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 Managing blood inventory is challenging due to the perishable and unstable nature of the product 
needed for transfusions in healthcare facilities.  In this paper, we consider a periodic review blood 
inventory model with two priority demand classes, namely emergency and regular patients. We 
propose a dynamic programming model for determining the optimal ordering policy at the hospital 
given the uncertainty regarding received donated blood units. The optimal policy deals with placing 
orders for blood units that will expire within a fixed period. The objective is to minimize total 
expected costs within a planning horizon while maintaining a specified expected service level. Our 
model considers uncertain demands and donated blood units with discrete probability following 
known distributions. A tabu search algorithm is developed for large-scale problems. The 
performance of these ordering policies is compared against the optimal fixed order quantity and the 
order up-to-level policies using real-life data. The numerical results show the benefit of our model 
over the optimal fixed order quantity and the order up-to-level policies. We measure the total 
expected cost and the expected service level obtained from the optimal and near-optimal policies 
and provide a sensitivity analysis on parameters of interest. 

© 2023 by the authors; licensee Growing Science, Canada 

Keywords: 
Blood inventory 
Perishable inventory  
Finite horizon  
Dynamic programming 
Healthcare 

 

 

 

1. Introduction 

 
The need for blood continues to be high and urgent for many reasons. Serious medical conditions requiring blood transfusions 
include surgeries, accidents, and illnesses that cause anemia. The American Red Cross reported that every 2 seconds, someone 
in the United States needs blood and/or platelets (American Red Cross, 2021). However, although the demand is present, the 
supply is unpredictable. Since blood cannot be manufactured, its supply relies on volunteer donations. However, the number 
of blood donors is small and variable. According to the American Red Cross, about 3% of age-eligible people donate blood 
yearly (American Red Cross, 2021). The low number of blood donors seems to be an issue for many countries worldwide, 
especially during the COVID-19 pandemic. The demand for blood increased, while the supply declined, due to shortages of 
blood occurring more frequently than under normal circumstances (Gupta et al., 2021). Moreover, Blood inventory also has 
a limited shelf life because it is a perishable product. Blood inventory must be stored until required by a hospital or healthcare 
facility that provides blood transfusion services. Units of blood are received from a central blood bank or a repository in the 
form of packed red cells (PRC), which comprise red blood cells (RBCs).  These PRC units must be stored from the time of 
receipt until the time of transfusion, and the viability and functionality of stocked PRC depend on the preservative solutions 
used. Generally, PRC can be stored for up to 21–42 days in suitable anticoagulant and preservative solutions (Ng et al., 2018). 
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This research was motivated by the blood inventory problem at the hospital of the Suranaree University of Technology (SUT), 
Nakhon Ratchasima, Thailand. To maintain a scenario reflective of the real problem and account for the unique features of 
the problem, we conducted experiments based on a realistic case study. The blood inventory is collected in the form of PRC 
units and reserved for transfusion to the patient. Collected fresh blood can be stored for up to 35 days. The patients are 
classified into two types, namely emergency and regular patients. Emergency patients need an immediate transfusion. Thus a 
shortage of blood is not permitted in the model in the case of emergency patients. The PRC units are assigned with priority to 
emergency patients, with the remaining units being reserved for transfusions among regular patients. Healthcare departments 
at the hospital can request units of blood that are completely tested for compatibility. In the case of blood shortage, the 
healthcare department immediately requests PRC units from an outsourcing provider, namely the Thai Red Cross in Bangkok, 
which provides a direct donation service and serves as the National blood bank. A diagram of the problem with blood supply 
chain network components is shown in Fig. 1. 
 

 
Fig. 1. A schematic diagram of the case study of this research problem 

 
The challenge in blood inventory management is that blood is usually urgently required, whereas its supply is not constant, 
limited, and perishable. Thus, it is difficult for the supply to meet the demand in uncertain situations. To address this problem, 
we proposed a stochastic blood inventory model for perishable products with two suppliers, including donation at the SUT 
hospital and order placement to the Thai Red Cross. We formulated a dynamic programming (DP) model considering the 
periodic review. The model can be classified into two cases, one with and one without a shortage of regular patients. 
Furthermore, the replenishment decision must consider two suppliers and two priority demand classes even before the demand 
is realized. The initial blood inventory given at the start period of the model is based on the initial blood inventory at the SUT 
hospital. We focused on emergencies: when a shortage occurs, the universal donor, type O Rh-negative, is administered for 
emergency transfusions. Thus, the management of type O Rh-negative blood is significant in the blood inventory system. The 
proposed DP model was tested using real data from the case study. To solve the problem on a large scale, we also proposed a 
tabu search algorithm (TABU). Moreover, we compared the optimal policy suggested by the proposed model and the current 
policy regarding important criteria, namely the total expected cost and the expected service level.  
 
The rest of this paper is organized as follows. Section 2 presents the relevant literature, and Section 3 describes the model and 
DP formulation for the periodic blood inventory system. Section 4 presents TABU, and Section 5 presents the computational 
results. Finally, Section 6 presents the conclusions of the study and avenues for future work. 
 
2. Literature Review 
 
Early research related to perishable inventory focused on a single product with deterministic conditions. The seminal work 
was conducted by Piarskalla (1972), who studied the periodic perishable inventory problem with deterministic demand in 
cases of backlogging and lost sales. Replenishment could be achieved for items of any age, where the demand for a given 
freshness level could be satisfied for items with higher levels of freshness. The stochastic perishable inventory model was 
presented by Nahmias (1975) with the cases of a fixed two-period lifetime and an m-period lifetime. The author considered 
the effects of outdated units in a one-period model and determined the probability distribution for outdating newly ordered 
units. Next, Nahmais (1978) considered the fixed-charge perishable inventory problem, analyzing and constructing by 
approximation a one-period model with backlogging. Thereafter, several improvements were made to the models to account 
for the fixed lifetime, considering the optimal replenishment policy of perishable products at the point of hospitals, by Nahmias 
(1982, 2011), Prastacos (1984), Karaesmen et al. (2011), and Bakker et al. (2012).  
 
Later, some works were extended to consider more factors in models such as components of the blood supply chain and 
uncertainty. Dai et al. (2020) optimized a two-multi-echelon inventory system for a perishable product with price- and stock-
dependent demand in the supply chain. The objective was to maximize the average profit per unit of time by determining the 
optimal replenishment cycle, frequency, and quantity. Sohrabi et al. (2021) proposed multi-objective inventory management 
for blood banks, which considered the patient’s condition. Heidari-Fathian and Pasandideh (2018) presented a green-blood 
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supply chain network design whose objective was to minimize the total cost of the supply chain network and the total 
environmental impact of the activities of the supply chain network, considering the uncertainty of demand and supply. Zahiri 
et al. (2015) presented a mixed-integer linear programming model in the blood supply chain. They addressed the blood 
collection and distribution network and assumed that the quantities of donations and demand were uncertain. Hosseinifard 
and Abbasi (2018) studied the impact of inventory centralization on the sustainability of the blood supply chain, where the 
first echelon included a single blood bank that received a stochastic supply from donors and the second echelon contained 
hospitals receiving external demands. The results revealed that centralizing the hospitals improved the outdated quantities at 
hospitals and the shortage of quantities in hospitals and the blood bank. Related research on designing blood supply chain 
systems was also conducted by Dillon (2017), Lowalekar and Ravic (2017), Liu et al. (2020), and Gitinavard et al. (2019). 
 
