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 In this paper, we present a two-dimensional irregular bin packing problem (2DIBPP) that takes into 
account the slit distance and allows the pieces to rotate freely. The target is to arrange a specified 
collection of pieces with irregular shapes into a minimal number of bins. Firstly, we develop a 
mathematical model for the 2DIBPP that considers slit distance and free rotation of the pieces, and 
an equidistant edge expansion approach is then proposed to handle the slit distance. Secondly, a 
two-stage method is implemented to get a finite collection of promising rotation angles, effectively 
decreasing the search neighbourhood. Thirdly, we decompose the 2DIBPP into two sub-problems: 
piece assignment and packing. The Partial Bin Packing (PBP) strategy is employed in the allocation 
stage, and we adopt an overlap minimization method to pack the pieces into an individual bin. 
Finally, we use a local search (LS) algorithm to advance the quality of the solutions by adjusting 
the piece assignment across bins. Experimental evidence exhibits that our approach is competitive 
in most instances of the literature, with four better results in five benchmark instances. 

© 2022 by the authors; licensee Growing Science, Canada 
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1. Introduction 

Steel production causes about 6% of manufactured CO2 emissions yearly, and one ton of steel production emits about 1.8 tons 
of CO2 (Quader et al., 2016). Improving material utilisation can help reduce steel production and CO2 emission, which in turn 
do a favour to combat global climate change. Additionally, recently there has been a high level of steel waste and low material 
utilisation in manufacturing, which is detrimental to the sustainable development of enterprises and the environment. 

Manufacturing enterprises use various pieces in production, mainly produced through the packing and cutting process. As is 
well known, piece packing and cutting problems are widespread in industries such as shipbuilding, textiles and glass, where 
packing is the basis for cutting, and the generation of highly utilisable packing solutions is the key to material saving. 
Therefore, it is of great importance to research the piece packing problem. The two-dimensional irregular piece packing 
problem can be divided into the strip packing problem (2DISPP) (Umetani & Murakami, 2022; Elkeran, 2013; Pinheiro et al., 
2016) and the bin packing problem (2DIBPP) (Martinez-Sykora et al., 2017; Abeysooriya et al., 2018; Zhang et al., 2022; Liu 
et al., 2020). Although the packing problem has received considerable attention, most studies have been carried out on the 
2DISPP. This problem aims to pack pieces within a strip stock sheet accompanying infinite length and fixed width to obtain 
the shortest packing length. During the packing process, the following two constraints should be met together: (1) The pieces 
do not overlap; (2) The pieces cannot exceed the contour of the stock sheet. Given this problem, scholars have made numerous 
research achievements. Umetani and Murakami (2022) proposed a dual scanline representation to solve the 2DISPP of 
rasterized patterns and developed coordinate descent heuristics for the raster model. An optimization method incorporating 
the cuckoo search and guided local search was proposed by Elkeran (2013). A pairwise clustering approach was introduced 
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to group identical polygons together. Pinheiro et al. (2016) proposed a random key genetic algorithm (RKGA) combined with 
the Bottom-Left (BL) (Jakobs, 1996) algorithm to solve the packing problem. Meanwhile, a compression algorithm running 
in RKGA was proposed to improve the local solution quality. In addition, some scholars have attempted to use mathematical 
programming methods to solve the 2DISPP. These models were composed of mixed integer programming (MIP) models with 
linear objective functions and mixed integer constraints (Alvarez-Valdes et al., 2013; Cherri et al., 2016; Leao et al., 2016; 
Rodrigues & Toledo, 2017; Bennell et al., 2018) and non-linear programming models with non-linear objective 
functions(Cherri et al., 2016; Leao et al., 2020). However, the limitation of these models was obvious, as these models could 
only solve small-scale piece packing problems and were not able to help with a larger number of pieces. Moreover, solving 
the programming models was costly in terms of time. For more detailed information, please look up the literature (Leao et al., 
2020), which describes various programming models for solving the packing problem. 

