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 Social dilemmas describe conflict situations between immediate self-interest and longer-term 
collective interests. In these situations, it is better that all players work together to attain a common 
goal, but individuals may threaten the best payoff of the group by free-riding. Human behavior in 
a pandemic is one example of a social dilemma but wait-and-see games and relying on herd 
immunity to get a free ride generates a threat of continuing the pandemic. This study aims to use 
probabilistic incentives given by a third party as a mechanism to inhibit free-riding behavior by 
promoting cooperation in the volunteer dilemma game. For more realistic human behavior 
simulation, we use an agent-based model of network topology. When the parameters of the problem 
change gradually, an abrupt jump in the cooperation rate may happen and lead to a significant shift 
in the outcome. Catastrophe theory is a valuable approach to survey these nonlinear changes. This 
study tries to give some managerial insights to the decision-makers to find the minimum level of 
necessary effort in which the cooperation dominates the defection. 
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1. Introduction 

Social dilemmas are the result of the misalignment of individual and group motivations. Although the best outcome is attained 
when all the players work together for a common goal, individuals are likely to have free-riding; because they expect that the 
other players of society will make enough effort to achieve the common goal. Human behavior in a pandemic like COVID-
19 is an example of a social dilemma problem because having a virus-free environment depends on people’s collective 
responsibility toward safety efforts (Paakkari & Okan, 2020). However public health recommendations like wearing masks, 
being socially distanced, washing hands, staying at home, and vaccination will significantly reduce the risk of infection, it has 
costs, such as vaccines side effects and personal challenges with practicing social distancing (Jentsch et al., 2021). In pandemic 
situations, many people would rather play the wait-and-see games and rely on herd immunity to get a free ride by not 
contributing to public safety and get the benefits of reduced health risk from others' compliance. This behavior generates a 
threat of continuing the timing of the epidemic peak with a high rate of transmission (Bhattacharyya & Bauch, 2011). From 
this aspect, people who neglect safety procedures, such as wearing masks and maintaining social distance, are free-riders as 
they benefit from safety despite doing nothing (Cato et al., 2020). Many models reveal that cooperating at the beginning of 
the process will collapse by failure in excluding free-riders. Number if scholars have studied the mechanisms that could 
improve cooperation and discourage free-riding such as externally imposed incentives like reward and punishment, and have 
shown their positive effect in cooperative behavior (Yamagishi, 1992; Fehr & Gächter, 2002; Sefton et al., 2007; Gachter et 
al., 2008; Balliet et al., 2011). A great deal of theoretical (e.g., Sigmund et al.,  2001; Sigmund, 2010) and experimental (e.g., 
Andreoni et al.,  2003) research has examined the effectiveness of incentives in promoting human cooperative behavior. Rand 
et al. (2009) and Sutter et al. (2010) compared the effectiveness of punishment and reward in repeated public goods games. 
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Nosenzo and Sefton reviewed the literature on the merits of incentives to show how diffused reward/punishment power across 
the members of a group affects cooperation (Nosenzo & Sefton, 2012). Some researchers discussed the role of voluntary 
punishment (Yamagishi, 1986; Ostrom et al., 1992; Fehr & Gächter, 2000). Choi and Ahn (2013) studied the effects and the 
motivations behind voluntary sanctions in a finitely repeated public goods game. By using a controlled field experiment, 
Noussair et al. (2015)  investigated the performance of decentralized peer incentives in building up cooperation. Gao et al. 
(2015)  discussed the effectiveness of collective punishment and reward as two potential mechanisms in the multiplayer 
evolutionary snowdrift game to explain the evolution of cooperation. Hiemstra (2017) modeled an extended public good game 
in a scale-free network with heterogeneous contributions and interactions by adding an incentive resources institution.  