Due to the uncertainty in both demand and supply, several works focus on the issue of blood shortage and wastage. Gunpinar 
and Centeno (2015) formulated a stochastic integer programming model whose objective was to minimize the shortage and 
wastage of platelet blood, with the lifetime limited to 5 days. Rajendran and Ravindran (2017) considered blood platelets with 
demand uncertainty. Their objective was to minimize blood wastage while limiting the lower bound on the service level. In 
the area of dynamic policy, most studies formulated models of the blood platelet inventory in which the shelf life was 3–5 
days. Civelek et al. (2015) considered blood platelets with discrete-time inventory where demand existed for blood platelets 
of different ages with respect to the inventory costs of holding, outdated, and shortage. They formulated a Markov decision 
process to determine the order quantity. Meng et al. (2021) considered uncertainties in emergency demand quantity and 
occurrence time to mitigate expiration wastages for emergency perishable inventory systems using the distribution-free 
newsboy model. They showed that the controversial sale strategy may be effective in both expiration mitigation and cost 
reduction. Arani et al. (2021) studied an integrated inventory system called lateral resupply, permitting a hospital to satisfy its 
demand via other hospitals’ inventories in the absence of the required product at the blood center and its excess in any hospital. 
They measured two performance indicators, namely cross-matching and outdated units. 
 
It is difficult to apply the inventory policies of the considered blood inventory problems to real scenarios because the 
determination of optimal ordering quantities (y) is required for every period. Hence, there is a need to develop policies that 
have characteristics of other inventory problems such as (R, q), (R, S), or (R, s, S) policies or single critical number policies. 
Cohen (1976) studied the single critical number policy for perishable inventory with m period lifetimes in the backlogging 
case. He derived an explicit closed-form solution of the optimal order-up-to quantity S for the m = 2 case. A Markovian model 
for perishable inventory was proposed by Chazan and Gal (1977), who analyzed the age distribution as a finite Markov chain 
in each period. They considered Poisson demand, and their model assumed a fixed number of units on hand. The objective 
function was to minimize the expected outdated cost. Nahmais (1977) considered the minimum total expected outdated cost 
related to perishable inventory with random demand and lifetime in backlogged cases. He assumed the lifetime to be a discrete 
distribution and showed critical number approximations. Nahmias and Schmidt (1986) analyzed perishable inventory by 
considering the theory of a weak convergence problem with discrete demand. They assumed continuous demand that 
converged weakly to a discrete distribution. Williams and Pattuwo (1999) considered the perishable inventory problem with 
a positive lead time in a single-period model with lifetime = 2. Their model considered the lost sales case, and they extended 
the model to multiple periods. Their model showed convexity with respect to y, and the optimal quantity depended on lead 
time. Haijema, van der Wal, and van Dijk (2007) considered blood platelets with respect to the demand for young platelets 
and platelets of any age. The rule for platelets of any age was that the oldest platelets were used first. For young platelets, 
those with a remaining lifetime of at least r were considered first. This was a case of the two-stage perishable inventory. The 
two classes of demand require blood units as inventory. Kouki et al. (2010) studied the periodic review model for perishable 
inventory with a random lifetime in the case of lost sales and fixed lead time. They used a Markov process to analyze the 
order-up-to-level (OUL) by dealing with discrete time monitoring. Their results showed a steady-state probability. Minner 
and Transchel (2010) considered the periodic review model for perishable inventory under service-level constraints and fixed 
positive lead time. Their model analyzed an OUL policy under first-in-first-out (FIFO) and last-in-first-out (LIFO) methods. 
They showed dynamic order quantities. Olsson and Tydesjö (2010) studied perishable items using the order-up-to-S policy 
(S−1, S) with the Poisson demand, fixed lifetime, lead time, and a single product in backlogging. 
 
Since the problem is complex, many solutions have been proposed. Dillon et al. (2017) formulated a two-stage stochastic 
programming model of the RBC supply chain. The first-stage decision considered the reorder point and up to level (R, S) prior 
to the demand being realized. The second-stage decision considered the maximum service level and the minimum fraction of 
outdated units. Most previous works focused on the fixed policy as a finite periodic review. In the area of approximation, the 
myopic approximation was studied by Nahmias (1976), who considered the m period lifetime and backlogged case. 
Namdakuma and Morton (1993) considered near-myopic heuristics for perishable inventory in infinite-horizon DP. Their 
work analyzed the lost sales case with the m period lifetime. Cooper (2001) studied the perishable inventory problem under a 
fixed critical number order policy to determine a bound on the expectation and distribution of the number of outdated products. 
His model analyzed the transition matrix of a lifetime by using the Markov chain in a multi-period with lost sale cases. Chiu 
(1995) studied a heuristic in policy (R, T) with an order OUL R and an interval T, whereas the interval T is a decision variable 
in a periodic review perishable inventory problem with positive lead time. He obtained the approximated expected outdating 
cost and its resulting bounds. Mokhtar et al. (2021) considered an optimal supply inventory strategy under uncertain supply 
disruption. The problem was formulated as a DP and solved by a least squares Monte Carlo simulation technique. Zhou et al. 
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(2021) used a simulation technique to solve the blood supply chain operation problem with the consideration of lifetime and 
transshipment under an uncertain environment, as did Janssen et al. (2018), who developed a stochastic micro-periodic age-
based inventory replenishment policy for perishable goods using a simulation study. For large-scale problems, metaheuristics 
are inevitable. Yavari et al. (2020) developed a genetic algorithm (GA) to solve a multi-period inventory problem of perishable 
products. Daroudi et al. (2021) developed a non-dominated sorting genetic algorithm (NSGA) to solve a multi-period model 
with three main objective functions. 
 
In this research, blood with a limited lifetime of the m period is considered. The goal is to determine the optimal ordering 
policies, detailing quantities to be ordered for each period for a blood inventory problem, using finite-horizon DP. The 
objective is to minimize the total expected cost in a finite horizon. This work differs from that of Cohen (1976) in that multiple 
classes with uncertain demand are considered instead of a single class with known demand. The perishable blood inventory 
problem is examined under two types of stochastic demand: emergency and regular patients. For the allocation of blood units, 
priority is given to emergency patients. In addition, products with different lifetimes are studied in this paper rather than the 
outdating of unused inventory in a known fraction in each period, as in Cohen (1976).  TABU is also developed for large-
scale problems. 
 
3. Mathematical Model 
 
The main goal of this study is to decrease the risk of patient mortality while minimizing the significant financial cost associated 
with the blood inventory system. The risk of shortage of blood units for regular patients is a function of the number of blood 
units in the stock. The model is formulated to determine the replenishment order and the allocation of units to patients. 
Therefore, the goal is to determine the optimal policy with respect to minimizing the total expected cost and the expected 
service level for regular patients. Decisions on replenishment orders will lead to an increase in the rate of transfusions for both 
emergency and regular patients. To address this issue, an inventory management problem that considers the number of blood 
units to order is required. Therefore, the objective of this study is to develop an optimal policy for blood inventory aiming to 
minimize the total expected cost and maintain a high expected service level. 
 
3.1 Problem descriptions 
 
The inventory system model with a single blood type is proposed. The model deals with two random priority demand classes: 
emergency and regular patients. Both types of demand follow a discrete and known distribution. Priority is given to emergency 
patients. The perishable blood inventory is examined under stochastic demand for two types of demand: emergency patients 
requiring dE

n blood units following the discrete probability (pE(dE
n)) and regular patients requiring dR

n blood units following 
the discrete probability (pR(dR

n)). The allocation of blood inventory is prioritized for emergency patients with a decision 
variable (zE,i

n). The model assigns blood units to regular patients with a decision variable (zR,i
n). The goal is to find the optimal 

ordering policies featuring quantities to be ordered in each period. The problem of the minimum total expected cost is 
formulated and solved. The expected service level for regular patients given the optimal solution of the minimum total 
expected cost is investigated over a finite horizon. A model with a single product of the remaining lifetime (m periods) is 
considered. It is assumed that the product has an m fixed lifetime (i, j = 1, 2, …, m). Suppliers can periodically replenish 
orders with zero lead time. Two types of suppliers are considered: Thai Red Cross order placement (yn) and received donated 
(qn) blood units that follow a discrete probability (pG(qn)). The ordering costs consist of variable ordering cost (r1) per unit, 
fixed ordering cost (r2) per replenishment order, and machine cost (r3) per donated unit. In each period, any unit left in stock 
with zero remaining lifetime will be outdated, which is represented as the outdated cost (o) per unit. Two model formulations 
are studied. In the first model formulation, unsatisfied demand is lost for regular patients. It is assumed that the shortage cost 
of emergency patients is the potential loss of life, which does not allow for the shortage. A shortage cost of regular patients 
(sR) per unit is incurred when demand cannot be met. In the second model formulation, it is assumed that there is no allowance 
for lost sale cases (100% of service level). The excess of issued units after demand realization will be held in stock, and their 
remaining lifetime will be decreased by one period, which is represented as the holding cost (h) per unit. The model is 
formulated as finite-horizon dynamic program with N periods (n = 0, 1, 2, …, N). The model is described in Fig. 2. 
 
