 
Fig. 5. Modified route sequence considering the coverage radius  

       
5.2 Fitness function evaluation 
 
Search through the solution space is guided by a fitness function that deals with the infeasibility degree (Montoya, et al., 
2019). In the CBGA, the objective function and infeasibility are computed for each individual of the population, which are 
stored separately and used for different purposes. For the MDEVRP proposed in this research, the infeasibility function 𝑍  
of an individual is computed. To evaluate whether a solution is infeasible, the parameter 𝑄  that stands for battery capacity 
is known before hand in terms of distance. The battery is fully charged at the depot and starts to decrease as the EV travels 
through the arcs of the route. Once it reaches a charging station, the battery returns to the full level. The distance traveled 



  

 

562𝑑 ( ) at node 𝑖 is computed, either customer or charging station. The solution is described by a vector 𝑠𝑒𝑞 that provides the 
sequence of the nodes traversed by the EV. Then, the value of 𝑍  is calculated as shown in Eq. (16).   

𝑍 = 𝛼 · 𝑑 ( ) − 𝑄( )
( )  Only if 𝑑 ( ) > 𝑄   (16) 

Each solution of the population has three associated costs, which are calculated by Eq. (17), Eq. (18) and Eq. (19).  𝑓 =  𝑇 · 𝐴𝐹 · 𝑍 · 𝛽  (17) 𝑓 = 𝐸𝑅 · Ɣ  (18) 𝑓 = 𝑡 · 𝑇 · 𝐴𝐹 · 𝑆 · ∆ · 𝛺  (19) 

 
Eq. (17) indicates the routing cost, which includes 𝑍 , the distance traversed by the EV along the route provided by the 
binary solution. Parameter 𝛽 is the cost per kilometer traveled. Expression in (18) is the cost of the charging stations installed 
along the EV route. Equation (19) is the cost of increasing the energy losses resulting from the installation of additional 
electrical loads in the power distribution system. This situation requires running a power flow based on the traditional 
backward, forward sweep algorithm (Chang, et al., 2007). For 𝑓  and 𝑓 , a study timeframe 𝑇 equivalent to 365 days 
and the annualization factor  𝐴𝐹 are considered to stand for the effect throughout the time and compare these two operational 
costs with the investment in charging stations computed in 𝑓 . Then the objective 𝐹  and fitness 𝑍  functions of the 
solution are given by Eq. (20) and Eq. (21). 
 𝐹 = 𝑓 + 𝑓 + 𝑓   (20) 𝑍 = 𝐹 + 𝑍   (21) 

            
If 𝑍 = 0, the solution is feasible and 𝑍 = 𝐹 . If 𝑍 = 𝑧, being 𝑧 the objective function computed in the MDVRP, 
there are no charging stations on the solution route.   
 
5.3 Initial population and genetic operators 
 
As aforementioned, a CBGA is applied to each route provided via solving the MDVRP presented in Eq. (1) to Eq. (15). The 
initial population of individuals is randomly generated, considering that some objective functions are likely to be equal; 
nevertheless, the binary configuration must be different. Once the initial population is generated, the selection, crossing, and 
mutation genetic operators are applied. 
  
For the MDEVRP, tournament selection is applied. Two tournaments are performed. In each of them, individuals of the 
current population are chosen to participate. The parameter  is usually within 2 to 4. The process is as follows:  individuals of 
the current population are randomly chosen; their objective functions are compared, and the best fitness function is stored as 
the first parent. Then the process is done again to find the second parent, conditional to both parents being different. 
  
After selecting the two parents, their binary codifications are interchanged by a one-point crossing process. This change results 
in two offspring, composed of part of the first parent's information and part of the information of the second parent. Only one 
offspring can pass to the next stage of the algorithm, which corresponds to mutation; the other offspring are randomly 
discarded. It is worth mentioning that the two offspring from the crossing process are likely to have more than one charging 
station activated for one customer node. In this case, the remaining charging stations assigned to the customer are randomly 
discarded, as shown in Fig. 6.   
 

