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 Aiming at distribution logistics planning in green manufacturing, heterogeneous-vehicle vehicle 
routing problems are identified for the first time with multiple time windows that meet load 
constraints, arrival time window constraints, material demand, etc. This problem is expressed by a 
mathematical model with the characteristics of the vehicle routing problem with split deliveries by 
order. A hybrid ant colony optimization algorithm based on tabu search is designed to solve the 
problem. The search time is reduced by a peripheral search strategy and an improved probability 
transfer rule. Parameter adaptive design is used to avoid premature convergence, and the local 
search is enhanced through a variety of neighborhood structures. Based on the problem that the 
time window cannot be violated, the time relaxation rule is designed to update the minimum wait 
time. The algorithm has the best performance that meets the constraints by comparing with other 
methods. 
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1. Introduction 

 
The high efficiency of assembly line operation and the low efficiency of material distribution have become the main issues in 
intelligent manufacturing. Distribution strategies and disordered management are the main causes of low distribution 
efficiency. Traditional material distribution has some shortcomings, such as poor continuity, poor distribution efficiency and 
poor delivery timeliness. Smooth and efficient material distribution is a prerequisite to ensure the smooth and continuous 
production of an assembly line. Material distribution route planning is an important application of the vehicle routing problem 
(VRP). The problem is more complicated due to the complex constraints and many distribution tasks. Vehicle route 
optimization reasonably reduces the number of vehicles and the total running time, which is in line with the concept of green 
logistics. Route planning is the key to efficient material distribution. Considering the limitations of actual physical factors 
inside workshops, Ho and Liao (2009) conducted research on the dynamic scheduling of vehicles to avoid collisions. Choi 
and Lee (2002) proposed a dynamic material distribution method based on static material distribution to avoid material 
shortages or accumulation. Jin and Zhang (2016) studied route planning and vehicle scheduling in manufacturing systems 
based on meta-heuristics. Umar et al. (2015) proposed the integrated dynamic scheduling and routing of job and automated-
guided vehicles in a flexible manufacturing systems environment. They also optimized makespan and vehicle travel time to 
generate suitable material distribution routes. 
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Warehouse Assembly line  
Fig. 1. The schematic diagram of the material distribution system in the assembly workshop 

 
There is no research on the material distribution problem of multiple visits to each station in different time windows for 
heterogeneous vehicles based on the assembly line constraints. Materials are distributed in batches and small amounts at high 
frequencies because the line-side can store only small amounts of materials. Materials are assembled and consumed in 
accordance with the normal rhythm, so there are different time window requirements for each delivery. Fig.1 shows the 
schematic diagram of the material distribution system in the assembly workshop. To the best of our knowledge, single-depot 
and heterogeneous-vehicle VRPs are identified for the first time with multiple time windows (SHVRPMTW) that meet load 
constraints, arrival time window constraints, material demand. This problem is expressed by a mathematical model with the 
characteristics of the VRP with split deliveries by order (VRPSDO) (Xia & Fu 2018a). The model is solved linearly to verify 
the correctness of the model. This problem has many different types of constraints, each of which can be challenging to 
consider, even in isolation. A hybrid ant colony optimization algorithm based on tabu search (HACO-TS) is designed to solve 
large-scale problems. The search time is reduced by a peripheral search strategy and an improved probability transfer rule. 
Parameter adaptive design is used to avoid premature convergence, and the local search optimization ability is enhanced 
through a variety of neighborhood structures and peripheral search strategies. In the post processing stage, variable 
neighborhood search (VNS) is used to further optimize the results. Finally, the forward relaxation rule is designed to update 
the minimum wait time for each route in the solutions. Smooth material flow is an important condition for enterprises to 
realize just-in-time production. Based on the problem that the time window cannot be violated; the time relaxation rule is 
designed to update the minimum wait time. 
  
The rest of this article is arranged as follows: Section 2 reviews the related literature. Section 3 describes the problems and 
establishes the mathematical model. Section 4 describes the improved algorithm in detail. In Section 5, the mathematical 
model is solved to verify the correctness. The results of the improved algorithm are compared. Section 6 analyzes and 
summarizes the research. 
 
2. Related works 

The VRP has attracted wide attention since it was first proposed by Dantzig and Ramser (Dantzig & Ramser, 1959). Many 
achievements have been made in addressing the VRP and its expansion problems, such as VRPs with time windows (VRPTW) 
(Paradiso et al., 2020), VRPs with split deliveries (SDVRP) (Archetti & Speranza, 2012), the fleet size and mixed VRP 
(FSMVRP) (Simi et al. 2015), VRPs with simultaneous delivery and pickup (VRPSDP) (Simsir & Ekmekci, 2019). Inspired 
by the VRP, some scholars have turned their attention to material distribution route planning in manufacturing systems, which 
is an important application of the VRP. The goal is to arrange the distribution route reasonably to complete tasks at the 
minimum cost and traveling distance under the known material plan. This problem is time sensitive and depends on the 
material plan. Dondo and Cerda (2007) established a mixed-integer programming model of the multidepot heterogeneous fleet 
VRP with time windows and proposed a three-stage heuristic algorithm to solve the problem. Fallahi et al. (2008) established 
an integer programming model for material distribution route optimization based on the actual situation of an automobile 
manufacturing company with the goal of minimizing the total traveling distance. Chiang et al. (2014) established a 
mathematical model to minimize the number of vehicles and the total traveling distance. They adopted a knowledge-based 
evolutionary algorithm to solve the problem. Fazlolahtabar et al. (2013) considered the triple criteria to determine the AGV 
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optimal route. They proposed intelligent agents to apply mathematical programming methods to solve conflict deadlocks in 
the decision-making process. 
  
This problem is a VRP with multiple time windows (VRPMTW). VRPMTW is not a new problem, although it has not been 
studied extensively. The study begins with Favaretto et al. (2007) first proposing the VRPMTW with multiple visits. They 
allowed fleets to visit the same customer multiple times within multiple time windows. An improved ACO was proposed to 
solve the problem. Belhaiza et al. (2014) studied a new hybrid VNS heuristic for the VRPMTW with the goal of the minimum 
waiting time and delay time. They proposed a recursive method to calculate the optimal allocation of waiting time along the 
route. Belhaiza et al. (2017) designed a new optimization algorithm based on hybrid genetic variable neighborhood search to 
optimize the VRPMTW. Belhaiza (2018) used a hybrid VNS algorithm for multicriterion optimization within the framework 
of game theory. A Pareto nondominant solution was selected from the search space of feasible solutions that satisfy a set of 
Nash equilibrium conditions. 
 