Notations 
Indexes 
i, j  Useful lifetime of i, j periods remaining  
m  Remaining lifetime of the product (in periods) 
E  Emergency type of demand 
R  Regular type of demand 
n  Period 
N  Maximum number of periods 
M Maximum lifetime of the product 
 
Parameters 
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sR  Shortage cost per unit of the regular type of demand 
r1  Variable ordering cost per unit 
r2  Fixed ordering cost per time 
r3  Machine cost per unit for the preparation process of the donated blood units  
r4  Transfusion cost per unit 
h Holding cost per unit 
o Outdating cost per unit 
MaxQ Maximum replenish order quantity of blood unit accounting to equation (10) 
SS Maximum number of blood units in stock for lifetime accounting to equation (9) 
dE

n Demand of emergency patients in period n according to a known discrete distribution, pE(dE
n) 

pE(dE
n) The discrete probability distribution of dE

n in period n is specified by the possible values along with the  
probability of each. 

dR
n Demand of regular patients in period n according to a known discrete distribution, pR(dR

n) 
pR(dR

n) The discrete probability distribution of dR
n in period n is specified by the possible values along with the probability 

of each. 
qn The units of donation given in period n according to a known discrete distribution, pG(qn) , for use in period n with 

lifetime m periods remaining  
pG(qn) The discrete probability distribution of qn in period n is specified by the possible values along with the probability of 

each. 
f n(yn, xi

n, qn, zE,i
n, zR,i

n, dE
n, dR

n)  Function of current cost in period n with the current state being (xi
n) and actions (yn, zE,i

n, 
zR,i

n)if the realized demand is (dE
n, dR

n) and donation blood unit is (qn) 

State Variables 
xi

n Amount of inventory on hand with i periods useful of life at the beginning of period n 
 
 
Decision Variables 
yn Units of “new” blood ordered (has remaining lifetime of m periods) in period n 
un = 1  if yn > 0, place the units of “new” blood ordered in period n 
 = 0 otherwise 
zE,i

n Units of blood with lifetime i remaining periods allocated to fulfill the demand of emergency patients in period n 
zR,i

n Units of blood with lifetime i remaining periods allocated to fulfill the demand of regular patients in period n 
 

3.2 Dynamic Programming Model 
 

At the start of each period n, the initial stock on hand is made up of units that are on hand (and not assigned) in the previous 
period and the units from the excess of issued units after depleted demand in the previous period, xi

n.  Before demand is 
realized, order yn

 is placed and units arrive with no delay along with receipted donated blood units qn. The zE,in is assigned for 
emergency patients and zR,in is assigned for regular patients after demand is realized, where i represents the remaining lifetime 
of the product.  Then, the demand is realized by fulfilling the needs of emergency patients and the needs of regular patients 
when possible. Units with less remaining lifetime are allocated first. At the end of the period, the holding cost, the outdating 
cost, and the shortage cost are calculated. In addition, the variable ordering cost per unit (r1), fixed ordering cost per replenish 
order ( r2) , and machine cost per unit ( r3)  for donated blood units are included in the model.  The model is formulated as a 
finite-horizon DP model.  The planning horizon has a total of N>1 period.  The DP model decomposes the problem into a 
series of subproblems. The stages are the review period n=1, 2, …, N. The DP stage is given by the current period (n = 1, 2, 
3, …, N) .  The state of the system is given by the inventory on hand in period n, made up of a vector of inventory on hand in 
period n with i remaining lifetime (xi

n). This is observed after satisfying the demand and holding excess units from the previous 
period. In each period, the current inventory on hand is observed and an ordering decision for new blood units is made along 
with an allocation decision for both emergency and regular patients (yn, zE,i

n, and zR,i
n). The system dynamics are given by the 

two recursive equations in (1)–(2). 
 

The decision variables can be further constrained by the following upper bounds,  
 

1
1 , ,

n n n n n
m E m R mx y q z z+

− = + − −  i∀ = 1, 2, 3, …, m−1 (1) 

1
1 , ,

n n n n
i i E i R ix x z z+
− = − −   (2) 

where 
 

1

, ,
1

0
j

n n n
E j E E i

i
z d z

+−

=

 
− − =  
 

  j∀ = 2, 3, 4, …, m

  

(3) 
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1

, ,
1

0
j

n n n
R j R R i

i
z d z

+−

=

 
− − =  
 

  j∀ = 2, 3, 4, …, m 
 

(4) 

, ,
n n n n

E m R my q z z+ − ≥   (5) 

, ,
n n n
i E i R ix z z− ≥   (6) 

As 
1

,
1

j
n n
R R i

i
d z

+−

=

 
−  

 
 = 

1

,
1

max ,0
j

n n
R R i

i
d z

−

=

  
−      
  

 

Case 1: Allowance for shortage situation 
 

1

1

m
n n n n
E i

i
d x y q

−

=
≤ + +   n∀ = 1, 2, 3, …, N 

(7) 

Case 2: No allowance for shortage situation 
 

1

1

m
n n n n n
E R i

i
d d x y q

−

=
+ ≤ + +  n∀ = 1, 2, 3, …, N 

(8) 

 

Recursive Eq. (1) refers to the inventory level of units with a full remaining lifetime (yn) and the donated blood units (qn). 
After the model assigns blood units for demand depletion, xm−1

n+1units will be left after referring to the inventory level of 
units with the remaining lifetime of m periods. The recursive Eq. (2) is similar to Eq. (1); however, it refers to the inventory 
level of units with a remaining lifetime of less than m periods. The constraint in Eq. (3) computes the total quantity of issued 
units in period n. Units with less remaining lifetime are assigned first to emergency patients, while excess units are held in 
the inventory (from period n) for use in period n+1. The constraint in Eq. (4) calculates the number of issued units used to 
deplete the demand of regular patients, ensuring that “older” units (with less remaining lifetime) are allocated first. The 
constraint in Eq. (5) calculates the number of units from the excess of those issued units after depleting the emergency type 
of demand. This is performed to ensure the implementation of the FIFO policy, wherein older units are depleted first with a 
full remaining lifetime. The constraint in Eq. (6) is similar to that in Eq. (5); however, it refers to units with a remaining 
lifetime of less than m periods. The constraints in Eqs. (7-8) are required for the situation of shortage allowance and no 
shortage allowance, respectively. The decision variables can be further constrained by the following upper bounds. 
 

( ) ( )
min( 1, ) min( 1, )

min max
n m N n m N

j jn n
E R

j n j n
y q d d

+ − + −

= =
+ ≤ +   

(9) 

( )
min( 1, )

max
n i N

j jn
i E R

j n
x d d

+ −

=
≤ +  i∀ = 1, 2, 3, …, m−1 

(10) 

Constraints (9)–(10) are defined to limit the number of units assigned to both demand types and enforce priority based on the 
demand of emergency patients. Eq. (9) is used for the inventory with the full remaining lifetime, and Eq. (10) is used for 
others. Enforcing the upper bounds in (9)–(10) reduces the feasible region and, therefore, the computational time, in the 
following numerical case study. MaxQ is the maximum yn obtained from Eq. (9). Further, SS is the maximum of xi

n, which is 
obtained from Eq. (10). 