Wu et al. (2017) studied the role of probabilistic reward and punishment in developing cooperation. Qian et al. (2019)  tried 
a static analysis and evolutionary simulation for monitoring the effect of the endogenous combination of rewards and 
punishments. Jiao and Chen (2020) studied the role of probabilistic altruistic incentives in promoting cooperation in social 
dilemmas. Although there are many studies about the benefits of punishment in promoting cooperation, some studies proposed 
that reward is a better mechanism in changing attitude than punishment is (Molm, 1990; Molm et al., 1993; Banks, 2002; 
Larsen & Tentis, 2003; Kim et al., 2006). Others showed that costly punishment does not always bring about cooperation and 
can sometimes lead to negative consequences in social dilemmas (Wu et al., 2009; Cressman et al., 2013; Kitakaji & Ohnuma, 
2019). To date, numerous articles represented an impressive effort to enhance our awareness of human behavior during a 
pandemic social dilemma, such as COVID-19 (Cato et al., 2020; Porterfield, 2020). Collective cooperation is a crucial factor 
in defeating the pandemic, high incidence, mortality, and social and economic catastrophes. Pandemics Social dilemmas are 
complex systems with bounded rational players with the continuous decision-making process and dynamically changing 
strategies during the spread of the epidemic; so the simulation of the agent-based evolutionary game model is an effective 
solution in studying the evolution of people strategies (Piraveenan et al., 2020). Chang et al. (2020) surveyed the game-
theoretic modeling of infectious disease dynamics as an effective method. Regarding the problem condition, they proposed 
the intervention mechanisms based on these classifications: 1) classical or network-based population modeling type, 2) 
repeated or non-repeated frequency of the game, 3) self-learning or imitation strategy. 

This paper aims to introduce the incentives given by a third party as a mechanism to inhibit free-riding behavior and increase 
human collective cooperation in the context of pandemics using evolutionary game theory. In the traditional social dilemma 
games, players choose their strategies (cooperation or defection) simultaneously. If they both choose to cooperate, they will 
obtain the highest collective payoff. On the other hand, mutual defection yields the lowest profit. This game is called the 
prisoner dilemma. However, the prisoner dilemma game is the most employed game for studying social dilemmas; there are 
some social dilemmas related to altruistic behavior that could be modeled by other games more appropriately. In particular, 
the volunteer’s dilemma game is an important paradigm for modeling the situation in which each player can either make a 
small sacrifice that helps everybody or instead wait in the hope of benefiting from others' sacrifice (Chen et al., 2013). In 
some problems, such as producing safeguard public good, a threshold number of volunteers is required. The process of small 
and continuous changes of the probability and value of incentives could lead to an abrupt jump in the cooperation rate so the 
fractions of cooperators increase considerably. Catastrophe theory is a helpful approach to survey these nonlinear events and 
find out if this threshold exists or not. These nonlinear models are analyzed by catastrophe theory. This theory was introduced 
by Thom (1972) and has many applications in human behavioral changes such as employees rebellions (Hu & Xia, 2015; 
Zhao & Hu, 2015; Makui et al., 2020), alliances collapse (Xu et al., 2014); opinion changes (Hu & Hu, 2018) and conflicts 
(Dimas et al., 2018). 

In the past few years, many structures have been suggested to understand the origin and evolution of cooperation. Among 
these mechanisms, network reciprocity, where agents are arranged on the spatially structured topology and interact only with 
their direct neighbors, is a significant dynamical rule that favors the evolution of cooperation (Nowak & May, 1992; Nowak, 
2006). Network-based models can show population clusters forming to protect the interior agents from the aggression of 
defectors, hence it can describe the possible interactions in the population as one of the factors that may promote cooperation 
among selfish individuals. Also, they do not have the limitations of replicator dynamics equations consists of an infinite, well-
mixed population with no mutations (Roca et al., 2008). The other plus point is that networks simulate more realistic human 
behavior models. In network-based models, the link between players (nodes) is shown through edges. There are many 
homogeneous and heterogeneous empirically derived topologies for reflecting differences of various social systems such as 
Erdös-Rényi random networks, scale-free networks, small-world networks, square lattice, and others (Chang et al., 2020). 
The rest of this paper is structured as follows. In sections 2 and 3, problem modeling and result analysis are discussed. The 
conclusion is presented in section 4. 