Beheshti et al. (2015) studied a multiobjective VRP with multiple prioritized time windows. They proposed a cooperative 
coevolutionary quantum-genetic algorithm to solve this problem. Larsen and Pacino (2019) designed an adaptive large 
neighborhood search framework to solve the VRPMTW. They proposed a novel solution that represents an incremental 
assessment to obtain the insertion cost. Bogue et al. (2020) proposed column generation and a post optimization heuristic 
algorithm that provided upper and lower bounds for the optimal solution cost of the VRPMTW. There is another type of 
VRPMTW in which a single time window must be selected from multiple time windows for each vehicle. Multiple time 
windows add complexity to the problem. To effectively determine the optimal start time for vehicle service, Hoogeboom et 
al. (2020) presented an exact polynomial time algorithm. Heterogeneous vehicle routing is another important application of 
VRP, which usually considers a limited or an unlimited fleet of capacitated vehicles, including the fleet size and mix VRP 
(FSMVRP) introduced by Golden et al. (1984) and the heterogeneous fixed fleet VRP (HFFVRP) introduced by Taillard and 
E(1999). There are variations in time window constraints on this problem. The problem has been studied for a long time, and 
fruitful results have been produced. To minimize the distance traveled and the number of vehicles, Ho et al. (2008) developed 
two hybrid genetic algorithms to solve the VRP with multiple depots. Salhi Said et al. (2013) proposed a heuristic algorithm 
based on set segmentation to solve the FSMVRP with return pickup. Matei et al. (2015) studied HFFVRP with minimized 
total cost. A genetic algorithm based on migration was combined with a local search program to solve the problem. Goeke 
and Schneider (2015) studied the electric VRPTW and mixed fleets in combination with a realistic energy consumption model 
that incorporates speed, gradient and cargo load distribution. They developed an adaptive large neighborhood search algorithm 
to solve the problem. Based on the constraint that depots must provide services to customers in the fuzzy time windows, 
Adelzadeh M et al. (2014) studied the multi-depot vehicle routing problem with fuzzy time windows and heterogeneous 
vehicles. Guezouli and Abdelhamid (2017) proposed a decision support system for multidepot FSM-VRPTW and provided a 
solution for multicriteria based on a genetic algorithm. Fachini and Armentano (2020) provided the first exact algorithms for 
the standard HFFVRPTW, and their effectiveness has been analyzed in detail. The research results of VRP and its extensions 
are rich, especially the algorithm design. However, in the assembly shop, the complexity of materials and frequent distribution 
increase the scale of the problem. The distribution planning problem with multiple time windows and multiple visits is the 
focus of the research. Moreover, the combination of VRPMTW and heterogeneous fleet constraints has not previously been 
studied, but it has important guiding significance for logistics distribution. 
 
3. Problem representation 
 
3.1. Problem description 
 
With assembly workshops as the background, material distribution is pulled by the actual line sequence of the master 
production schedule (MPS) to carry out orderly operations. Material requirement planning (MRP) can be obtained by 
integrating MPS, manufacturing Bill of Material (BOM), product cycle time. MRP determines the material supply plan, which 
provides the exact time windows and quantity of the demands for each station. Then the material removal list is transferred to 
the warehouse for removal. The cycle time and work process of the production line have been completed in the planning layer. 
According to the logic of delivery time and quantity, the planning layer summarizes the demands to generate the distribution 
on-line planning. Therefore, when analyzing logistics optimization from the perspective of the logistics operation layer, the 
key is on the distribution logistics planning. Orders and the units of material demands are input data to be determined. Under 
a reasonable production plan, efficient vehicle distribution routes are designed to ensure that materials are delivered to stations 
in time based on workshop constraints. Delays in distribution are likely to result in production stoppages, which means high 
real-time requirements for materials. Only a small amount of material is temporarily stored in the station line-side to support 
production in a short time. Materials are delivered in a single package that makes maximum use of the line-side capacity. To 
meet different distribution needs, there are generally many types of vehicles in the workshop. Due to the limited workshop 
area, the vehicles are not subject to maximum time or maximum distance constraints. The problem satisfies the following 
assumptions: 
 

(1) The vehicle will not stop due to failure or traffic jams during the transportation. 
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(2) A certain amount of material has already been stored in the line-side before starting production. Material is consumed 
evenly during production. 

(3) Assembly planning and material distribution lists are known. The materials are qualified and meet the requirements 
of homogeneity. There is no temporary replacement of materials. 

(4) Materials are converted to uniform equivalent according to weight and volume. 
(5) The demands of each station are determined by material distribution lists in advance.  
(6) The demands of all stations could be met. 
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Fig. 2. Analysis of multiple time windows 

 
To ensure the continuity of production, the logistics system distributes materials to every station at intervals of a certain period 
of time. Therefore, a station receives materials in multiple time windows. Fig. 2 shows the curve of the line-side inventory 
level of a certain material over time, which is also the analysis of multiple time windows. For the stations with multiple time 
windows, each time window is associated with a virtual station except for the first time. Materials need to be transported to 
the station on the road in advance, so the demand signal is sent at the inventory 𝑆 (time point 𝑅 ). It can be seen from Fig.2, 
the station can accept distribution services only when the line-side inventory are consumed to less than or equal to the 
inventory 𝑊𝑆 (time point 𝑒  or 𝑒 ). 𝑙  or 𝑙  is the latest time for material distribution when material in the line-side is just 
completely consumed. After unloading service, the existing stock cannot exceed the max capacity 𝑊 , as 𝑟 , 𝑟 , and 𝑟  shown 
in Fig. 2. The arrival time earlier than 𝑒  needs to wait for service, because it will lead to the accumulation of materials in the 
line-side. The formulas for multiple demand time windows of the stations are designed as follows, 
 𝑒 = 𝑅 + 𝑊 −𝑊𝑆𝐶𝑉 , ∀𝑖 ∈ 𝑁 

(1) 

𝑒 = 𝑅 + 𝑊 −𝑊𝑆𝐶𝑉 , ∀𝑖 ∈ 𝑁 
(2) 

𝑒 = 𝑒 + 𝑞𝐶𝑉 , ∀𝑢 ∈ 𝑝 ,∀𝑖 ∈ 𝑁 (3) 

𝑙 = 𝑒 + 𝑊𝑆𝐶𝑉 ,   ∀𝑢 ∈ 𝑝 ,∀𝑖 ∈ 𝑁 (4) 

 
where, 𝐶𝑉  is the average consumption rate of material i. 𝑞  is the materials contained in a single package. 𝑊  is the line-side 
inventory at time t. 𝑊𝑆  is the safe inventory of the station. The unloading time is not taken into account in Fig. 2, meaning 
the inventory could be replenished instantaneously when materials arrive at the station. 
 
In [𝑒 , 𝑙 ], the materials can be unloaded as 𝑡 . The unloading service is refused if the arrival time exceeds 𝑙  because there 
is a shortage of materials, even stop production. Assuming stable production, the consumption rate 𝐶𝑉  is constant. Regardless 
of the unloading time point in 𝑡 , 𝑡 , 𝑒 , and 𝑙 , the third production cycle is on R3 or its extension line, these moments do 
not affect the next demand window. 
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3.2. Mathematical model 

Because of the complexity of the constraint of multiple time windows and multiple visits, a virtual points strategy is used to 
simplify the model. The mathematical model is established based on VRPMTW (Favaretto et al., 2007). Let G = (𝑉,𝐸) be a 
graph. Let V = 0 ∪ N be the set of distribution center and work stations. Let 𝐸 = (V × 𝑉) be the set of arcs: there are travel 
times 𝑡  associated with each arc. Let D = 𝑑 ,𝑑 ,𝑑 …𝑑  be the demands set of stations. If the demands are expressed in 
the minimum distribution unit, then D = 𝑑 ,𝑑 ,𝑑 , …𝑑 ,𝑑 ,𝑑 , …𝑑 , …𝑑 ,𝑑 , …𝑑 . Let N + be the set of stations that 
require multiple visits. Station i of this set has 𝑝  demand time windows, [𝑒 , 𝑙 ], 1 ≤ v ≤ 𝑝 . The time windows of a station 
do not overlap with each other: 𝑒 < 𝑙 < 𝑙 , v ∈ {1,2, … , 𝑝 − 1}. This time interval is not less than the ratio of the planning 
period to the number of packages 𝑇 𝑝 + 1⁄ . Each station with N + is provided virtual points 𝑑  that are associated with real 
stations and real time windows [𝑒 , 𝑙 ]. They are in the same location. All the stations of M must be served once. 
 