    
Fig. 6. Random discard of additional charging stations assigned to a customer   

 
Once the crossing process is executed, mutation over the selected offspring is performed. This step involves a parameter in 
terms of a solution vector size percentage. This aspect provides the number of cells for mutation and includes changing from 
zero to one or from one to zero. Once again, more than one charging station is likely to be activated after the solution vector 
mutation process, and the same procedure shown in Fig. 6 must be performed.      
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5.4 Criteria for population modification 
 
In the CBGA, only one individual or solution is replaced at each generational cycle. The offspring resulting from the mutation 
process has to replace the worst quality element of the population, as long as the offspring are better quality and the diversity 
criteria have complied. This procedure means that the offspring is different from the individuals of the current population. 
Otherwise, the genetic operators must be applied again to find another offspring until the diversity criteria are fulfilled. The 
following situations can be found to introduce the offspring in the current population:   
 

- If the offspring is infeasible, the current population is revised to look for infeasible parents. If the offspring's 
infeasibility is less than the most infeasible parent, then the offspring is introduced in the population to replace that 
parent. Otherwise, the offspring is discarded, and the procedure is repeated from selection to find another offspring. 
If there are no infeasible parents, the offspring is discarded.  

- If the offspring is feasible, the current population is revised to look for infeasible parents. The offspring replaces the 
most infeasible parent. If all the parents are feasible and if the offspring has an objective function better than the 
worst objective function of the current population, then the individual is introduced or discarded otherwise.     
 

In the MDEVRP, the stopping criterion is set as a maximum number of iterations or generations.  
 
6. Test System and Experimental Results  
 
This section presents the transportation network and power distribution system information employed to validate the hybrid 
methodology proposed in this study. The MDVRP that corresponds to the first stage of the methodology is solved using the 
GAMS package, particularly the CPLEX solver (GAMS, 2021). The second stage, directed to solve the charging station 
location and minimize the energy losses, is solved using the CBGA implemented in MATLAB. Complete details of these test 
systems are presented as follows. 
 
The transportation network that contains the spatial location of the customers involves an instance containing 25 customers 
from the literature, which is part of a set of instances widely used to validate transportation mathematical models found in 
Networking and Emerging Optimization (2013). The instance contains four depots and four vehicles. Each vehicle has a load 
capacity of 200. For coding purposes, the depots are tagged from 26 to 29 and their copies from 30 to 33. The power 
distribution system is a 33-nodes radial test feeder with a rated voltage of 12.66 kV (Grisales-Noreña, et al., 2018). The loads' 
total active and reactive power demanded are 3715 kW and 2300 kVar, respectively. In the benchmark case, i.e., the power 
losses feeder is 210.97 kW when no charging stations are installed. Voltage and power base values are 12.66kV and 100 kW, 
respectively.  
 
The nodes of transportation and power distribution networks are presented in Appendix A.1. The first column is the node ID. 
The second and third columns are the X and Y coordinates, and the last column corresponds to the demand for goods. This 
field is zero if the node belongs to the power distribution system or a depot. Fig. 7 presents both networks in a unified instance 
to validate the hybrid methodology.  Notice that the power distribution system is numbered from 34 to 66, node 34 the 
substation node or slack node. Appendix A.2 shows the configuration of the 33 nodes radial distribution network. 
 