2. Model and Assumptions 

To represent the evolution of the population in a pandemic, an agent-based evolutionary volunteer dilemma is modeled on a 
square lattice with periodic boundary conditions (Fig. 1). Players can choose the strategies of volunteer (cooperation) and 
ignore (defection). The public good is produced if the players decide to volunteer at the minimum level of 𝑘 (1 ≤ 𝑘 ≤ 𝑁). In 
COVID-19, 𝑘 = 85% because when we reduce contact by 75%, the peak epidemic cases drop by about 91%. If we reduce 
contact by 95%, we note 98% fewer cases (Matrajt & Leung, 2020). 
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Fig 1. Square lattice with and without periodic boundary conditions, respectively 

To reach the minimum acceptable level of cooperation, the third-party agent will give cooperators an incentive as a reward 
and charge the defectors a penalty as a punishment with the probability of  𝑝. In the beginning step of the simulation, both 
populations have the same likelihood of occupying the vertices of the lattice. The payoff (P ) of player i at each step is the 
summation of all payoffs it gains from playing with all its neighbors. Next, all the finite population strategies update 
synchronously.  

2.1 Update rule 

1- To apply the update rule for each player, first, one of its neighbors will be picked up randomly, 
2- The focal player’s payoff is compared with the selected neighbor. 
3- The agent will keep its strategy if it is higher; else, its strategy will change into the neighbor’s strategy with a 

probability that is dependent on the payoff difference; 𝑊← = ,  where 𝑑  represent the degrees of player 

(node) 𝑖, and 𝐿 denotes the maximum possible distance between payoffs for each pair of individuals in the network.  

2.2 The structure of the volunteer dilemma 
 

The population of volunteers is shown by 𝑐. Each volunteer benefits the society with a fix amount of 𝑣 (𝑣 > 1), while others 
invest nothing. The total contribution to the pool is the multiplication of 𝑐 and 𝑣 and distributed equally to the whole population 
(𝑁). The cooperators have a cost of volunteering irrespective of the result (𝑏), and everybody has a cost (𝑎) in the case of 
failing to produce public good and 𝑎 > 𝑏 (Chen et al., 2013). Relevant parameters and variables of our formulation are shown 
in Table 1.  
 

Table 1 
Relevant parameters and variables  

parameters 
variables Definitions 𝑃  Volunteer payoff 𝑃  Ignore payoff 𝐼𝑛𝑐  Incentive for player 𝑖  𝑑  Degree of node 𝑖 𝐿 Maximum possible distance between payoffs for each pair of individuals 𝑐 Volunteers population 𝑣 The benefits that each volunteer adds to the society 𝑎 The cost of pandemic continuation 𝑏 The cost of volunteering 𝑁 Population size 𝑘 Minimum acceptable cooperation rate 𝛼 Leverage of rewarding. The reward recipient's payoff is increased relative to the cost of implementing the 

reward. 𝛽 Leverages of punishing. The punishment recipient's payoff is decreased relative to the cost of 
implementing the punishment. 𝑤 Reward share of total incentive budget 𝜎 Third party incentive budget per individual 𝑝 The probability that each player will get a reward or be punished 
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𝑃 (𝑐) = 𝑣𝑐𝑁 − 𝑏              𝑐 ≥ 𝑘𝑣𝑐𝑁 − 𝑏 − 𝑎      𝑐 < 𝑘 (1) 

𝑃 (𝑐) = 𝑣𝑐𝑁               𝑐 ≥ 𝑘𝑣𝑐𝑁 − 𝑎      𝑐 < 𝑘  (2) 

The average per capita incentive dedicated to each person is 𝜎 (𝜎 > 0); so the total incentive budget is 𝑁𝜎. Based on relative 
weigh of reward share from total incentive budget (𝑤, 0 < 𝑤 < 1), 𝑁𝜎 is divided in to the parts of reward and punishment. 
The shared amount of cooperators (𝑐) is equal to 𝑤𝑁𝜎 so each one obtains a reward of  . This amount for defectors 

is − ( ) . The two factors of 𝛼 and 𝛽 mentioned here are leverages of rewarding and punishment. By assuming 𝑤 = 0 or 1 the incentive changes to pure punishment or reward, respectively (Chen et al., 2015). 