 
 

Fig. 2. Model of a periodic blood inventory system with FIFO policy,  
two supplies and two priority demand classes 
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3.3 Reward Function 
 
In particular, the problem is to identify a balance between shortage, outdated, and holding costs by placing an order and 
assigning blood units while considering future costs. If the policy places an order larger than the requested demand, a large 
amount of remaining stock will result in high holding costs and forthcoming outdating costs. If the number of blood units is 
lower than the requested demand, a high shortage cost will ensure regular patients. Thus, the model will allocate units with a 
lower remaining lifetime before units with a high remaining lifetime to decrease the potential outdating cost. This policy is 
commonly referred to as FIFO. The two objective functions of minimizing the total expected cost and maximizing the expected 
service level are considered. In the first objective function, a two-formulation model considering the allowance for a shortage 
for regular patients and no allowance for a shortage for both types of patients is proposed. The DP formulation model will 
result in an optimal policy. In the first case, all costs (ordering, holding, shortage, and outdated costs) are calculated. In the 
second case, the total expected cost based on ordering, holding, and outdated costs is considered. The single-period cost for a 
given demand realization is calculated using Eq. (11), where F n denotes the current cost of stage n. The first and second terms 
are the ordering costs, while the third term is the machine cost for the received donated blood units. The fourth term is the 
transfusion cost of issued units. The fifth term is the outdating cost of unissued units with only one remaining lifetime. The 
sixth term is the shortage cost of the regular type of demand, and the seventh term refers to the holding cost resulting from 
the total inventory, newly arrived orders, and donation of blood units; holding costs are incurred at the end of the period. Eq. 
(12) is similar to Eq. (11); however, it refers to the objective function with no allowance for the lost sale of both patients. The 
optimal solution is investigated from the calculation of a single-period service level, as provided in Eq. (13), given the demand 
realization and minimum total expected cost. Eq. (13) calculates the ratio between the total blood units assigned to regular 
patients and the total blood units required by regular patients. 
 
First objective function (Total expected cost): 
 
Case 1: Allowance for shortage scenario for regular patients 
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Case 2: No allowance for shortage scenario 
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where if yn > 0, then un = 1 
 
Second objective function (Expected service level): 
 
Case 1: Allowance for shortage scenario for the regular patients 
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(13) 

Dynamic programming recurring for the first objective functions: 
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The optimal total expected cost function depends on the state of the system given by the vector xn = (x1
n, x2

n, ..., xi
n, …, xm−1

n). 
The minimum total expected cost from periods n to N is given by the current cost plus the future cost and it is defined by 
Vn( xi

n) . The expected recursive optimality equation can be written as in Eq. (14) . pE( dE
n)  represents the probability mass 

function for the emergency type of demand. The pR(dR
n)  characterizes the regular type of demand, and pG(qn)  represents the 

probability mass function for donated blood units.  Fig. 3 presents the procedure to solve for the optimal replenishing order 
quantity of blood units using the DP method described above. 
 

 
Fig. 3. Process flow to solve periodic blood inventory problem with two supplies and two priority demands  

by using DP model 
 
4. Tabu Search Approach 
 
4.1 TABU Procedure 
 
This problem is complex, and optimal solutions are obtained via exact formulation, making it difficult to solve large problem 
sizes. The exact formulation requires a long computer running time for large-scale problems (real-world problems). Therefore, 
an algorithm is developed to solve the problem addressed in this study. The algorithm is based on the specific problem of 
ordering a quantity of blood units for each period. To realize the solution, TABU is employed. The idea behind the algorithm 
is to apply the local search method with a wrapping pair of the quantity ordered in each period to obtain a better solution. The 
decision on whether to accept a non-improvement solution depends on the candidate solution that is not in the tabu lists. The 
components of the tabu search approach are described in Fig. 4. The process flow of TABU for each inventory held in each 
period is provided. 
 
Notation Description 
Indices  
k  Neighborhood solutions as k = 1, 2, …, K 
 
Parameters 
Fn  Current of the best fitness value based on equations (11), (12), and (14) 
Vn Minimum total expected cost from periods n to N is given by the current cost plus the future cost, based on 

equation (14).  

Set n = N, Do while n > 0

For  xi
n= 0 

Do while xi
n <= SS 

For each dE
n  dR

n qn

Calculate the holding units for 
each xi-1

n+1

Calculate the Outdated units, 
Shortage units

Calculate 
Fn(yn , xi

n,dE
n, dR

n,qn)
following equation (13) 

for each xi
n

Calculate Vn(yn, xi
n) following 

equation (14)

Assign to zE,i
n first, then the 

remain units assign to zR,i
n

Stop

No

Yes

For  y = 0 
Do while 

 yn  + qn <= MaxQ

Check All dE
n, dR

n,qn

be calculated?
No

Yes

Check
 yn + qn  > MaxQ?

No

Yes

Check
xi

n > SS 
No

Yes

Check n = 0 ?

Yes
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X  Fitness value of the neighborhood based on equations (11), (12), and (14) 
X”k  Fitness values of neighborhood k based on equations (11), (12), and (14) 
X’  Fitness value of the candidate neighborhood based on equations (11), (12), and (14), which is the better of 

all fitness values of neighborhoods 
 
Decision variables 
[B]  Set of the current of better solutions of replenish order for each period for the periodic blood inventory 

system 
[X]  Set of initial solutions and neighborhood solutions 
[X”k] Set of each neighborhood solution k 
[X’]  Set of candidate neighborhood solutions 
[Tabu] Set of tabu lists 
[yn] Set of each neighborhood of replenish order quantity of blood units for each period n 

 
Fig. 4. Process flow of the TABU 

 
4.2 Solution Representation  
 
The first procedure is employed in TABU. The present work uses the idea of an integer representation. In an encoding process 
establishment, the state of the inventory on hand for each period is considered the encoding model, where xi

n denotes the state 
of the inventory on hand. Each solution denotes an integer vector [ X]  by length m × n, fitted by each yn of the inventory on 
hand. The model uses a representation of the replenishing order quantity of blood units of length n for each inventory on hand. 
The replenishing units for each inventory on hand for each period are presented in Fig. 5. 
 

x[x1][x2]…[xm]...[xM-2][xM-1] y1 y2 yn yN

period 1       2      ….    n     n+1  …      N 

yn+1

 
Fig. 5. Solution representation of TABU 
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 Iteration < Limited End
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evaluate it, X’

Set Iteration = 1

X’ < best F

set [X]  = set [X’]
set [B] = set [X]

best F = X’
Update Tabu List

set [Tabu] = set [X]
set [X]  = set [X’]

If set [X] ϵ  set 
[Tabu] 

Set Iteration ++

Report best F
set [B]

Yes

Yes

No

No

Yes
No

Neighborhood using 
swapping and 

mutation of Sec. 4.2

set [X]  = set [X’]
Update Tabu List

set [Tabu] = set [X]
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4.3 Infeasible solution 
 
An infeasible replenishing order quantity may be generated when generating initial solutions or during mutation operators. 
Infeasibility can occur because of the shortage of emergency demand, excess holding blood units, or excess order quantity. 
Thus, a function to check for an infeasible solution is developed. If the function finds an infeasible solution, a procedure is 
applied to increase or decrease the units of replenishing order quantity to meet the restriction requirements. When the total 
number of infeasible replenishing units, holding blood units, and donated units does not meet the emergency demand for each 
period, the units of replenishing order quantity must be increased to at least meet the emergency demand. If the decision to 
replenish the order quantity exceeds MaxQ from the maximum value yn of Eq. (9), the units of replenishing order quantity 
must be decreased to meet the requirement. If the remaining total blood units exceed the SS from Eq. (10) after demand 
realization in the end period, the units of the replenishing order quantity must be decreased to satisfy the requirement. The 
reorder point (γ) is defined based on Eq. (15), which can be calculated by the summation of the maximum demands from both 
emergency and regular patients subtracted by the minimum donated unit for each period. The replenishing order quantity will 
be zero if the remaining total blood units exceed the reorder point (γ). 
 