As to the 2DIBPP, pieces need to be packed into several bins of fixed length and width, satisfying the two constraints like 
2DISPP, aiming to obtain the minimum number of bins and the optimal solution. This problem is common in industrial 
production and has applications in several enterprises. Bennell et al. (2018) proposed a beam search algorithm and successfully 
applied it to multi-bin and single-bin size instances. Still, the limitation was evident because it could only handle convex 
pieces and was solely adapted to the guillotine cutting process. However, this study did not allow the pieces to rotate. Some 
studies allowed pieces to rotate by a limited number of special angles (Zhang et al., 2022; Liu et al., 2020), such as 90º, 180º 
and 270º. Zhang et al. (2022) introduced a waste least first decreasing (WLFD) scheme to allot pieces and used a greedy 
method to exchange pieces between two bins. In addition, a hot start along with an iterative doubling search strategy was 
submitted to accelerate the packing. A heuristic algorithm was used by Liu et al. (2020) to solve the 2DIBPP, in which a First 
Fit Decreasing (FFD) strategy was utilised to distribute pieces to bins. As far as we know, up to now, only two studies 
(Martinez-Sykora et al., 2017; Abeysooriya et al., 2018) allowed pieces to rotate freely. Martinez-Sykora et al. (2017) 
compared five methods of assigning pieces and used the MIP model to pack the pieces into bins. Abeysooriya et al. (2018) 
considered piece allocation and packing together and introduced the Jostle strategy to the 2DIBPP for the first time. What is 
more, a diversification mechanism was introduced to improve the Jostle method’s performance. 

The above literature has achieved many achievements based on heuristic algorithms and mathematical programming models. 
However, most of these have been done based on arranging pieces as closely as possible to produce a solution without 
considering actual manufacturing parameters. When we study the packing problem, it is valuable to consider the actual 
manufacturing parameters rather than only the geometry of pieces (Anand & Babu, 2015). In the piece cutting process, as the 
cutting machine’s cutter has a definite width, to escape damaging the pieces, a specified distance needs to be reserved between 
pieces and between pieces and the edges of the plate, which is referred to as slit distance in this paper. All the studies of this 
paper are based on considering slit distance. 

This paper studies the 2DIBPP that considers slit distance and allows the pieces to rotate freely. As far as we know, this is the 
first research that considers the two elements simultaneously. We have addressed and solved a common and pragmatic 
problem for many industries. Specifically, we have carried out the following work. Firstly, we propose a mathematical model 
considering the two elements, and an equidistant edge expanding method is introduced to deal with the slit distance. Secondly, 
we decompose the 2DIBPP into two sub-problems: piece allocation and piece packing. In the piece allocation stage, Partial 
Bin Packing (PBP) method is used, and the superiority of this method is proved by comparison with the Direct Constructive 
Heuristic (DCH) strategy. In the piece packing stage, we use the BL and overlap minimization algorithms. Thirdly, a two-
stage method is proposed to obtain a finite set of promising rotation angles, effectively narrowing the search neighbourhood. 
By comparing the results obtained by free rotation and limited angles strategy, the effectiveness of the former is demonstrated. 
Finally, we use a local search algorithm to progress the final solution quality by adjusting piece allocation across bins. 

The paper’s structure is established along these lines. We first execute a detailed problem description and define some 
notations in Section 2. In section 3, we introduce some essential geometric pre-processing methods and tools. After that, we 
solve the piece assignment and packing problems in Section 4 and Section 5, respectively. Then, we introduce a local search 
strategy in Section 6. In Section 7, we analyse the experimental design and computational results. Finally, conclusions are 
drawn in Section 8. 
 
2. Problem description 
 

Following the terminological conventions of previous studies, we will refer to the plates for packing pieces as bins in the 
following, and the pieces are represented by polygons. Before formally describing the 2DIBPP, some applicable definitions 
are firstly given. 