𝐼𝑛𝑐 = ⎩⎪⎨
⎪⎧ +𝑤𝑁𝜎𝛼𝑐              , 𝑖𝑓 𝑝𝑙𝑦𝑒𝑟 𝑖 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑐ℎ𝑜𝑠𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑   − (1 −𝑤)𝑁𝜎𝛽𝑁 − 𝑐     , 𝑖𝑓 𝑝𝑙𝑦𝑒𝑟 𝑖 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑛𝑑 𝑐ℎ𝑜𝑠𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑝𝑢𝑛𝑖𝑠ℎ𝑒𝑑             0                             , 𝑒𝑙𝑠𝑒                                                                                                (3) 

In the case 𝑐 ≥ 𝑘, 𝐿 is the differences of − 𝑏 +   and − ( )  . In the case 𝑐 < 𝑘, L is the differences of − 𝑏 −𝑎 +   and − 𝑎 − ( ) . In both case, the result is same and as below: 

𝐿 = 𝑁𝜎 𝑤𝛼𝑐 + (1 −𝑤)𝛽𝑁 − 𝑐 − 𝑏  (4) 

3. Result and analysis  

In the process of simulation, we assumed that the values of parameters as 𝛼 = 𝛽 = 1, 𝑣 = 0.3,𝜎 = 0.5, 𝑏 = 0.2,𝑎 = 1, 0 ≤𝑝 ≤ 1,𝑤 = 0, 0.5 and  1; but they could change based on the circumstances of each specific model. The results are the 
average of 50 independent rounds, the network size is 𝑁 =  10  nodes, and the degree for all nodes is 𝑑 = 4. In Fig. 2 and 
Fig. 3, it is clear that the gradual increase of p has an influential role in promoting cooperation, and a sudden discrete jump 
occurs in the system's status means the defection mode turns to the cooperation mode.  

 

Fig. 2. Evolution of cooperation rate ( ) in volunteer dilemma for different values of 𝑝 (𝑤 = 0) 
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Fig. 3. Evolution of cooperation rate ( ) in volunteer dilemma for different values of 𝑝 (𝑤 = 0.5) 

The catastrophe set for Fig. 2 is 0.4 < 𝑝 < 0.45, Fig. 3 is 0.25 < 𝑝 < 3 and for Fig. 4 is 0.4 < 𝑝 < 0.45. In Fig. 4 the 
cooperation rate after the jump is lower than the minimum acceptable rate for reaching the herd immunity. By comparing Fig. 
2 and 4 it could be found that punishment is a better mechanism than reward and the hybrid one is the best strategy. As 𝑤 
indicates reward share from the total budget, it is important to know what probability of 𝑝 for each value of 𝑤 leads to a jump 
to the desired state. Lower values of  𝑝 means lower monitoring costs. Because less probability of applying incentives means 
less cost of inspection and less social resistance against restrictions and applying incentive for everyone is not feasible in the 
real world condition. By comparing the catastrophe sets for different values of  𝑤, the decision makers can select the lowest 
value of  𝑝. In order to choose the best policy there are other essential factors to consider; such as the trade-off between social 
resistance and the monitoring cost.  Regarding this set and the conditions of each specific model, third parties who try to 
facilitate cooperation can know how much extra effort is needed to reach their goal. Chen et al. (2013) surveyed the cusp 
catastrophe model in the volunteer dilemma with infinite well-mixed population size to find the critical reward that leads to 
cooperation. 