 
 
The objective function (5) is to minimize the sum of the fixed costs of the vehicles, the waiting time costs and the transportation 
time costs. To convert the cost of using a vehicle to the same units used in the other parts, the fixed cost is expressed in time 
units. 𝒎𝒊𝒏 𝒁 = 𝛟𝟏 𝒇𝒄𝒙𝟎𝒋𝒌𝑴

𝒋 𝟏
𝑪
𝒄 𝟏 + 𝛟𝟐 𝒘𝒊𝒌𝑴

𝒋 𝟏
𝑲
𝒌 𝟏 + 𝛟𝟑 𝒙𝒊𝒋𝒌𝑴

𝒋 𝟏
𝑴
𝒊 𝟏 ∗ 𝒕𝒊𝒋𝑲

𝒌 𝟏  
(5) 

subject to 𝒙𝒊𝒋𝒌𝐕
𝒋 𝟎

𝑲
𝒌 𝟏 = 𝟏,∀ 𝐢 ∈ 𝐌 

(6) 

𝒙𝒊𝒋𝒌𝐕
𝒊 𝟎

𝑲
𝒌 𝟏 = 𝟏,∀ 𝐣 ∈ 𝐌 

(7) 

𝒙𝒊𝒑𝒌𝐕
𝒊 𝟎 = 𝒙𝒆𝒋𝒌𝐕

𝒋 𝟎 ,∀𝒌 ∈ 𝑲, 𝐞 ∈ 𝐌 
(8) 

𝒙𝟎𝒋𝒌𝐌
𝒋 𝟏 ≤ 𝟏,∀ 𝐤 ∈ 𝐊 

(9) 

𝒙𝟎𝒋𝒌 =𝑴
𝒋 𝟏

𝑲
𝒌 𝟏 𝒙𝒊𝟎𝒌𝑴

𝒊 𝟏
𝑲
𝒌 𝟏  

(10) 

𝒙𝒊𝒋𝒌𝑴
𝒋 𝟏

𝐕
𝒊 𝟎 ∗ 𝒒𝒋 ≤ 𝑸𝒄,∀𝒄 ∈ 𝑪 

(11) 

𝒂𝒊𝒌 + 𝒘𝒊𝒌 + 𝒔𝒊 + 𝒕𝒊𝒋 − 𝒂𝒋𝒌 + 𝛀(𝟏 − 𝒙𝒊𝒋𝒌) ≥ 𝟎,∀ 𝐢, 𝐣 ∈ 𝐕′,𝒌 ∈ 𝑲 (12) 

Parameter N′: Let N′ be the set of virtual stations: the number of virtual stations is ∑ 𝑝𝑖 − 1𝑁𝑖=1  M: Let M be the set of real stations and virtual stations, M = (N′ ∪ 𝑁). V′: Let V′ = {0} ∪ M be the set of center, real stations, virtual stations. 𝐴: Let 𝐴 = (V′× V′) be the set of new arcs. k: Let k ∈ 𝐾 be the set of the fleets, 𝐾 = {1,2. . ,𝑘} = {𝑛1} ∪ {𝑛2} ∪ …∪ {𝑛𝑐}. c: Let c ∈ C be the set of vehicle types [𝑒𝑖𝑣 , 𝑙𝑖𝑣]: The set of real requirement time windows [𝑒𝑖 , 𝑙𝑖 ]: The requirement time window associated with the virtual stations 𝑛𝑐 : The number of vehicle types 𝑐 𝑄𝑐 : The capacity of vehicle types 𝑐 𝑓𝑐 : The fixed cost of vehicle types 𝑐 𝑠𝑖 : Service time at station i 𝑡𝑖𝑗 ; The time required to travel from station i to station j 𝐷𝑝 : Demand for real stations 𝑞𝑗 : Demand for virtual station j ϕ :Unit cost of waiting time Ω :Arbitrary large constant 
Variable 𝑥𝑖𝑗𝑘 = 1, only if arc(i,j) is traversed by vehicle k and 0 otherwise 𝑎𝑖𝑘 : Arrival time of vehicle 𝑘 at station i 𝑤𝑖𝑘 : Waiting time of vehicle 𝑘 at station i 



  

 

478𝒂𝒊𝒌 + 𝒘𝒊𝒌 + 𝒔𝒊 + 𝒕𝒊𝒋 − 𝒂𝒋𝒌 + 𝛀(𝒙𝒊𝒋𝒌 − 𝟏) ≤ 𝟎,∀ 𝐢, 𝐣 ∈ 𝐕′,𝒌 ∈ 𝑲 (13) 𝒆𝒊 𝒙𝒊𝒋𝒌𝐌
𝒋 𝟏 ≤ 𝒂𝒊𝒌 + 𝒘𝒊𝒌,∀ 𝐢 ∈ 𝐌,𝒌 ∈ 

(14) 

𝒂𝒊𝒌 ≤ 𝒍𝒊 𝒙𝒊𝒋𝒌𝐌
𝒋 𝟏 ,∀ 𝐢 ∈ 𝐌,𝒌 ∈ 𝑲 

(15) 

𝒙𝟎𝒋𝒌𝑴
𝒋 𝟏𝒌∈𝒌𝒄 ≤ 𝒏𝒄,∀𝒄 ∈ 𝑪 

(16) 

𝒙𝒊𝒋𝒌 ∈ {𝟎,𝟏},∀𝐢, 𝐣 ∈ 𝐕′,𝒌 ∈ 𝑲 (17) 𝒘𝒊𝒌 ≥ 𝟎,∀𝐢 ∈ 𝐌 (18) 𝒂𝒊𝒌 ≥ 𝟎,∀𝐢 ∈ 𝐕′ (19) 
 
Constraints (6)-(7) state that each virtual station is assigned to exactly only one vehicle. Constraint (8) states that the number 
of arcs leaving station i is equal to the number of arcs entering it. Constraints (9)-(10) state that each vehicle used for 
distribution starts and ends at the depot. Constraint (11) states that the maximum amount of loaded material is upper bounded 
by the capacity 𝑄  of vehicle type 𝑐 traversing arc(i, j). Constraints (12)-(13) mean that the arrival time at station 𝑗 is equal to 
the arrival time at station 𝑖 plus the waiting time and service time plus the travel time, only if this arc is assigned to vehicle 𝑘. 
Constraints (14)-(15) mean that the arrival time at station 𝑖 plus the waiting time must meet the time window of station 𝑖. 
Constraint (16) means that the number of vehicles must not exceed the prescribed number. Constraints (17)-(19) state the 
feasibility intervals for the decision variables. 
 𝒙𝒊𝒆𝒌𝐕
𝒊 𝟎 = 𝒙𝒆𝒋𝒌𝑽