Definition 1 (translational operator ⊕ ). Given a polygon ip  and a translation vector ( ),t tx tyv v v= , the operator ⊕  describes 

the translation process of the polygon around the vector. For point 0p  on polygon ip , the translational operator ⊕  is defined 

as: ( ){ }0 0 0,i t x tx y ty ip v p v p v p p⊕ = + + ∈ . 

Definition 2 (rotation operator ( )i ip θ ). Let the set of allowable rotation angles for piece ip  be iϑ , then the rotation angle set 
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for n  polygons is { }1 2, ,..., , 1,...,nO i nϑ ϑ ϑ= = . Let the coordinates of point 0p  on polygon ip , with the origin (0,0)  as the 

reference point, rotated by angle iϑ  be ( )0 0 0,i i i
x yp p pθ θ θ= , in which rotation angle i iθ ϑ∈  and [0,2 ]iθ π∈ , then we can get 

the Eq. (1). 

0 00 0

0 0 00

cos sincos sin
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i

i

x i y ix xi i

yi i x i y iy

p pp p
p p pp
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θ θθ θ
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  − −   
= =      +         

    (1) 

Then the rotation operator ( )i ip θ  is defined as: ( ) ( ){ }0 0 0 0 0cos sin , sin cosi i x i y i x i y ip p p p p p pθ θ θ θ θ= − + ∈ . 

In the 2DIBPP, there are totally n  pieces to pack and the piece set is { }1 2, , ..., , 1,...,nP p p p i n= = . For any piece ip P∈ , 
denote its area as is . The length of the bins utilised is L  and the width is W . The bin number is big enough to carry all of 
the pieces. The purpose is to pack these pieces into bins to find the minimum bin number, denoted as N . The bin set is denoted 
as { }1 2, ,..., , 1,...,NB b b b j N= = . In addition, let the quantity of pieces packed into the thj  bin be jn . Let the reference point 
of piece ip  be ipr , then the reference point set of n  pieces is { }1 2, ,..., , 1,...,P p p pnR r r r i n= = . The piece reference point is 
designated as the lower-left vertex of the external envelope orthogon when a piece is rotated by an iθ  angle, as is shown in 
Fig. 3(a).  

As mentioned, piece packing is the basis for cutting operations. According to the requirements of the cutting process, a defined 
slit distance should be reserved between different pieces and between the pieces and the boundaries of the bin. Let the slit 
distance between any pieces ap  and bp  be 1 ( , )a bd dist p p= . Let ( , )rect W L∂  denotes the edge of the bin and ( , )intrect W L  
represents the interior of the bin, and let the distance between piece ap  and the edge of the bin be 2 ( , ( , ))ad dist p rect W L= ∂
. The method of judging the distance between two pieces and between pieces and the bin is described in Section 3.3. 

Based on the above definitions, the piece ap  whose reference point apr  is placed at at
v  with a aθ  rotation angle can be 

expressed as ( ) :ta a

a

v
a a a tp p vθθ = ⊕ . Thus, for any given piece set, the solution to the 2DIBPP consists of four elements: the bin 

amount required to pack every piece, the type along with number of pieces allocated to each bin, the rotation angle, and the 
placement position of each piece’s reference point. 

Based on the above contents, we then defined the problem as follows. 

min N  (2) 
subject to  

( ) 1, ,  1a b

a ba t b tdist p v p v d a b nθ θ⊕ ⊕ ≥ ≤ ≤ ≤  (3) 

( ) 2, ( , ) ,  1a

aa tdist p v rect W L d a nθ ⊕ ∂ ≥ ≤ ≤  (4) 

( , ), 1a

aa tp v intrect W L  a nθ ⊕ ⊆ ≤ ≤  (5) 
[0,2 ], 1a a a and   a nθ ϑ θ π∈ ∈ ≤ ≤  (6) 