 

Fig. 4. Evolution of cooperation rate ( ) in volunteer dilemma for different values of 𝑝 (𝑤 = 1) 

In Fig. 5 for 𝑤 = 0.25 (as an example) collective cooperation is achieved in 0.35 < 𝑝 < 0.4. Compared to 𝑤 = 0.5, the 
probability of applying incentives for each player should be higher in 𝑤 = 0.25 to achieve cooperation. The cooperation rate 

 in Fig 2 to Fig. 5 is determined by averaging the last 10% of the total 10  full Monte Carlo simulations. In Fig. 6 jump 
points from defection ( = 0) to fully cooperating ( = 1) mode in terms of 𝑝 for all values of 𝑤 are depicted. An important 
note is that the simultaneous existence of reward and punishment is more effective in reaching cooperation than implementing 
only one mechanism, because the cooperation rate may shift from 0 to 1 at lower levels of 𝑝. Lower levels of 𝑝 mean lower 
monitoring costs; and higher levels of 𝑤 mean less resistance against punishment policies in the society. In Fig. 6 the most 
effective value of reward share is 𝑤 = 0.7 (70% of the budget should be assigned to rewarding the players). By considering 
the pure punishment or reward mechanisms, the punishment is more effective than the reward; because the maximum 
cooperation rate in 𝑤 = 1 is 0.6 and it is not enough to have a virus-free environment.  
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Fig. 5. Sudden jump in cooperation rate ( ) due to gradual changes in 𝑝 (𝑤 = 0.25) 

 
Fig. 6. Jump points in terms of 𝑝 for different values of 𝑤 

4. Proof of catastrophe existence in volunteer dilemma through replicator dynamics 

Proof of catastrophe existence is possible in two ways. (1) Depicting the jump in the system's state surface. (2) Turning the 
model's equation to the catastrophe equation. The first approach is done in section 3. The second approach is possible by 
replicator dynamics equation if we assume that the population is infinite & well-mixed. The Replicator dynamics is a nonlinear 
approach to describe the system's evolution and it is equal to the difference between the average payoff of the strategy and 
the average payoff of the whole population (Esmaeili et al., 2018). As mentioned before there are two strategies; being a 
volunteer with the probability of x or ignore with the probability of 1 − x. The general volunteer dilemma payoff matrix is 
shown in Table 2 (0 < 𝑓 < 𝑔 < 1).  

Table 2  
The players' payoff 

Player2   
Ig (1 − 𝑥)  Vol (𝑥)   1 − 𝑔, 1 1 − 𝑓, 1 − 𝑓 Vol (𝑥)  

Player 1 0,0 1,1 − 𝑔  Ig (1 − 𝑥)  

The respective expectation values of “Vol” and “Ig” strategies are U  and U  and average value is U, 𝐹(𝑥) describes the 
system's evolution. 
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𝐹(𝑥) = 𝑑𝑥𝑑𝑡 = 𝑥(𝑈 − 𝑈) (8) 

In the next section after presenting a brief background of catastrophe theory, it will be proved that F(x) is an example of the 
cusp catastrophe equation.  

4.1 A brief background of catastrophe theory 

Catastrophe theory defines that slight changes in the specific parameters of a nonlinear system can cause the equilibrium to 
appear or disappear leading to a major abrupt jump in the system status (Zeeman, 1976). The equation of the classic 
catastrophe theory for deterministic systems is as below: 

𝑑𝑥(𝑡) = −𝜕𝑉(𝑥(𝑡), 𝑐)𝜕𝑥(𝑡)  (9) 
The Potential function, state variable and control variable vector are V(x(t), c⃑), x(t) and c⃑, respectively. Cusp catastrophe 
(Fig. 7) is one of the seven elementary catastrophes and it is bimodal (before and after sudden transition). It consists of one 
behavior variable (Z) and two control variables (α,β); the potential function, equilibrium surface and the catastrophe set are 
represented in Eq. 10-12. 