 
Fig. 7. Unified test system: transportation and power distribution networks 
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We have defined independent parameters whose values must be determined by extensive computational experiments for the 
proposed approach. These parameters are considered candidate settings for any given factor. Since the performance of the 
proposed approach depends on the value for each of the below described parameters, a calibration process has been carefully 
done. This procedure is iteratively performed by considering every single factor (variable) and finds its “best value”, giving 
the lower objective function. In this sense, initial values of some parameters and particular conditions of the EVs obtained 
from previous works are chosen for the tests. As explained in Hydro Quebec (2015), DC fast charging operation involves a 
40 kW of instantaneous power applied to charge an EV battery in a 𝑡  of 25 minutes to pursue 75 km of driving autonomy. 
Under this context, it is assumed that routing time is not affected by charging time. The additional load represented by the 
EVs charging in the power network is introduced as a constant power load in the electric nodes. According to Nicholas (2019) 
the cost for installing a DC fast charging station is 22000 USD, which includes materials, labor, permits, data, connectivity, 
and network upgrades if needed. Concerning EV operation, a cost of 2.34 USD is taken as a reference to travel 75 km, 
considering an energy price of 0.15 USD/kWh. This latter is also applied for the energy losses. For EV maintenance purposes, 
it is estimated a cost of 100 USD to travel 5000 km (Arias-Londoño, et al., 2021).  
 
Computational experiments are shown in Table 1 for different values of EV battery capacity. Columns 2 to 5 are the costs for 
routing 𝑓 , EVs charging stations installation 𝑓 , increase in energy losses 𝑓 , and cost of objective function  𝐹 , respectively. Columns 6 to 8 are the details of the routes, the numbers in bold are the charging stations installed in each 
case. The experiments were run on a Malaysian manufactured Intel Core i5 2.1 GHz processor, a 64-bit operative system with 
8.00 GB of RAM. The MDVRP was solved with a CPLEX solver, and the CBGA was implemented in MATLAB. 
 
Table 1  
Computational experiments of the hybrid methodology 

Battery 
capacity [km] 

𝑓  
[USD] 

𝑓  
[USD] 

𝑓  
[USD] 

𝐹  
[USD] 𝑘 = 1 𝑘 = 2 𝑘 = 3 

60 85990 176000 13742 275732 26-7-22-43-3-6-51-11-
10-43-9-30 

28-14-1-4-62-19-64-20-58-
13-8-56-5-16-32 

29-41-12-21-24-41-15-
25-34-17-34-18-23-2-33 

60* 103480 198000 14533 316013 26-7-44-22-3-6-47-11-
47-10-44-9-30 

28-14-1-4-62-19-64-20-57-
13-56-8-5-16-32 

29-41-12-21-24-41-15-
25-38-17-52-18-38-23-2-

33 

70 85063 132000 8539 225601 26-7-22-43-3-6-11-10-
43-9-30 

28-14-1-4-64-19-64-20-58-
13-8-56-5-16-32 

29-12-21-24-41-15-25-
17-53-18-23-2-33 

80 85063 132000 8539 225601 26-7-22-43-3-6-11-10-
43-9-30 

28-14-1-4-64-19-64-20-58-
13-8-56-5-16-32 

29-12-21-24-41-15-25-
17-53-18-23-2-33 

90 82810 132000 8984 223794 26-7-22-3-6-51-11-10-9-
30 

28-14-1-4-64-19-64-20-58-
13-8-56-5-16-32 

29-12-21-24-41-15-25-
17-34-18-23-2-33 

100 81883 110000 8342 200225 26-7-22-3-6-51-11-10-9-
30 

28-14-1-4-64-19-20-58-13-
8-5-16-32 

29-41-12-21-24-15-25-
34-17-18-23-2-33 

110 81220 88000 5685 174906 26-7-22-3-6-11-10-43-9-
30 

28-14-1-4-19-64-20-58-13-
8-5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

140 81618 88000 5685 175303 26-7-22-3-6-11-10-43-9-
30 

28-14-1-4-64-19-20-58-13-
8-5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

140* 91555 88000 7396 186952 26-7-22-3-6-51-11-10-9-
30 

28-14-1-4-62-19-20-62-13-
8-5-16-32 

29-41-12-21-24-15-25-
17-54-18-23-2-33 

150 80955 66000 3236 150191 26-7-22-3-6-11-10-9-30 28-14-1-4-19-64-20-58-13-
8-5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

160 80823 44000 2310 127133 26-7-22-3-6-11-10-9-30 28-14-1-4-19-64-20-13-8-
5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