2 , 1
ap  r a n∈ ≤ ≤  (7) 

N Z∈ +  (8) 

As can be expected, it is possible to get solutions with the same quantity of bins. Considering the reuse of the residuals, we 
cut the least utilised bins horizontally or vertically to disconnect the unused portion of the bins for future use. Eqs. (9)-(11) 
are introduced to select a better solution from results with an equal amount of bins, looking up the research of Lopez-Camacho 
et al. (2013) and Han et al. (2013). 
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*1K N P= − +  (11) 

jU  represents the utilisation rate of the thj  bin, mj
s  is the area of the thm  piece in the thj  bin. Let the thm  piece in the thj  

bin have t  vertices, namely ( )1
1 1,

mj
p x y , ( )2

2 2,
mj

p x y , … , ( ),
m

t
j t tp x y , so that the formula for mj

s  is shown in Eq. (12).  
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*P  is the percentage of utilisation corresponding to the lowest utilised bin after the bin has been disconnected vertically or 
horizontally. Clearly, in results with an equal quantity of bins, from the point of material reuse, we want to keep the solution 
with F  as large as possible and K  as small as possible, i.e., a solution with the smaller *P  will be selected. It is clear that 
the solution corresponding to Fig. 1(b) has a smaller *P  than Fig. 1(a), so we tend to retain the result of Fig. 1(b). 

 
(a) 

 
(b) 

Fig. 1. Diagrammatic drawing of the preferred solution selection process 

 
3. Geometric preprocessing 

 
3.1. Equidistant edge expansion caused by considering slit distance 
During the practical cutting process, slit distances 1d  and 2d  should be reserved. According to the relevant industrial 
production guidelines, the relationship between 1d  and 2d  could satisfy the following expression: 2 11 2d d= . In the packing 
process, edges of irregular pieces are expanded by 11 2d  outwards in translation. The expanded piece is extended so that each 
set of adjacent edges intersects at a point, completing the equidistant edge expansion of the piece. 

As to the equidistant edge expansion of a piece, Hansen & Arbab (1992) proposed a proven method called the pair-wise offset 
method. The method is generally divided into three stages. First, offset each side of the polygon in the equidistant direction, 
check each equidistant line's self-intersection, and finally remove the invalid intersection loops. This method can satisfy the 
general equidistant offset problem. 

In the process of piece equidistant offset, the subsequent cutting process determines that the distance of outward expansion of 
pieces is small. Therefore, an offset algorithm is proposed for the equidistant edge expansion of pieces. The coordinate values 
of each vertex of the pieces are known, and the coordinate values after the offset of each side can be found using the principle 
of geometric calculation. In this process, the vector cross product in geometry is used, which can be used to judge the relative 
position of two line segments. We can see from Fig. 2(a) that the cross product of vector 1α


 and 2α


 is 

( )1 2 1 2 2 1 2 1x y x yα α α α× = − = − ×
   

. If 1 2 0α α× <
 

, 1α


 lies in the counterclockwise direction of 2α


, as is shown in Fig. 2(a). 

If 1 2 0α α× >
 

, vector 1α


 lies in the clockwise direction of 2α


. If 1 2 0α α× =
 

, the vectors 1α


 and 2α


 are co-linear.  
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(a)                                                          (b) 

Fig. 2. (a) Schematic of vector cross product, (b) Schematic of equidistant offset of piece ABCDE  

When the equidistant offset of a piece is carried out, firstly, all the vertex coordinates of the piece will be traversed, and then 
each pair of adjacent edges will be regarded as a vector, and the vector cross product will be performed. At the same time, the 
bisector vector of the angle between adjacent edges should be calculated. After the trigonometric operation of the angle and 
the cross product sign judgement of the adjacent edge vectors, the coordinates of the offset point of each vertex can be gotten. 
Fig. 2(b) shows the results of piece ABCDE  after the equidistant offset operation. Algorithm 1 shows the pseudocode of the 
equidistant offset method. 