𝒋 𝟎 ,𝒌 ∈ 𝑲,𝐞 ∈ 𝐕 
(20) 

𝒙𝒊𝒆𝒌𝑲
𝒌 𝟏

𝐕
𝒊 𝟎 = 𝒑𝒆, 𝒆 ∈ 𝐍 

(21) 

𝒙𝒊𝒆𝒌𝑲
𝒌 𝟏

𝐕
𝒊 𝟎 ∗ 𝒒𝒆 ≥ 𝑫𝒆, 𝒆 ∈ 𝐍 

(22) 

𝒒𝒊 + 𝑾𝒊𝒕 ≤ 𝑾𝒊,∀𝐭 ∈ [𝒆𝒊𝒗, 𝒍𝒊𝒗],∀𝒗 ∈ 𝒑𝒊,∀𝐢 ∈ 𝐌 (23) 
 
The mathematical model describes the problem clearly and intuitively by using the virtual points strategy. There are many 
features implicit in the model that are not intuitively expressed. Constraints (20)-(21) state that the real stations may need 
multiple visits, and the vehicle entry and exit times are equal to the number of time windows. Constraint (22) means that the 
demand of the stations visited by more than one vehicle is satisfied. Constraints (23) means that the material delivered by 
vehicle must be less than the stock limit of the line. The linear solver can solve this problem small-scale in a short 
computational time. However, for the practical production environment, the size of the proposed logistics planning problem 
is relatively large. And the problem may need to be solved and updated several times in each production horizon (e.g. a day). 
It is difficult to obtain the solutions in a reasonable computational time for the linear solver. Thus, a meta-heuristic algorithm 
is designed to address such an operational problem with fast speed for the real application scene. 
 
4. Hybrid Ant Colony Optimization Algorithm Based on Tabu Search 

Dantzig and Ramser (1959) proved that the VRP is an NP-hard problem. Therefore, SHVRPMTW is also an NP-hard problem 
but more complex. Improved meta-heuristic algorithms are effective methods to address logistics planning problems. Among 
these algorithms, ACO is especially outstanding: ACO models a group of ants that cooperate through information exchange 
by iterating pheromones on the edge of a graph. Based on the OVPR algorithm of Li et al. (2009), HACO-TS is improved to 
solve the problem effectively. 

The transfer rules are improved according to the characteristics of the problem. The solutions that meet the targets are quickly 
identified under the surrounding search strategy. The short-term memory capability and defiance criteria of the TS are 
incorporated into the algorithm. HACO-TS makes good use of TS's strong local search ability and ACO's parallel global 
search ability to improve the convergence performance. HACO-TS algorithm process is shown in Fig. 3. 
 
4.1. Sort stations 

Jiang et al. (2014) proposed that the service order of customers and vehicles affects the quality of the initial solution. They 
classified customers and vehicles into four categories. To minimize the time cost, the greatest distance rule can be adopted. 
Referring to the vehicle classification rules, the greatest capacity rule is adopted, meaning that larger vehicles are preferred. 
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Fig. 3. HACO-TS algorithm flow chart 

 
4.1.1Surrounding search strategy 

The feasible solution is preliminarily constructed by combining the minimum total cost of the target and vehicle sequencing 
rules. Let ℶ  be the feasible points. 𝑱𝒌𝟎(𝒊) = 𝒋|𝒂𝒊𝒌 + 𝒔𝒊 + 𝒕𝒊𝒋 ≤ 𝒍𝒋; 𝒒𝒊𝒊∈𝒌 + 𝒒𝒋 ≤ 𝒎𝒂𝒙 𝑸𝒄 . (24) 

When solving large-scale problems, it is difficult to search for the optimal solution because the algorithm faces a large search 
space. The surrounding search strategy is improved to narrow the search scope. All points in the set of the next feasible points 
are sorted according to the Euclidean distance, and points in a certain range are selected as the peripheral point set 𝐽 (𝑖), 
which is the new candidate points set. The neighborhood operators are modified according to this strategy. The concept of 
geographic proximity(Br Ysy et al., 2009) is defined, which represents the average X and Y coordinates of the stations on 
each route. 
 
4.1.2First station selection strategy 

To select a suitable node from many feasible nodes, the first station selection strategy is used to improve the convergence of 
the algorithm. When the iteration progress reaches a certain condition, the first node is the node with the highest transition 
probability in the candidate node set. The strategy is defined as follows: 

 𝒊𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒋𝟏∈𝑱𝒌(𝒊)(𝑷𝟎𝒋𝒌 (𝐭))，𝐢𝐟  𝑵𝒄 𝑵𝒄𝒎𝒂𝒙⁄ > 𝛆𝒓𝒂𝒏𝒅𝒐𝒎 𝒋𝟏 ∈ 𝑱𝒌(𝒊)，𝐞𝐥𝐬𝐞  
(25) 
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where 𝑖  is the first station of each route. 𝑃 (t) is the probability from the distribution center to 𝑖  using vehicle K. 𝑁  is the 
number of current iterations. 𝑁  is the maximum number of iterations. ε(0 < ε < 1) indicates when to use the strategy. 
 
4.2. Solution construction 

After all the ants have completed the itinerant routes, the pheromone updating rule is used to update the pheromone level, thus 
increasing the pheromone on the edge belonging to the current optimal itinerant routes. HACO-TS ends when one of the 
following conditions is met: (1) a fixed number of solutions are generated, (2) a fixed number of iterations have not executed 
the objective function. 
 
4.2.1 Probabilistic transition rule 

Each ant selects stations according to the probabilistic transition rule to generate a complete itinerant route. To enhance the 
accuracy and reality of ants' route selection, the transition rule is improved on the basis of the adaptive pseudorandom ratio 
selection rule proposed by Li et al. (2009). 

 𝑺 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒋∈𝑱𝒌(𝒊) {𝝉𝒊𝒋(𝒕)𝜶 × 𝜼𝒊𝒋(𝒕)𝜷 × 𝒘𝒊𝒋(𝒕)𝜸}，𝐢𝐟 𝐪 ≤ 𝒒𝟎𝑹，𝐞𝐥𝐬𝐞  
(26) 

𝑷𝒊𝒋𝒌 (𝐭) = [𝝉𝒊𝒋(𝒕)]𝜶 × [𝜼𝒊𝒋(𝒕)]𝜷 × [𝒘𝒊𝒋(𝐭)]𝜸∑ [𝝉𝒊𝒋(𝒕)]𝜶 × [𝜼𝒊𝒋(𝒕)]𝜷 ×𝒋∈𝑱𝒌(𝒊) [𝒘𝒊𝒋(𝐭)]𝜸，𝐢𝐟 𝒋 ∈ 𝑱𝒌(𝒊) 𝟎，𝐞𝐥𝐬𝐞  
(27) 

 𝜏  is the pheromone concentration. 𝛼, 𝛽 and 𝛾 indicate the relative importance of pheromones and heuristics. 
 𝑞 (0 ≤ 𝑞 ≤ 1) is a constant to control the transition rule. q is a random variable subject to a standard uniform distribution.  
 