170 80955 44000 915 125870 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-58-13-8-
5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

180 80955 44000 915 125870 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-58-13-8-
5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

190 82280 44000 812 127093 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-57-13-8-
5-16-32 

29-12-21-24-15-25-17-
34-18-23-2-33 

200 80955 44000 915 125870 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-58-13-8-
5-16-32 

29-12-21-24-15-25-34-
17-18-23-2-33 

230 80690 22000 915 103605 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-58-13-8-
5-16-32 

29-12-21-24-15-25-17-
18-23-2-33 

250 80690 22000 736 103426 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-13-8-5-
37-16-32 

29-12-21-24-15-25-17-
18-23-2-33 

260 80558 0 0 80558 26-7-22-3-6-11-10-9-30 28-14-1-4-19-20-13-8-5-
16-32 

29-12-21-24-15-25-17-
18-23-2-33 

 
Results shown in Table 1 present the behavior of the analyzed costs as the battery capacity is changed in terms of a sensitivity 
analysis. Although the instance involves at the beginning four vehicles, the results provided by the CPLEX show that only 
three vehicles were used to perform the routing. The decrease of the objective function 𝐹  is notorious with the increment 
in the battery capacity within 60 km and 260 km. The last value corresponds to the results for the benchmark case; this means 
that the battery capacity is large enough that no charging stations are installed, and the increase in the energy losses is null. 
For values of driving range less than 60 km, the CBGA resulted in infeasible solutions. It becomes almost constant concerning 
routing costs from a driving range of 100 km. This behavior, which is kept until the benchmark case, is in response to the little 
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variation of the route with the increase in battery capacity, being less likely to perform detours, as fewer charging stations are 
necessary. 
 
Fig. 8 presents the routes performed by the EVs for a battery capacity of 60 km. Notice that several charging stations are 
visited due to the low battery capacity, being necessary to visit some charging stations in multiple times. This situation 
represents for the CBGA a less expensive alternative, rather than to install additional charging stations at other electric nodes. 
In this particular case, the charging stations' cost is almost 13 times the cost of the increase in energy losses, according to 
Table 1. Due to this, it is more suitable for the CBGA to install charging stations in the nodes at the end of the power 
distribution feeder, despite this could significantly increase the energy losses and the corresponding cost.    
  

 
Fig. 8. Routes performed by the EVs for a 60 km driving range 

 
In Fig. 9, the results are presented for a battery capacity of 60 km, considering a restriction of charging stations installed in 
specific nodes of the power distribution system. Electric nodes restricted for charging station installation are shaded. This 
situation is identified in Table 1 in the first column with an asterisk. Notice that for EV1, nodes 43 and 51 were used as 
charging points before posing the restriction. By purpose, these nodes were restricted, making the CBGA install so that the 
routing cost and charging stations cost is increased as little as possible. After the restriction, node 47 was chosen to install a 
charging station with two stops, making this node a critical charging station to meet the merchandise demand of customers 3, 
6, 10, and 11. EV2 routing is lightly affected by the restriction, as the current charging stations installed are essential charging 
points for routing completion. If several nodes along this route are restricted, the solution becomes infeasible due to the routing 
length. EV3 has a similar route before and after the restriction. A charging station was installed at node 34, which corresponds 
to the substation of the power distribution network. 
 
Additionally, the route includes two stops at this node. In terms of energy losses, installing at the power substation implies 
that the energy losses are not affected by the additional load that represents the installation of the charging station in this 
particular node. The load due to the operation of this charging station does not provide additional energy losses, as no matter 
what quantity of load is connected at the substation, no further current flows are produced through the power lines. Once the 
restriction is applied, especially for nodes 34 and 53, the CBGA opts to install two other charging stations at two different 
nodes: 38 and 52, considering that other candidates may result in fewer quality solutions.   
 