Reorder = [ ] [ ] [ ]n n n
E RMax d Max d Min q+ −   (15) 

 
4.4 Initial solution  
 
The replenishing units for each inventory on hand for each period are generated randomly. The replenishing order quantity 
decisions are computed by applying the economic order quantity (EOQ). The reorder point (γ) is based on Eq. (15). The 
procedure follows these steps: the initial replenishing order quantity units for each inventory on hand for each period defined 
by yn[X] are calculated based on the EOQ. The vector [X] is a set of inventory units for each useful lifetime of blood units at 
the beginning of period n. The possible maximum emergency demand and possible maximum regular demand are denoted by 
Max [dE

n] and Max[dR
n], respectively. The possible minimum donation unit is denoted by Min [qn]. Based on Eq. (15), the 

solution will then add the reorder units and subtract the remaining total blood units in the starting period. The initial 
replenishing order quantity unit is shown in Eq. (16). 
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A value in the range of [ 0, the reorder point ( γ) ]  defined by û is randomly generated.  To create a randomly different 
replenishing order quantity value of yn[X] for each period, yn[X] is revised by increasing or decreasing û. Next, the algorithm 
will check for the limited solution by using the steps of restrict infeasible solutions described in Section 4.3. 
 
4.5 Improving process  
 
The basic improving solution operates by selecting the current replenishing order quantity solution of randomly n periods for 
each inventory on hand with integer vector [X] as one of all neighborhoods [Xk”]. The neighborhood solution is obtained by 
mutation, and the candidate solution is the minimum fitness of all neighborhoods [X’]. Better candidates are selected to be the 
next current solution in the next iteration. In this section, the creation of a neighborhood using mutation operation is discussed. 
The basic mutation operation is used in the replacement step with a swapping value at a specific position n with a random 
position n+1. After the swapping procedure, a value A in the range of [0, the reorder point (γ)] is generated to add or subtract 
the current replenishing order quantity randomly at position n. The improvement process considers the limited value by 
investigating these constraints based on Section 4.2. Fig. 6 shows the swapping and mutation procedure. The mutation 
operation is implemented, and a better solution is obtained. 
 

x[x1][x2]…[xm]...[xM-2][xM-1] y1 y2 yn yN

period 1       2      ….    n     n+1  …      N 

yn+1

x[x1][x2]…[xm]...[xM-2][xM-1] y1 y2 yn yN

period 1       2      ….    n     n+1  …      N 
A+
yn+1

x[x1][x2]…[xm]...[xM-2][xM-1] y1 y2 yn yN

period 1       2      ….    n     n+1  …      N 
A-

yn+1

Neighborhood 1

Neighborhood 2
 

 
Fig. 6. Mixed swapping and mutation operations of TABU 
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5. Computational Results 
 
In this section, the comparison of the optimal solutions obtained using the DP and the proposed TABU is presented. NetBeans 
IDE 7.3. 1 software is used to implement the models. The dynamic model of the periodic blood inventory problem with two 
demand classes discussed in the previous section is formulated. The periodic blood inventory problem with two supplies and 
two priority demands is illustrated using small cases based on real- world data from the SUT hospital in Thailand.  The data 
used in both the small and real-world case studies represent the actual PRC demands of emergency and regular patients. Data 
on all incoming PRC units obtained over a 12-month period were collected from September 2018 to October 2019. 
 
5.1 Small-size Case Study 
 
5.1.1 Data 
 
The worst case involving both the cost of urgent transportation from the National Blood Center to the local hospital and 
contact cost is considered. The demands follow discrete distributions randomly, as shown in Table 2. The model is solved by 
varying the number of initial inventories as described in equation (10). Further, it is assumed that there is no allowance for 
the shortage of emergency demand. It is assumed that the blood system is implemented based on the first-come-first-serve 
policy. The system operates by dispatching the smallest remaining lifetime units. The discrete distribution of the two priority 
demands is summarized in Table 1. 
 
The raw data for a small-size case study can be categorized as follows: 

(1) Time unit used is per day. 
(2) Outdating lifetime of blood units is 3 periods. 
(3) The small cases are solved for 10 periods (10 days)  under emergency and regular demands, with priority given to 

emergency patients. 
(4) No lead time is considered for stock replenishment. 
(5) Seven types of costs are considered. The information on all costs is collected, including fixed ordering, variable 

ordering, holding, outdating, machine, transfusion, and shortage costs. The major costs are as follows: 
• The fixed ordering cost per time of 1,532 Thai Baht (THB) is the cost of transportation from Thai Red Cross, 

Bangkok, to the local hospital. 
• The variable ordering cost per unit of 500 THB is the blood preparation cost when using the spinning method and 

infection test. 
• The holding cost per unit of 275 THB is the operation cost of the blood center system, which includes official’s 

salary and depreciation of machines (e.g., blood warmers, plasma machines, automatic blood chemistry analyzers, 
and blood coagulation analyzers). 

• The outdated cost per unit of 600 THB is composed of the blood unit cost and blood destruction cost. 
• The donation cost per unit of 360 THB is the machine cost for blood unit preparation. 
• The transfusion cost per unit of 112 THB is the cost for preparing blood unit transfusions to recipients. 
• The shortage cost per unit of 2,032 THB is the shortage cost of blood units for some demand cases of regular 

patients. 
 
Table 1  
Demand of blood unit per day and donation of blood unit per day data for a small-size case study 

dE
n (units) 0 1 3  dR

n (units) 0 2 3 5 
pE(dE

n) 0.22 0.66 0.12  pR(dR
n) 0.24 0.22 0.12 0.42 

          
qn (units) 0 1 2       
pG(qn) 0.88 0.07 0.04       

 
5.1.2 Performance evaluations of the DP and TABU approaches 
 
Fig. 7(a) shows that the optimal DP model is a convex function given the maximum shelf life of the blood units (m = 3). The 
results show the optimal total expected cost given the initial on-hand inventory at n = 0 with a fixed shelf life of m − 2 period 
(4 units) and varying the number of the initial on-hand inventory (from 0 to 10 units) with a shelf life of m − 1 period. The 
results indicate that the optimal policy depends on the initial stock. The curve is a convex function of the number of initial 
inventories.  The exact point at which the curve switches depends on the maximum demand. It is believed that the convexity 
of the total expected cost is a function of the replenishing order quantity (yn) with respect to the initial stock (xi

n). In an example 
with the maximum demand (including emergency and regular demands) of 8 units, the exact point would be the point of initial 
stock plus order quantity (yn) of approximately 8. An upper bound can be defined by searching for the optimal point of 
stochastic DP. In addition, the results of the expected service level based on the number of initial stocks are derived at the 
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minimum total expected cost. Fig. 7(b) shows an increase in the expected service level in a concave function given the number 
of initial inventories.  