When q ≤ 𝑞 , the station corresponding to the maximum probability is selected as the next visit station. Otherwise, station 𝑅 
is selected. 𝑅 is obtained by roulette selection, where the probability is 𝑃 (t). 𝜂  is the expected heuristic function, 
representing the expected degree of the ant's transfer from station i to station j. 𝜂  takes into account not only the time 𝑡  but 
also the urgency of station j. The urgency is given by the time interval between the current moment and the current time 
window of station j. 
 𝜼𝒊𝒋 = 𝟏 𝐦𝐚𝐱 {𝟏,𝝍(𝐦𝐚𝐱 𝒏𝒐𝒘 + 𝒕𝒊𝒋,𝒆𝒋 − 𝒏𝒐𝒘)(𝒍𝒋 − 𝒏𝒐𝒘)}⁄  (28) 𝐰𝐚𝐢𝐭(𝐢, 𝐣) = 𝒆𝒋 − 𝒕𝒊𝒋 − 𝒏𝒐𝒘, 𝒏𝒐𝒘 +  𝒕𝒊𝒋 < 𝒆𝒋  , 𝐣 ∈ 𝑱𝒌(𝒊)𝟎.𝟏,                     𝒆𝒋 ≤ 𝒏𝒐𝒘 +  𝒕𝒊𝒋 ≤ 𝒍𝒋  

(29) 

 
where 𝑛𝑜𝑤 represents the current time starting from station i and 𝜓 is a scale factor with uniform mass. 𝑤 (𝑡) =1 𝑤𝑎𝑖𝑡(𝑖, 𝑗)⁄ , 𝑗 ∈ 𝐽 (𝑖) represents a function related to wait(i, j) of the vehicle at station j. 
 
4.2.2 The pheromone update strategy 

In each iteration of the algorithm, the pheromone matrix is updated after all the ants have constructed the solution. The 
pheromone update strategy: 

 𝝉𝒊𝒋(𝒕 + 𝟏) = (𝟏 − 𝝆)𝝉𝒊𝒋(𝒕) + 𝝆∆𝝉𝒊𝒋 (30) 
 
The increment is calculated by mixing the best solution 𝑠  found in the current iteration and the global optimal solution 𝑠 , 
which is improved based on Li et al.(2009). The pheromone delta ∆𝜏  emitted by ants: 
 ∆𝝉𝒊𝒋 = 𝑸(𝝋𝟏𝝏 𝒔𝒊𝒃, (𝒊, 𝒋) 𝑳𝒊𝒃 + 𝝋𝟐𝝏 𝒔𝒔𝒃, (𝒊, 𝒋) 𝑳𝒔𝒃) (31) 

 
where, 𝐿  is the minimum objective value corresponding to 𝑠 , and 𝐿  is the minimum objective value corresponding to 𝑠 . 𝜑  and 𝜑  are weight parameters, representing the relative importance of the solution in pheromones increment, 𝜑 >0,𝜑 > 0,  𝜑 +𝜑 = 1.When 𝜑 = 0,𝜑 = 1 indicating only 𝑠  is used to update the pheromone, the convergence speed of 
the algorithm is the fastest, but it is easy to fall into local optima. Only if  (𝑖, 𝑗) ∈ 𝑠, 𝜕(𝑠, (𝑖, 𝑗) = 1; else, 𝜕(𝑠, (𝑖, 𝑗) = 0. ρ(0 <ρ ≤1) denotes the volatility coefficient of pheromones on the routes, and 1 − ρ denotes the persistence of pheromones. In the 
process of updating pheromones, the pheromone on each edge (𝑖, 𝑗) evaporates at a fixed evaporation rate. 
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Different combinations of 𝜑  and 𝜑  determine the different updating trajectories of the arc pheromones. As the iteration 
process progresses, the importance of 𝑠  decreases and the importance of 𝑠  increases; therefore, the relative weight 
coefficients are adjusted dynamically. 
 
Based on the MMAS pheromone, the pheromone is controlled between [𝜏 ,𝜏 ] to prevent premature convergence of the 
algorithm (Stützle & Hoos, 2000). The pheromone needs to be judged after each iteration.  𝜏 = ∗ , 𝜏 = 𝜏 . 
 𝝉𝒊𝒋(𝐭 + 𝟏) = 𝝉𝒎𝒊𝒏    ,    𝝉𝒊𝒋(𝐭 + 𝟏) < 𝝉𝒎𝒊𝒏 𝝉𝒊𝒋(𝐭),     𝝉𝒎𝒊𝒏 < 𝝉𝒊𝒋(𝐭 + 𝟏) <𝝉𝒎𝒂𝒙   , 𝝉𝒊𝒋(𝐭 + 𝟏) > 𝝉𝒎𝒂𝒙 𝝉𝒎𝒂𝒙 

(32) 

4.3. Local search 

Numerous studies have shown that the ACO integrated local search can lead to better solutions(Li et al., 2009, Liu and Zhang 
2016). TS is an efficient search algorithm to solve the VRP (Taillard et al., 1997; Xia & Fu, 2018a, b; Gendreau et al., 1999); 
TS with multiple starts is used as the local search here. A good balance between the quality and the computation time must 
be considered. If all the solutions found by ants are searched locally, the process will require considerable computation time 
to obtain better results. The number of ants in the local search gradually increases with every iteration base on the strategy of 
Li et al. (2009). Multiple differentiated elite solutions constructed by ants are used as the initial solutions of local search, 
which increases the possibility of finding improved solutions. In the solution process, the discrete material containers of each 
station are regarded as independent demands. The (virtual) stations are described as 𝑑 (1 ≤ 𝑣 ≤ 𝑝 ). The solutions can be 
represented by an arrangement of the distribution center 0 with the stations, in which the two stations nearest 0 and the middle 
part form a route. For example, the solution 𝑆 = (0𝑑 𝑑 𝑑 𝑑 0𝑑 𝑑 𝑑 𝑑 0𝑑 𝑑 𝑑 𝑑 0, … 0), where (0𝑑 𝑑 𝑑 𝑑 0), (0𝑑 𝑑 𝑑 𝑑 0), (0𝑑 𝑑 𝑑 𝑑 0) represent the first 3 routes. The first route means that the vehicle starts from 0, arrives at 
stations 1,2,3,4 for unloading, and finally returns to 0. Multiple classic neighborhood structures are adopted, as shown in Fig.4 
and Fig.5(Xia and Fu 2018a). In each neighborhood operation, different routes 𝑅  and 𝑅  are selected as operation routes. 
The relevant constraint conditions are tested. The first accept (FA) standard is improved to reduce the computation time, 
which stops the search of the current operation when the improved solution is found for the first time. 
 

0)

1)

2)

1) Smart Relocate Operator (SR), 2) Smart Node Exchange Operator (SNE)  
Fig. 4. Intra-line operations 

0)

1)

2)

3)

4)

1) Smart Inter-Route Relocate Operator (SIRR)
2) Smart Inter-Route Swap Operator
3) Smart Inter-Route Cross Operator
4) 2-Opt*

 
Fig. 5. Inter-line operations 
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Referring to the split operation of Jiang et al. (2014) to optimize the vehicle types used. The chosen route is randomly divided 
into two parts. The algorithm takes the FA standard if the split reduces the total cost. During the operation, the work order of 
the route remains the same. To avoid circuitous search, the tabu list must be set to prohibit the solution that was just selected. 
The tabu objects are vertex pairs in operations. To increase the randomness, the tabu length is set as a random integer in the 
interval [𝜃, 𝜃]. The tabu lists adopt the first-in-first-out strategy. To avoid excessive tabu, a tabu list reinitialization strategy 
is designed. The evaluation function is implemented by a hierarchical calculation: the fixed cost of the vehicle is given priority, 
followed by transportation time and waiting time. The key point of local search is to further optimize the solution in less 
computation time. The standard tabu search stores the preferred solution, while this article's local search stores attributes. 
 