 
Fig. 9. EVs routes for a 60 km of driving range with power nodes restricted for charging stations installation 
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In Fig. 10, the EVs routes are depicted for a battery capacity of 140 km. Considering that the driving range is more significant 
than double the value mentioned above, the number of charging stations is decreased up to half, and no multiple visits to 
charging points are presented. As proceeded above with the 60 km of driving range, some of the power distribution nodes are 
restricted for charging stations installation, which is represented in Figure 11 considering the same 140 km of driving range. 
Compared with the case of 140 km of driving range without restrictions, in this case, the number of charging stations is the 
same. Furthermore, the routing cost and change in energy losses are increased. Under these restrictions, notice that for the 
CBGA, it is more suitable to perform longer routes by visiting a charging station multiple times. Before the restriction, EV1 
used to charge at node 43, then this node was restricted, including some of its neighbors, except the node 51. After running 
CBGA, a charging station was installed at node 51, which was expected due to the coverage radius described in Fig. 3. If node 
51 is also restricted, the CBGA cannot find a feasible solution for EV1 unless the coverage radius increases. For EV2, it can 
be observed that node 62 becomes a critical point of recharge for this route after the restriction is imposed. By also restricting 
this node for charging station installation, the solution gets infeasible. The number of charging stations for this route in the 
restricted scenario is less than that found in the non-restricted scenario, which is translated into a lower cost of energy losses, 
as the only charging station installed, i.e., node 62, is not located as close from the end of the feeder, as with nodes 58 and 64 
in the non-restricted scenario.     
 

 
Fig. 10. EVs routes for a 140 km of driving range 

 

 
Fig. 11. EVs routes for a 140 km of driving range with power nodes restricted for charging stations installation 

 
7. Conclusions and future works  
 
This paper proposes a hybrid methodology of an exact technique and a metaheuristic to solve the Multi Depot Electric Vehicle 
Routing Problem. The proposal considered the logistic subproblem that addressed the conventional MDVRP and the electric 
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subproblem, encompassing the optimal location of the charging stations and the operation of the power distribution system. 
Three objectives under a conflict that involve the interests of logistics companies and power utilities were considered 
throughout the experimentations: routing cost, charging stations installation, and increase in energy losses. In order to validate 
the proposal, battery autonomy resulted in a convenient study of the model sensitivity when the driving range is changed. A 
remarkable influence is noticed in the three objectives understudy when addressing charging stations placement. Accordingly, 
a power nodes restriction scenario is shown as an alternative to improve the value in the objective function if the vehicles are 
assessed independently. Although routing cost is increased, the number of charging stations and the energy losses are 
decreased, as these are related to each other in the power network operation. CPLEX and CBGA were suitable options to deal 
with the first and second stages of the MDEVRP, respectively. 
 
Remarkably, the routing solution, including detours to charging stations, was represented by a binary codification, which 
resulted in inappropriate time to implement the genetic operators. Finally, using a metaheuristic technique for the second stage 
was helpful regarding the combinatorial explosion identified in the test system. Considering an average of 3 options of 
charging stations that each customer can go to, for the second route that involves EV2 that contained nine customers, the 
number of possible solutions to evaluate is 2( ∗ ) = 134.2𝑥10 , taking into account the binary codification.  
 
Future research must be focused on proposing other instances that integrate more significant transportation and power 
distribution networks from the specialized literature and introducing other routing patterns, such as the shortest path problem 
related to the last-mile delivery problem. Additionally, the CBGA implementation considers all the EVs routes within the 
same binary codification for efficiency comparison concerning the current proposal. Finally, algorithms based on granular 
search trajectory algorithms proposed for similar problems such as proposed by Escobar & Linfati (2012), Puenayán et al. 
(2014), Linfati et al. (2014), Bernal et al. (2017), Bernal et al. (2018), Bernal et al. (2021), Escobar et al. (2022).  
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Appendix A.1.  
 