  
(a) The total expected cost (in THB) (b) The expected service level 

Fig. 7. Performance of the DP model by evaluating the total expected cost (in THB) and expected service level based on 
varying the number of initial inventories  

 
Table 2 summarizes the numerical examples of the DP model investigated in cases both with and without shortage allowance. 
The results show the comparison of benefits between the optimal solution from the DP with shortage allowance and the 
optimal fixed order quantity (FOQ) with allowance for the shortage of blood units based on the total expected cost (E[Cost]) 
function given the number of the initial stock. Note that to find the optimal solution for FOQ, the simulation is run to find the 
best order quantity with the lowest total expected cost.  The x[n][m − 2][m − 1] defines the initial on-hand inventory at n 
period, with a fixed shelf life of m − 2 period and m − 1 given the maximum shelf life of the blood units (m = 3). The results 
indicate that DP both with and without shortage allowance provided better solutions than the FOQ (with shortage allowance, 
with a reduction in the overall total expected cost (E[cost]) of 25%–34% and 2%−4%, respectively. The results show that the 
optimal policy of FOQ with shortage allowance depends on the initial stock. It is observed that as the initial stock increases, 
the optimal FOQ will decrease in a monotone fashion. In addition, the expected overall service level of the optimal DP with 
and without shortage allowance and optimal FOQ with shortage allowance are investigated. The results show that DP with 
shortage allowance provides expected service levels (E[SS]) of higher than 90%, except in the case of x[0][2][2], which 
achieves a service level of 79%, while DP without shortage allowance provides expected service levels of 100%. The FOQ 
with shortage allowance policy provides expected service levels (E[SS]) between 90% and 100% in all cases. The results 
imply that the optimal DP with shortage allowance model determines the replenished order quantity (FOQ) with shortage 
allowance at the smallest unit. When the initial stock is equal to the maximum requirement of emergency demand, the 
minimum total expected cost (E[Cost]) is obtained. In current practice, the staff of the hospital implements the OUL policy 
with shortage allowance. Table 3 shows the results of a comparison of the DP model and the OUL policy with shortage 
allowance. The DP with a shortage allowance provides a better solution than OUL with shortage allowance based on an 
objective of the total expected cost (E[Cost]) of 28%, while the DP without shortage allowance provides a better total expected 
cost (E[Cost]) than OUL with a shortage allowance of 4%.   
 
Table 2  
Comparison of the optimal policy (in THB) given the initial stock, and Short-FOQ with and without shortage allowance 

Initial 
inventory 

E[Cost]: 
Short-

DP 

E[Cost]: 
No Short-

DP 

Short-FOQ: E[Cost] %Deviation of Short-DP and Short-FOQ %Deviation of No Short-DP and Short-FOQ 

y=3 y=4 y=5 y=6 y=3 y=4 y=5 y=6 y=3 y=4 y=5 y=6 

x[0][2][0] 35,459 43,521 46,839 44,362 51,926 63,905 32 25 46 80 8 2 19 47 
x[0][2][1] 34,998 43,068 45,531 44,230 52,862 65,143 30 26 51 86 6 3 23 51 
x[0][2][2] 34,310 42,656 44,569 44,379 53,975 66,347 30 29 57 93 4 4 27 56 
x[0][2][3] 33,361 42,262 43,842 44,827 55,145 67,502 31 34 65 102 4 6 30 60 
x[0][2][4] 32,625 41,918 43,400 45,437 56,297 68,599 33 39 73 110 4 8 34 64 
x[0][2][5] 32,309 41,685 43,250 46,193 57,420 69,653 34 43 78 116 4 11 38 67 
               

Initial 
inventory 

E[SS]: 
Short-

DP 

E[SS]: No 
Short-DP 

Short-FOQ: E[SS] %Deviation of Short-DP and Short-FOQ %Deviation of No Short-DP and Short-FOQ 

y=3 y=4 y=5 y=6 y=3 y=4 y=5 y=6 y=3 y=4 y=5 y=6 

x[0][2][0] 1.00 1.00 0.90 0.98 0.99 1.00 10 2 1 0 10 2 1 0 
x[0][2][1] 1.00 1.00 0.98 0.99 1.00 1.00 2 1 0 0 2 1 0 0 
x[0][2][2] 0.79 1.00 0.99 1.00 1.00 1.00 -25 -27 -27 -27 1 0 0 0 
x[0][2][3] 0.90 1.00 1.00 1.00 1.00 1.00 -11 -11 -11 -11 0 0 0 0 
x[0][2][4] 0.98 1.00 1.00 1.00 1.00 1.00 -2 -2 -2 -2 0 0 0 0 
x[0][2][5] 0.99 1.00 1.00 1.00 1.00 1.00 -1 -1 -1 -1 0 0 0 0 
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Table 3  
Comparison of the optimal policy (in THB) given the initial stock, short-FOQ, and short-OUL with and without shortage 
allowance 

Initial 
inventory 

E[Cost]: 
Short-DP 

E[Cost]: No 
Short-DP 

E[Cost]: 
Short-FOQ 

E[Cost]: 
Short-OUL 

%Deviation 
of Short-DP 
and Short-

FOQ 

%Deviation 
of Short-DP 
and Short-

OUL 

%Deviation 
of No Short-

DP and Short-
FOQ 

%Deviation 
of No Short-

DP and Short-
OUL 

x[0][0][6] 32,201 41,544 43,153 41,679 34 29 4 0.32 
x[0][1][5] 32,339 41,733 43,263 41,867 34 29 4 0.32 
x[0][2][4] 32,625 41,918 43,400 42,052 33 29 4 0.32 
x[0][3][3] 32,912 42,128 43,585 42,262 32 28 3 0.32 
x[0][4][2] 33,272 42,462 43,959 42,595 32 28 4 0.31 
x[0][5][1] 33,724 42,864 44,505 42,998 32 27 4 0.31 
x[0][6][0] 34,303 43,352 45,326 43,486 32 27 5 0.31 

 
Fig.8(a) shows the results of the FOQ. We observe the effect of varying the initial on-hand inventory with a shelf life of m − 
2 periods (0, 2, and 4 units) and a fixed shelf life of m − 1 period (2 units). Further, the results show a convex function based 
on an increase in replenishing order quantity. The point of the optimal FOQ depends on the number of initial inventories. A 
higher initial inventory provides the optimal FOQ at a higher value than a smaller initial inventory. Fig. 8(b) presents the 
results of the expected service level in relation to the values varying between 1 and 4 units. The results indicate that the 
maximum expected service level of the FOQ depends on the initial inventory. In addition, a higher initial inventory provides 
better results regarding the expected service level than a lower initial inventory. Figs. 9(a) and (b) show the Pareto optimization 
chart with the expected service level E[SS] on the x-axis and the total expected cost E[Cost] on the y-axis. Figs. 9 (a) and (b) 
show the results for the specific initial inventory values of x[0][2][0] and x[0][2][1], respectively. From Figs. 9(a) and (b), the 
same results are obtained when the expected service level is over 95%. When the minimum total expected cost is required 
under the FOQ policy, the best solution is to place blood orders at 4 units per period. A comparison of the minimum total 
expected cost when the expected service level is kept high indicates that the DP model provides a better solution than the 
FOQ policy in both cases of the initial inventory, that is x[0][2][0] and x[0][2][1]. 
 
Table 4 lists the results for the small data case of the SUT hospital. The sixth column shows the result of the tabu search 
approach with shortage allowance for each initial stock. The percent gap reported in the seventh column of Table 4 indicates 
the comparison between the total expected cost (E[Cost]) obtained using the DP model with shortage allowance (in the third 
column) and the better solutions found by implementing TABU (in the sixth column) to solve the periodic blood inventory 
problem with two supplies and two priority demands. The %gap value indicates that the tabu search approach can provide 
different results of the total expected cost (E[Cost]) depending on the number of initial solutions, which is around 10%. The 
eighth column shows that TABU offers an improvement in the overall expected cost (E[Cost]) by an average of 16% over the 
optimal solution (DP) with no shortage allowance (in the second column). The ninth column shows that TABU provides more 
benefits than the optimal of the FOQ (in the fourth column), with an average of 18%. The performance of the tabu search is 
illustrated by its comparison with the current practice (OUL). The results indicate that the proposed tabu search provides more 
benefits than the current practice (OUL). 
 