4.4. Postprocessing variable neighborhood search 
 
4.4.1 Postprocessing 

To further optimize the optimal solution found by the algorithm without significantly affecting the computation time, the 
algorithm integrates a postprocessing process. VNS has been successfully applied to VRP variants as an intensive search 
strategy. The process is based on an improved VNS reinforcement strategy. When the main loop terminates, postprocessing 
is implemented to improve the optimal solution. The best solution is used as the initial solution of VNS. The local optimal 
solution of one kind of neighborhood operator is not necessarily the optimal solution of another one. The local optimal solution 
under all neighborhood operators should be the global optimal solution. VNS includes two main stages: shake and local search. 
The shake mechanism is used as a diversification strategy to further explore the search space. The goal of postprocessing is 
to reduce the total distance and time rather than the number of vehicles. The key point of postprocessing is to further optimize 
the solution in less computation time. 
 
4.4.2 The time relaxation rule 

The time relaxation rule is designed based on the problem characteristic that the time window cannot be violated. This rule is 
used in decoding to update the minimum wait time and adjust the arrival time to the stations in the routes in a backwards 
manner. The service time of the stations is within the time window and conforms to the constraints. The delay of the arrival 
time ensures the latest leave time of vehicles and does not violate the time window. 

 
 
5. Algorithm testing 

This section describes the analysis of the results to evaluate the performance of the algorithm. The experiments are conducted 
in Java, on a computer with Intel Core (TM) i5-7500 CPU @3.40GHz and 8 GB RAM. 
 
5.1. Testing problems 

This proposed problem is a deformation of VRPTW in two dimensions of vehicle types and time windows. There are currently 
no standard test cases for this problem. The test cases are generated based on Gendreau et al. (1999) and Jiang et al. (2014). 
Due to the high fixed cost of the vehicles in the problem, C4, C6, and C14-C20 are selected and deformed. The locations of 
stations, total demand and service time are all derived from the cases. The test cases are shown in Appendix1. The second 
time split has more time windows than the first time. 

The time relaxation rule 
Input: S(Solution) 
If any waiting time for S, then 

For 𝑅𝑘=1 to 𝑅𝑛 , do 
If waiting time in 𝑅𝑛 , then 

For 𝑑𝑚  to  𝑑𝑖=1, do 
If waiting time in 𝑑𝑖 , then 

X=min{the current waiting time of 𝑑𝑖 , the difference between the right value of 
the time window and the arrival time of each statin} 𝑎𝑜𝑘 = 𝑎𝑜𝑘 + 𝑋 //Delay the leave time of the vehicle from center 0 update the 
arrival time of all subsequent stations 

else 
m=m+1 

end 
k=k+1 

end 
S←the solution after changing the wait time 

else 
Return S. 



W. Fang  / International Journal of Industrial Engineering Computations 13 (2022) 483

5.2. Parameter settings 
 
Because the parameters are very important to the performance of the algorithm, this section designs the Taguchi experiment 
to choose the best combination of parameters. The following parameters are controlled: 𝛽, 𝛾, q , ρ . Each parameter 
combination is tested 10 times. For all experiments, the relative percentage deviation (RPD) was used as the response variable. 
 𝐑𝐏𝐃 = (𝑭𝒕𝒆𝒔𝒕 − 𝑭𝒃𝒆𝒔𝒕) 𝑭𝒃𝒆𝒔𝒕⁄ × 𝟏𝟎𝟎% (33) 
 
where 𝐹  is the best value of the same instance in the parameter tests and 𝐹  is the value of the function obtained in the 
experiment. It can be seen that the lower RPD, the better the performance of parameter combination. As shown in Table.1, 
there is a range of parameters and 𝐿  (4 )parameter combinations. The range of parameters are:𝛽 ∈ {2,3,4,5}, 𝛾 ∈ {1,2,3,4}, q ∈ {0.6,0.8,0.9,0.95}, ρ ∈ {0.05,0.1,0.2,0.35}. 
 
Table 1 
Orthogonal array of HACO-TS 

No. Levels of parameters Response value β γ q  ρ  
1 2 1 0.6 0.05 0.35 
2 2 2 0.8 0.1 0.51 
3 2 3 0.9 0.2 0.54 
4 2 4 0.95 0.35 0.74 
5 3 1 0.8 0.2 0.08 
6 3 2 0.6 0.35 0.31 
7 3 3 0.95 0.05 0.62 
8 3 4 0.9 0.1 0.59 
9 4 1 0.9 0.35 0.00 
10 4 2 0.95 0.2 0.48 
11 4 3 0.6 0.1 0.62 
12 4 4 0.8 0.05 0.59 
13 5 1 0.95 0.1 0.47 
14 5 2 0.9 0.05 0.62 
15 5 3 0.8 0.35 0.67 
16 5 4 0.6 0.2 0.63 

 
The effect diagram of the result analysis is shown in Fig.6. The signal-to-noise ratio (SNR) is the ratio of the objective function 
value to the variance of the objective function. By comparing the slopes of the lines, the relative magnitude of each factor's 
influence can be assessed. The number of shared solutions has the greatest impact on the optimal solution. The optimal 
parameter combination of the current algorithm: 𝛽 = 3, 𝛾 = 1, q = 0.8, ρ = 0.2. 
 

 
Fig. 6. The average main effects plot and SNR main effects plot 

 
5.3. Comparisons with CPLEX 

The mathematical model is using IBM ILOG CPLEX12.5 to evaluate the accuracy. The results calculated by CPLEX and the 
improved algorithm are compared, as shown in Table 2. Most results of the same case show no deviation between the linear 
solution and algorithm solution. For the small-scale cases, both methods produce consistent results. The consistency of the 
results illustrates the effectiveness of the mathematical model. The solution speed of the two methods is almost the same for 
extremely small cases. With the gradual increase of the scale (the 16-stations problem), the calculation time increases rapidly, 
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although the result of the linear solution is the best. For normal-scale problems, only the solving speed of the meta-heuristics 
algorithm is likely to be acceptable. The advantage of the computing cost for meta-heuristics is more obvious than CPLEX. 
 