Table A.1. Spatial location and goods demand at nodes for both networks 

Node X Y Demand Node X Y Demand 
1 -29.7 64.1 12 34 -71.5 24.6 0 
2 -30.7 5.5 8 35 -71.7 41.5 0 
3 51.6 5.5 16 36 -71.5 57.7 0 
4 -13.2 69.3 5 37 -51.0 57.7 0 
5 -67.4 68.3 12 38 -51.1 24.9 0 
6 48.9 6.3 5 39 -36.7 24.9 0 
7 5.2 22.3 13 40 -36.8 10.9 0 
8 -65.0 77.2 20 41 -36.7 -8.5 0 
9 -4.2 -1.6 13 42 15.8 -8.3 0 

10 23.0 11.6 18 43 15.8 13.1 0 
11 25.5 6.3 7 44 15.8 36.8 0 
12 -42.6 -26.4 6 45 37.6 36.8 0 
13 -76.7 99.3 9 46 55.2 36.9 0 
14 -20.7 57.9 9 47 55.2 13.1 0 
15 -52.0 6.6 4 48 55.2 -2.5 0 
16 -41.4 50.8 25 49 55.2 -16.8 0 
17 -91.9 27.6 5 50 38.5 -16.7 0 
18 -65.1 30.2 17 51 38.4 -0.4 0 
19 18.6 96.7 3 52 -89.3 41.3 0 
20 -40.9 83.2 16 53 -89.3 23.8 0 
21 -37.8 -33.3 25 54 -89.4 11.2 0 
22 23.8 29.1 21 55 -89.3 -6.9 0 
23 -43.0 20.5 14 56 -71.5 73.9 0 
24 -35.3 -24.9 19 57 -53.8 74.0 0 
25 -54.8 14.4 14 58 -53.7 90.2 0 
26 4.2 13.6 0 59 -15.9 24.9 0 
27 21.4 17.1 0 60 -15.9 41.4 0 
28 -36.1 49.1 0 61 -15.9 58.0 0 
29 -31.2 0.2 0 62 -15.9 74.6 0 
30 4.2 13.6 0 63 -15.9 91.2 0 
31 21.4 17.1 0 64 1.7 91.4 0 
32 -36.1 49.1 0 65 19.3 91.6 0 
33 -31.2 0.2 0 66 19.3 75.0 0 
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Table A.2 
Power distribution system configuration and parameters 

Send 
node 

Receive 
node 

R 
[Ohm] 

X 
[Ohm] 

P 
[kW] 

Q 
[kVar] 

Send 
node 

Receive 
node 

R 
[Ohm] 

X 
[Ohm] 

P 
[kW] 

Q 
[kVar] 

34 35 0.0922 0.0477 100 60 50 51 0.732 0.574 90 40 
35 36 0.493 0.2511 90 40 35 52 0.164 0.1565 90 40 
36 37 0.366 0.1864 120 80 52 53 1.5042 1.3554 90 40 
37 38 0.3811 0.1941 60 30 53 54 0.4095 0.4784 90 40 
38 39 0.819 0.707 60 20 54 55 0.7089 0.9373 90 40 
39 40 0.1872 0.6188 200 100 36 56 0.4512 0.3083 90 50 
40 41 1.7114 1.2351 200 100 56 57 0.898 0.7091 420 200 
41 42 1.03 0.74 60 20 57 58 0.89 0.7011 420 200 
42 43 1.04 0.74 60 20 39 59 0.203 0.1034 60 25 
43 44 0.1966 0.065 45 30 59 60 0.2842 0.1447 60 25 
44 45 0.3744 0.1238 60 35 60 61 1.059 0.9337 60 20 
45 46 1.468 1.155 60 35 61 62 0.8042 0.7006 120 70 
46 47 0.5416 0.7129 120 80 62 63 0.5075 0.2585 200 600 
47 48 0.591 0.526 60 10 63 64 0.9744 0.963 150 70 
48 49 0.7463 0.545 60 20 64 65 0.3105 0.3619 210 100 
49 50 1.289 1.721 60 20 65 66 0.341 0.5302 60 40 
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