 

  
(a) The expected total cost (in THB) (b) The expected service level 

Fig. 8. Comparison of the total expected cost (in THB) and the expected service level under each fixed replenishing order 
quantity 
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(a) Initial inventory at x[0][2][0] (b) Initial inventory at x[0][2][1] 

Fig. 9. Comparison of the total expected cost (in THB) and the expected service level under the DP model and the optimal 
fixed replenishing order quantity 

 
Table 4  
Optimal policy (in THB) given the number of initial inventories with and without shortage allowance 

Initial inventory 
on hand 

Optimization policy  

E[cost]: 
Short-
TABU 

Comparison of Short-TABU with others 

E[Cost]: No 
Short-DP 

E[Cost]: 
Short-DP 

E[Cost]: 
Short-FOQ 

E[Cost]: 
Short-OUL 

%Imp. 
(Short-

DP) 

%Imp. 
(No-

Short) 

%Imp. 
(Short-FOQ) 

%Imp. 
(Short-
OUL) 

x[0][3][1] 42,887 34,585 44,416 43,022 38,807 9 10 13 10 
x[0][3][2] 42,491 33,612 44,101 42,625 36,781 5 13 17 14 
x[0][3][3] 42,128 32,912 43,584 42,262 37,425 8 11 14 11 
x[0][3][4] 41,881 32,635 43,393 42,015 36,030 6 14 17 14 
x[0][3][5] 41,680 32,318 43,416 41,815 35,336 7 15 19 15 
x[0][3][6] 40,037 32,225 43,645 40,172 35,670 11 11 18 11 
x[0][3][7] 40,282 32,388 44,078 40,417 35,266 10 12 20 13 
x[0][3][8] 40,569 32,605 44,605 40,704 35,528 11 12 20 13 
x[0][3][9] 40,384 33,029 45,222 40,519 35,963 13 11 20 11 
x[0][3][10] 40,834 33,637 45,899 40,969 36,220 13 11 21 12 
x[0][3][11] 41,259 34,277 46,589 41,394 36,884 14 11 21 11 
x[0][7][1] 46,356 34,466 45,213 43,561 38,804 16 16 14 11 
x[0][7][2] 47,064 34,312 44,875 41,748 38,816 14 18 14 7 
x[0][7][3] 47,772 34,249 44,774 41,650 37,183 4 22 17 11 
x[0][7][4] 48,480 34,061 44,959 41,692 37,095 5 23 17 11 
x[0][7][5] 49,188 33,723 45,309 41,822 36,975 6 25 18 12 
x[0][7][6] 49,896 33,676 45,809 42,062 37,440 10 25 18 11 
x[0][7][7] 50,603 34,235 46,471 42,493 36,851 11 27 21 13 

     Average 10 16 18 12 
 
5.2 Real-World Problem 
 
5.2.1 Input data from the SUT hospital, Thailand 
 
In this section, the computational results of the proposed TABU are presented based on real-world data. A case study with a 
dataset from a medical laboratory, the SUT hospital, is used to investigate the proposed TABU. Fresh PRC stored in an 
approved anticoagulant preservative solution may be stored in a bag for up to 35 days; thus, the time periods used are weekly. 
The lifetime of blood inventory is 5 weeks (m = 5). The emergency demand, regular demands, and donated units follow a 
discrete distribution. The probability mass functions for 12 weeks are listed in Table 5. Based on equation (9), a solution can 
be created by determining the order quantity for (m − 1) multiplied by MaxQ and the number of periods (N). The program is 
tested to determine the maximum period of 12 weeks. The objective function is to minimize the total expected cost while 
providing the appropriate expected service level. The input parameters of the costs collected are summarized in Table 6. The 
ordering costs are classified into variable ordering cost (r1) per unit, fixed ordering cost (r2) per replenishment order, and 
machine cost (r3) per donated unit; the outdated cost is cost (o) per unit. A lost sale cost of regular patients (sR) per unit is 
incurred when demands cannot be met. The holding cost is cost (h) per unit. The algorithm is developed in the Java 
programming language. The NetBeans IDE 11.2 is used to implement TABU. The number of iterations is used as the stopping 
criterion of the program. 
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Table 5  
Emergency demand, regular demand, and donation quantity based on their discrete probability distributions 

Time period 
Demand of emergency patients (units) Demand of regular patients (units) Donation quantity (units) 

pE(dE
n) = 0.6 pE(dE

n) = 0.4 pR(dR
n) = 0.6 pR(dR

n) = 0.4 pq(qn) = 1.00 

1 4 10 18 22 8 
2 2 4 14 24 4 
3 2 4 10 20 2 
4 2 4 10 14 6 
5 2 4 10 16 6 
6 4 10 16 20 0 
7 4 10 16 20 4 
8 4 10 14 16 2 
9 6 8 20 24 6 
10 2 4 10 16 2 
11 2 4 10 16 4 
12 2 4 12 16 6 

 
Table 6  
Major costs based on operation costs from medical laboratory at the SUT hospital  

ID Major costs THB  

1 Holding cost per unit (THB per unit): h 275 

2 Outdating cost per unit (THB per unit): o  600 

3 Shortage cost per unit (THB per unit): sR 2,032 

4 Variable ordering cost per unit (THB per unit): r1 500 

5 Fixed ordering cost per time (THB per time): r2 1,532 

6 Donation cost per unit, which is the machine cost for preparing blood unit (THB per unit): r3  360 

7 Transfusion cost per unit (THB per unit): r4  112 

 
5.2.2 Parameters of the tabu search approach for blood inventory system 
 
The parameters of the tabu search are set using the central composite design (CCD) method. The objective is to minimize the 
total expected cost. The algorithm needs to calculate the initial replenishing order quantity units and limit the restricting 
infeasible solutions based on the value of the reorder points. The reorder points are considered one of the factors that can be 
calculated using Eq. (15). The levels of reorder points are varied from 8 to 16 units, as shown in the combination of factors 
for CCD in Table 7. Another factor to be determined is the number of iterations. The CCD was applied according to 
Montgomery (1997). Each combination of factors requires two replications. Table 7 summarizes 13 cases of factor 
combinations in which combination cases 7 to 13 are the reference points. 
 
Table 7  
Combination of factors for CCD experimental design 

Case 
Set up value 

Reorder points Number of iterations 
1 8 60 

2 16 60 

3 8 100 

4 16 100 

5 6 80 
6 18 80 
7 12 50 
8 12 110 
9 12 80 
10 12 80 
11 12 80 
12 12 80 
13 12 80 
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The results of the analysis of variance in Table 8 show the significance of the reorder point at p-value 0.001, and the 
significance of the interaction between the reorder point and the reorder point at p-value 0.000 using Minitab 16. The R-square 
(adjusted) is 66.03%. Figs. 10(a) and (b) show the contour and surface plots, respectively. The plots indicate the optimal point 
of maximum and the percent improvement of tabu search over the current practice (OUL) of higher than 6%.  
 
Table 8  
Results of an analysis of variance (ANOVA) for the parameters setting of the tabu search approach 

Estimated Regression Coefficients for % Improv. of TABU 
 
Term    
Constant       
Reorder point     
Number of iterations                  
Reorder point*Reorder point            
Number of iterations*Number of iterations 
Reorder point*Number of iterations       
S = 0.540301         PRESS = 10.6043 
R-Sq = 72.83%            R-Sq(pred) = 50.65%    
R-Sq(adj) = 66.03% 

 
 

Coef 
−0.62550 
  1.02426 
−0.01868 
−0.04679 
−0.00007 
  0.00299 

 

 
 

SE Coef 
3.44857 
0.27786 
0.06069 
0.00830 
0.00033 
0.00239 

 
 

T 
−0.181 
  3.686 
−0.308 
−5.640 
−0.200 
  1.254 

 
 

P 
0.858 
0.001 
0.761 
0.000 
0.844 
0.224 

 

  

(a) Contour plot (b) Surface plot 
Fig. 10. Results of the % improvement of tabu over the current practice (OUL) according to the parameters setting of the 

tabu search approach 
 

The box plot and optimal function are analyzed using Minitab. The box plot in Fig. 11 shows the results of the CCD 
experiment. This corresponds to the combination of factors for the percent improvement of TABU over the current practice 
(OUL) based on the optimizations. The results of the 13 combinations of factor levels show the best overall performance in 
case 8, with a reorder point of 12 and several iterations of 110. It is necessary to ensure that the parameters of the tabu search 
approach are set using the optimal function of Minitab. Fig. 12 shows the optimal point of the percent improvement of the 
tabu search over the current practice (OUL). The results show an optimal point of 6.3%, with a reorder point of 14 units and 
110 iterations.  
 