Table 2 
Comparison with CPLEX 

PROBLEM CPLEX HACO-TS △D (100%) ID n vehicle Total cost CPU time(s) vehicle Total cost CPU time(s) 
1-11 11 3A1B 4753.4 1 3A1B 4753.4 3 0 
1-12 12 3A1B 4756.7 1.6 3A1B 4756.7 4 0 
1-13 13 3A1B 4776.3 9.8 3A1B 4776.3 4 0 
1-14 14 3A1B 4842.7 19.5 3A1B 4842.7 4 0 
1-15 15 3A2B 6347.7 92.2 3A2B 6347.7 4 0 
1-16 16 3A2B 6361.4 1301.3 3A2B 6361.4 5 0 
2-13 13 3A1B 4777.1 12.2 3A1B 4777.1 4 0 
2-14 14 3A1B 4786.2 10.7 3A1B 4786.2 4 0 
2-15 15 3A1B 4823 82.9 3A1B 4823 5 0 
2-16 16 2A2B 5333 813.9 2A2B 5333 5 0 
3-14 14 3A2B 6334.3 44.5 3A2B 6334.3 4 0 
3-15 15 3A2B 6344.5 835 3A2B 6344.5 5 0 
3-16 16 3A2B 6390.4 923 3A2B 6390.4 5 0 

 
5.4. Comparison of experiments 
 
5.4.1Pheromone update strategy analysis 

The hybrid strategy can be compared with only the contemporary optimal solution and the global optimal solution. Note that 
none of these approaches use postprocessing. In HACO-TS-sb, 𝜑 = 0 means that only the global optimal solution is 
considered to update the pheromone, and in HACO-TS-ib means 𝜑 = 1. HACO-TS-wpp uses the hybrid strategy to update 
pheromones. The averaged results are recorded in Table 3. The last line gives the ratio of the algorithm to the other algorithms. 
 
Table 3  
Comparison of the pheromone update strategy 

Instance n Best HACO-TS-ib HACO-TS-sb HACO-TS-wpp HACO-TS 
Cost Cost Cost Cost 

C4-1 20 6994 1B5A 1B5A 1B5A 1B5A 
7010.4 7018.3 7012 6994 

C6-1 20 6447.4 6A 6A 6A 6A 
6456.2 6459.1 6447.4 6447.4 

C13-1 50 17806.4 7A4B2C1D 7A4B2C1D 7A4B2C1D 7A4B2C1D 
17950 17956.7 17946.8 17806.4 

C14-1 50 9410 1B7A 1B7A 1B7A 1B7A 
9413.6 9418.5 9414.7 9410 

C15-1 50 15216.8 4B8A 4B8A 4B8A 4B8A 
15264 15266.61 15262.6 15216.8 

C16-1 50 20992.8 10B 10B 10B 10B 
21029.66 21032.25 21028.95 20992.8 

C17-1 75 10889 12A 12A 12A 12A 
10950.98 10953.36 10948.41 10889 

C18-1 75 14855 6A11B 6A11B 6A11B 6A11B 
14955.78 14965.2 14953.86 14855 

C19-1 100 9205 15A 15A 15A 15A 
9241.17 9242.5 9239 9205 

C20-1 100 30616.5 6B11A 6B11A 6B11A 6B11A 
30696 30697 30694.2 30616.5 

Winning rate 0/10 0/10 1/10 10/10 
 
According to the results, the performance of the solution with the hybrid strategy algorithm is better than other strategies. The 
hybrid strategy greatly improves the diversity of the algorithm search process to promote the exploration of the solution space 
and improve the probability of finding the optimal solution. The algorithm has the fastest convergence speed when using 𝑠  
to update the pheromone, but it easily falls into local optima. It is worth considering the hybrid strategy for updating 
pheromone trajectories. The strategy is used in all of the following experiments. The effect of post processing on the algorithm 
is also studied. The results include the final results of the algorithm without post optimization processing HACO-TS-wpp and 
with post optimization HACO-TS. The number and type of vehicles do not change because the optimal combination of 
vehicles was found in the main loop. In terms of the total time cost, the improvement of the postprocessing optimization to 
the final algorithm solution is obvious in most cases, especially for large-scale cases. However, for C6-1, the solution has not 
been improved, mainly because HACO-TS-wpp has found the optimal solution. The calculation speed of the post optimization 
process is very fast, and the time accounts for only a part of the whole time of the algorithm. The solution can be improved 
by increasing the execution time in the local search phase, but that approach would greatly increase the calculation time. 
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Considering the balance between the solution improvement and the computation time, adding the post optimization is of great 
significance for the further improvement of the solution. 
 
Fig.7 shows Tukey's HSD interval plots at 95% confidence level for the algorithms. Because the fixed cost is included in the 
result statistics, the APRD difference is small. It is clear that the ARPD of HACO-TS is lower than other variants. This 
indicates that HACO-TS is the closest to the optimal value, and there is a significant statistical difference. The ARPD of 
HACO-TS is 0.0013, the other variants are respectively 0.0058, 0.0066, 0.0050. This finding proves statistically that the 
postprocessing and neighborhood operations could significantly improve the performance of HACO-TS. 
 

 
Fig. 7. Interval plot of ARPD of HACO-TS and variants(CI:95%) 

 
5.4.2 Effectiveness of HACO-TS 

All the selected algorithms are used to solve the heterogeneous VRP with one constraint loosened: the same station can be 
visited multiple times. The algorithms are as follows: 

 
SA is a deterministic annealing meta-heuristic proposed by Bräysy  et al.(2008); 
VNTS is a reactive variable neighborhood tabu search proposed by Paraskevopoulos et al.(2008); 
TTS is the two-phase tabu-search algorithm proposed by Jiang et al.(2014). 
 
To ensure fairness, these algorithms use the same goals and the number of iterations for comparison. Each case is executed 
10 times, and the statistical optimums are shown in Table 4. Comparison with similar algorithms shows that HACO-TS is 
superior and effective. The comparison of 1 and 2 for each case shows that the more containers in the same instance, the 
higher delivery costs because longer routes or more waiting time are required to meet the demand. Even under the limitation 
of time windows, some instances such as C19-1 and C19-2, need to increase the number of vehicles to meet the requirements. 
  
Specifically, the following conclusions can be drawn: 
 

(1)    Based on the goal orientation, no algorithm outperforms all other algorithms in all cases. However, from the 
perspective of the optimal solution overall, the solution quality of HACO-TS is high. 
 
(2)    For most cases, for example C17-C20, the optimal solution found by the HACO-TS is the best. In general, the 
optimal solution requires fewer vehicles. 

 
At the beginning, the initial setting of the pheromone and the first station selection strategy can improve the global search 
capability of the algorithm. The probabilistic transition rule and the pheromone update strategy can effectively improve the 
effectiveness of the algorithm. The pheromone update strategy greatly improves the diversity of the algorithm search 
process and promotes the exploration of the solution space. The quality of the solution is improved by local search, which 
illustrates the good performance of HACO-TS. 
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Table 4  
Comparative experiment 