 
Fig. 7. The cusp catastrophe 𝐹(𝑍,𝛼,𝛽) = 14𝑍 + 12𝛼𝑍 + 𝛽𝑍 (10) 𝜕𝐹𝜕𝑥 = 𝑍 + 𝛼𝑍 + 𝛽 = 0 (11) 27𝛼 = 4𝛽  (12) 

4.2 The existence of the cusp catastrophe 

As mentioned in section 4 the replicator dynamics equation for the strategy of being volunteer is presented in Eq. (13). In Eq. 
(14) the Eq. (13) is expanded.  𝑑𝑥(𝑡) = 𝑥(𝑡). (𝑈 − 𝑈).𝑑𝑡 = 𝑥(1 − 𝑥)(𝑥(1 − 𝑓) + (1 − 𝑥)(1 − 𝑔) − 𝑥) (13) 



  

 

326𝑑𝑥(𝑡) = 𝑥 (𝑓 − 𝑔 + 1) + 𝑥 (2𝑔 − 2 − 𝑓) + 𝑥(1 − 𝑔) .𝑑𝑡 = (𝐸𝑥 + 𝐹𝑥 + 𝐺𝑥).𝑑𝑡 (14) 𝐸 =  𝑓 − 𝑔 + 1 𝐹 = 2𝑔 − 2 − 𝑓 𝐺 = 1 − 𝑔 
We assume α,β and Z as below and rewrite the replicator dynamics equation as Eq. 15. Eq. (15) is the equation of cusp 
catastrophe.  

𝑥 = 𝑍 − 𝐹3𝐸 𝛼 = 𝐺 − 𝐹3𝐸  𝛽 = ( 227𝐹𝐸 − 13𝐺𝐹𝐸 ) 𝑑𝑥(𝑡) = 𝐸(𝑍 + 𝛼𝑍 + 𝛽).𝑑𝑡 → 𝑑𝑥(𝑡) = 0 → 𝑍 + 𝛼𝑍 + 𝛽 = 0 (15) 
By replacing the variables in Eq. (12), the boundary in which the cooperation rate experiences a discrete increase or decrease 
abruptly will be identified (Eq. 16).  

27𝛼 = 4𝛽 → 27 𝐺 − 13 𝐹𝐸 = 4 227 𝐹𝐸 − 13𝐺𝐹𝐸 → 

27(1 − 𝑔 − 13 (2𝑔 − 2 − 𝑓𝑓 − 𝑔 + 1 ) ) = 4( 227 (2𝑔 − 2 − 𝑓𝑓 − 𝑔 + 1 ) − 13 (1 − 𝑔)(2𝑔 − 2 − 𝑓)(𝑓 − 𝑔 + 1) )  (16) 
4. Conclusion 

This paper studied the pandemic social dilemma in which free-riding may lead to a failure in forming a cooperative alliance. 
The structure of the payoffs is based on a volunteer dilemma which is helpful in modeling the situation in which each player 
can either make a small sacrifice that helps everybody or instead wait in the hope of benefiting from others' sacrifice. The 
paper's method was the agent-based network simulation for its ability in modeling the finite-size population and reflecting 
various social systems' differences.  

To decrease the free-riders ratio and promote cooperation, third-party judges reward cooperators and punish defectors. These 
incentives are assumed to be probabilistic. When the probability of applying incentives increases gradually, an abrupt jump 
in the cooperation rate may happen. In another word, slight changes in the input parameters could shift the outcome of the 
game from social failure to successful collective cooperation. These discrete jumps are called catastrophe, and it is valuable 
to provide the authorities with useful insights about the minimum level of efforts and the best combinations of reward and 
punishment strategies needed to ally people to defeat pandemics.  

It is a good idea to consider the frequency of the game, types of strategy adoption such as self-learning or imitation in further 
studies. Carrot and stick policy in setting incentives, the proportionality of incentives to cooperation rate, and other approaches 
to reduce free-riding problem are other interesting points of view. 
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