 

Fig. 11. Result of box plot for % improvement of tabu over the current practice (OUL) according to the 
parameters setting of the tabu search approach 
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Fig. 12. Optimal point of the % improvement of tabu over the current practice (OUL) according to the 

parameters setting of the tabu search approach 

5.2.3 Performance of tabu search approach  
 
The goal of this section is to assess the effect of the proposed dynamic policy using the tabu search compared to the fixed 
policy (OUL). The real-world data from the SUT hospital are used to compare the proposed tabu search approach and current 
practice (OUL). Parameters are set following the discussion above, with a reorder point of 14 units and a number of iterations 
of 110. Table 9 summarizes some results of the total expected cost with varying numbers of initial blood inventory. The initial 
blood inventory is determined as the combination of the remaining lifetime of blood inventory (i = 1, …, m - 1) within the 
range of 0–18 units. These results indicate a 6.5% improvement of TABU over the current practice (OUL). The results also 
indicate that the percent improvement of the dynamic policy using the tabu search approach is slightly less beneficial 
compared to the OUL when the initial blood units are small. If the initial blood units are larger, the results show an increase 
in percentage improvement over the OUL. In addition, there is no dependence on the number of initial blood units for each 
remaining lifetime of the blood inventory (i = 1, …, m − 1). The benefit of the proposed dynamic policy based on the tabu 
search approach can be shown in terms of the expected service level. The results show a slight difference between solutions 
of the tabu search approach and solutions of the OUL policy, with an average expected service level of 98%. When the number 
of initial blood units is varied, the benefit in terms of improvement in the expected service level may seem small. However, 
recall that the expected service level is not related to the initial blood units.  
 
Table 9  
Comparison of the solutions of tabu search and the solutions of the OUL with varying number of iterations 

Initial blood inventory 
OUL (Fixed policy) 

Tabu search  
(Dynamic policy) 

% of deviation between OUL and 
tabu search  

E[Cost]  
(in THB)  E[Service level] E[Cost]  

(in THB)  
E[Service 

level] 
E[Cost]  

(in THB)  
E[Service 

level] 
x[0][0][0][0][0] 164,742 0.98 155,783 0.98 5.44 0.00 
x[0][0][0][0][4] 162,742 0.98 153,783 0.98 5.50 0.00 
x[0][0][0][0][8] 160,742 0.98 151,783 0.98 5.57 0.00 

x[0][0][0][0][12] 158,742 0.98 149,783 0.98 5.64 0.00 
x[0][0][0][0][16] 156,742 0.98 148,496 0.97 5.26 1.02 
x[0][0][0][16][0] 156,742 0.98 148,496 0.97 5.26 1.02 
x[0][0][0][16][4] 153,137 0.98 143,989 0.98 5.97 0.00 
x[0][0][0][16][8] 151,283 0.98 142,135 0.98 6.05 0.00 
x[0][0][0][16][12] 150,383 0.98 141,347 0.98 6.01 0.00 
x[0][0][0][16][16] 149,384 0.98 139,986 0.98 6.29 0.00 
x[0][0][16][0][0] 156,742 0.98 148,496 0.97 5.26 1.02 
x[0][0][16][0][4] 153,137 0.98 143,989 0.98 5.97 0.00 
x[0][0][16][0][8] 151,283 0.98 142,135 0.98 6.05 0.00 
x[0][0][16][0][12] 150,383 0.98 141,347 0.98 6.01 0.00 
x[0][0][16][0][16] 149,384 0.98 139,986 0.98 6.29 0.00 
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Table 10  
Sensitivity analysis of the efficiency of TABU for different shortage costs 

ID % of varying the shortage cost per unit 
E[Cost] (in THB)  % of deviation for E[Cost] 

between OUL and TABU 

E[SS] % of deviation for 
E[SS] between OUL 

and TABU OUL TABU  OUL TABU 

1 −20 147,631 139,075 5.80 0.960 0.979 1.98 
2 −10 149,496 139,508 6.68 0.960 0.980 2.11 
3 0 149,931 140,122 6.54 0.980 0.981 0.17 
4 +10 153,219 142,813 6.79 0.960 0.979 2.00 
5 +20 155,085 143,787 7.28 0.960 0.979 2.00 

 
Table 11  
Sensitivity analysis of the efficiency of TABU for different holding costs 

ID % of varying the holding cost per unit 
E[Cost] (in THB)  % of deviation for 

E[Cost] between OUL 
and TABU  

E[SS] % of deviation for 
E[SS] between OUL 

and TABU OUL TABU OUL TABU  

1 −20 146,577 138,375 5.60 0.960 0.981 2.22 
2 −10 148,967 140,885 5.43 0.960 0.979 2.04 
3 0 149,931 140,122 6.54 0.980 0.981 0.17 
4 +10 153,748 146,052 5.01 0.960 0.969 0.99 
5 +20 156,138 148,999 4.57 0.960 0.965 0.53 

 
5.2.4 Sensitivity analysis of the tabu search approach  
 
Table 10 summarizes the results of the sensitivity analysis for different shortage costs. The results of the proposed policy 
using the tabu search approach are compared to the policy using OUL under various shortage costs. The tabu search is 
observed to provide better outcomes for the total expected cost, with a slight difference in the percentage of deviations. The 
benefit in terms of improvement in the expected service level is slightly greater compared to the results of the OUL policy. 
Similarly, Table 11 shows the sensitivity analysis results for different holding costs. The proposed policy based on the tabu 
search approach and the policy based on OUL show the same benefit in terms of improvement in the total expected cost. On 
the other hand, the tabu search approach presents better outcomes in terms of the expected service level under various holding 
costs. The performances of the policy based on the tabu search approach are shown in Figs. 13(a) and (b) regarding the total 
expected cost and the expected service level, respectively. A graphical overview of the sensitivity analysis under different 
shortage costs and holding costs is presented. Fig. 13(a) shows the benefit in terms of improvement in total expected cost. 
While the shortage cost is increased or decreased, the tabu search approach still provides greater benefits in terms of the total 
expected cost. However, either an increase or a decrease in the holding cost results in a slightly reduced benefit in terms of 
the total expected cost. Fig. 13(b) shows the same results as in Fig. 13(a) from the perspective of the expected service level. 
The results indicate that the benefit in terms of improvement in the expected service level decreases more when varying the 
holding cost than when varying the shortage cost. 

 

  
(a) Total expected cost (in THB) (b) Expected service level 

Fig. 13. Sensitivity analysis of the efficiency of tabu search for varying shortage and holding costs 
 
 
6. Conclusion and Future Research 
 
In this paper, a periodic blood inventory system with the minimum total expected cost under the appropriate expected service 
level is proposed. The two priority demands (emergency demands and regular demands) are assumed, with an allowance for 
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shortage for regular patients and no allowance for shortage for emergency patients. Two supplies, namely donated blood units 
with uncertainty and order quantity to the outsourcing provider, are considered. A DP model is developed to determine the 
solution of the dynamic policy in small case problems for each period over a finite horizon. TABU is developed to determine 
the solution of the dynamic policy in a real-world problem. The SUT hospital in Thailand is the case study subject. The 
optimal decision variables, including the order quantity to the outsourcing provider for each remaining lifetime of blood 
inventory for each period, are determined throughout the tabu search method. The results indicate that the proposed TABU 
yields better total expected cost under the appropriate expected service level than the current practice (OUL) of the hospital. 
The results of the computational study suggest that the efficiency of the proposed TABU does not depend on the shortage and 
holding costs. To benefit from the managerial insight of the TABU, the user should carefully implement the model in a 
fluctuating demand scenario. The control chart of demands needs to be operated concurrently. The most realistic blood 
inventory problem considers the complex substitutability between donor blood and recipient requests. In future work, we will 
consider some binary variables to make a decision given many choices of blood type for transfusion (AB+, AB-, A+, A-, B+, 
B-, O+, and O-). We will address the substitution so that the excess demand class can be satisfied using other blood type 
products.   
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