Instance n Best MDA VNTS TTS HACO-TS 
Cost Cost Cost Cost 

C4-1 20 6990.1 5A1B 5A1B 5A1B 5A1B 
6992.2 6993.9 6990.1 6990.1 

C4-2 20 7676.1 7A 7A 7A 7A 
7679 7678.2 7677.4 7676.1 

C6-1 20 6447.4 6A 6A 6A 6A 
6450.7 6447.4 6447.4 6447.4 

C6-2 20 7587.2 7A 7A 7A 7A 
7589.3 7596.8 7590.6 7587.2 

C13-1 50 17861 7A4B2C1D 7A4B2C1D 7A4B2C1D 7A4B2C1D 
17868.5 17870.2 17880.2 17861 

C13-2 50 18033.5 7A4B2C1D 7A4B2C1D 7A4B2C1D 7A4B2C1D 
18041.4 18047.4 18043.5 18033.5 

C14-1 50 9408.9 7A1B 7A1B 7A1B 7A1B 
9424 9425.73 9408.9 9408.9 

C14-2 50 10131.9 9A 9A 9A 9A 
10152.23 10156.6 10131.9 10133.3 

C15-1 50 15214 8A4B 8A4B 8A4B 8A4B 
15230.22 15231.27 15226.86 15214 

C15-2 50 15483.9 8A4B 8A4B 8A4B 8A4B 
15556.68 15546.15 15530 15483.9 

C16-1 50 20987.4 10B 10B 10B 10B 
21005 20995.8 20989.75 20987.4 

C16-2 50 21156.1 10B 10B 10B 10B 
21189 21191 21156.1 21156.1 

C17-1 75 10883.3 12A 12A 12A 12A 
10910.49 10916.5 10894 10883.3 

C17-2 75 12106.5 13A 13A 13A 13A 
12184 12167 12155 12106.5 

C18-1 75 14850 6A11B 6A11B 6A11B 6A11B 
14905 14894.37 14865.2 14850 

C18-2 75 14978 6A11B 6A11B 6A11B 6A11B 
15046.52 15022 14994 14978 

C19-1 100 9202.3 15A 15A 15A 15A 
9212.5 9213.7 9210 9202.3 

C19-2 100 9782.26 14A1B 14A1B 14A1B 14A1B 
9885.91 9873.87 9851 9782.26 

C20-1 100 30612.4 11A6B 11A6B 11A6B 11A6B 
30675 30694.19 30666 30612.4 

C20-2 100 31064 11A6B 11A6B 11A6B 11A6B 
31172.25 31185 31128.15 31064 

Winning rate 0/20 1/20 5/20 19/20 
 
Fig. 8 shows that HACO-TS produces the optimums for almost all cases and is closest to the optimal APRD value. It is further 
proved that HACO-TS is better than other algorithms. 
 

 
Fig. 8. Interval plot of ARPD of HACO-TS and other algorithms(CI:95%) 
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Different algorithms use different programming languages and on different machines, which greatly affects the calculation 
time. It is difficult to fairly compare the computation times of different algorithms. Differences in programming ability can 
affect the calculation time. Moreover, the programming language, algorithmic mechanisms, and data structures all impact the 
computation time. HACO-TS is a meta-heuristics algorithm with high accuracy that combines the advantages of ACO and 
TS. The effectiveness of HACO-TS is verified by comparing the results. The better solution of ACO is set as the initial 
solution of postprocessing, which increases the possibility to obtain a better solution. However, the computation time is 
relatively burdensome, and the required accuracy of the question is important to consider. Compared with the computation 
time, the performance of the algorithm is more consistent with the evaluation index. 
 
5.5. Case study 

This section uses data of an enterprise for a case study. The rationality of the plan is the foundation of production. The total 
demands of stations can be calculated according to the production plan. There are 1 center and 25 stations that make 
supplementary material requests in the workshop. There are 3 types of vehicles shown in Table 5. 
 
Table 5  
Vehicle properties 

Type Q f g 
A 60 480 2 
B 70 630 2.5 
C 80 800 3 

 
Based on inventory management, the upper limit for each line-side is obtained. According to the material properties and 
production plan, the consumption time of each unit of material and multiple call times are calculated. The distribution plan is 
configured according to the expected time windows. Vehicles in the mixed-flow manufacturing workshop need to complete 
multiple distribution tasks. In contrast to the general VRP, how to complete the distribution route assignment with the least 
cost must be considered. 
 
Table 6  
The experimental results 

Type Vehicle combination Fixed cost Time costs Total cost Time（s） 
A 7A 3360 1417.3 4777.3 17 
B 6B 3780 1667.1 5447.1 17 
C 6C 4800 1995 6795 17 

hybrid 5A1B 3030 1574 4604 18 
 
Table 7  
Route planning 

No. Type Route planning 
1 B 0-14-16-18(1)-8-12(2)-6(2)-0 
2 A 0-13(1)-21(1)-15-22-13(2)-0 
3 A 0-5-2(1)-7-10-20-1(2)-0 
4 A 0-12(1)-1(1)-9-3-21(2)-2(2)-0 
5 A 0-6(1)-11-19-17-18(2)-0 
6 A 0-23-4-24-25-0 

 
The same parameter configuration is designed by Taguchi experiment. The results are shown in Table.6, Table.7. The number 
of vehicles is gradually reduced as the vehicle load increases. Considering the high cost of large-capacity vehicles, hybrid 
types are adopted for delivery to reduce the fixed cost. A satisfactory solution can be obtained if the number of distribution 
vehicles remains constant. In the actual distribution, considering the speed, low energy consumption of small vehicles and 
increasingly high demands on the timeliness of distribution, the multivehicle combination distribution scheme will improve 
the service quality and reduce the distribution cost to a large extent. This method produces reasonable planning for the 
distribution and achieves efficient logistics distribution. The research has greatly reduced delivery costs by delivering 
materials in the least amount of time to meet production needs. Moreover, the research can be used in actual production 
environments. 
 
6. Conclusion 

Smooth material flow is an important condition for enterprises to realize just-in-time production. SHVRPMTW is a realistic 
VRP with wide application value in manufacturing systems. Combined with the material requirement characteristics, the 
article studies SHVRPMTW for the first time and establish the mathematical model. Modeling with the virtual point strategy 
reduces the complexity of the problem. HACO-TS is designed to solve large-scale problems. The multistart strategy enhances 
the diversity and increases the likelihood of finding better solutions. Local search and postprocessing are performed by 
combining several neighborhood operations. Based on the problem characteristic that the time window cannot be violated, 
the time relaxation rule is designed to update the minimum wait time. Based on test cases, the effectiveness of HACO-TS is 
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verified by comparing the results with other algorithms. 
 
In future research, various uncertain factors, such as the uncertain variety and quantity of demands, random arrival time, and 
even the abnormal vehicle transportation, can be added to the vehicle route planning problem with split deliveries for station 
demands. 
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Appendix 1.  
The instances used as test problems 

INSTANCE N A B C D 
QA fA QB fB QC fC QD fD 

C4-1 20 60 1000 80 1500 150 3000   
C4-2 20 60 1000 80 1500 150 3000   
C6-1 20 60 1000 80 1400 150 3000   
C6-2 20 60 1000 80 1400 150 3000   

C13-1 50 40 500 70 1200 120 2250 200 4000 
C13-2 50 40 500 70 1200 120 2250 200 4000 
C14-1 50 120 1000 160 1500 300 3500   
C14-2 50 120 1000 160 1500 300 3500   
C15-1 50 50 1000 100 2500 160 4500   
C15-2 50 50 1000 100 2500 160 4500   
C16-1 50 40 1000 80 2000 140 4000   
C16-2 50 40 1000 80 2000 140 4000   
C17-1 75 120 800 200 1500 350 3200   
C17-2 75 120 800 200 1500 350 3200   
C18-1 75 50 350 100 1000 150 1800 250 4000 
C18-2 75 50 350 100 1000 150 1800 250 4000 
C19-1 100 100 500 150 900 300 2100   
C19-2 100 100 500 150 900 300 2100   
C20-1 100 60 1000 140 3000 200 5000   
C20-2 100 60 1000 140 3000 200 5000   
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