Algorithm 1: The equidistant offset method of pieces 
Input: Coordinates of each vertex of pieces before processing 
Output: Coordinates of each vertex of pieces before processing 

1 afor each point v in piece p  
2 1 2,Calculate the vectors p  p  of  the adjacent edges where point v is located  
3 ,Calculate the cross product of  the adjacent edge vectors  denoted as ϕ  

4 
,Calculate the unit vector of  the angle bisector of  the angle between adjacent side vectors  

denoted as α  
5 Calculate the sine value of  the half  angle  
6 Find the offset extension of  the angle bisector  
7 0if    ϕ >   
8 1 2Vector p  lies in the clockwise direction of  p  
9 Find the coordinates of  the offset point of  the point v  

10 else   
11 1 2Vector p  lies in the counterclockwise direction of  p  
12 Find the coordinates of  the offset point of  the point v  

 
3.2. The generation of NFP and IFP  
 

In this paper, non-fit polygon ( NFP ) (Burke et al., 2006) as well as inner fit polygon ( IFP ) (Sato et al., 2019) is adopted to 
ensure no overlap between pieces and that the pieces will not extend beyond the edges of a bin. For arbitrary pieces ap  and 

bp , let their reference points be apr  and bpr  respectively. The a bp pNFP  represents a region where bp  will overlap with ap  
if bpr  lies inside it. The process of generating a bp pNFP  is described as follows: fix ap  and slide bp  on the outer contour of 

ap . During the sliding process, bp  and ap  keep in contact but do not overlap, and the direction of bp  should not be changed. 
The final graph generated by the trajectory of bpr  is defined as a bp pNFP . Introducing the a bp pNFP  is vital in that the 
positional relationship between two pieces is converted into the positional relationship between a point and a piece, 
dramatically reducing the computation and analysis difficulty. The positional relationship between bpr  and a bp pNFP  
corresponding to the positional relationship between bp  and ap  is described as follows. 

(1) If and only if  
b a bp p pr intNFP∈ , bp  overlaps ap . 

(2) If and only if  
b a bp p pr NFP∈ ∂ , bp  and ap  contact but do not overlap. 

(3) If and only if  
b a bp p pr intNFP∉  and  

b a bp p pr NFP∉ ∂ , bp  is separated from ap . 



  

 

496

To make the best use of space during the packing process, we hope that bp  and ap  are arranged tangentially after the 
equidistant offset. Therefore, points on the outline of a bp pNFP  are regarded as the ideal placement positions for bpr . 

Similarly, given a bin b and a piece bp , bpbNFP , also known as bpbIFP , can be developed by translating bp  one turn 
throughout the interior boundary of b . Using the bpbIFP , the relative position of the pieces to the bin’s edges can be 
determined, thus ensuring that each piece is packed strictly within the bin. The generation processes of a bp pNFP  and bpbIFP  
are presented in Fig. 3(b) and Fig. 3(c), and the detailed facts can be observed in Bennell and Oliveira (2009). 

    
(a)                                             (b)                                            (c) 

Fig. 3. (a) Piece ap  and Piece bp , (b) The generation process of a bp pNFP , (c) The generation process of bpbIFP  
 

3.3. Penetration depth and penetration vector 
 

In order to measure the overlap created during the piece packing process, the penetration depth and penetration vector (Zhang 
et al., 2022; Leung et al., 2012) are introduced in this paper. When pieces ap  and bp  intersect, we illustrate the penetration 
depth ( ),a bPD p p  as the minimal distance travelled to dissociate ap  and bp . 

Definition 3 (penetration depth and penetration vector). The penetration depth between two intersecting pieces ap  and bp  

can be defined as ( ) ( ){ },a b a bPD p p min  v  p p v= ∩ ⊕ = ∅ , and the corresponding vector v  is called penetration vector. 

The symbol  v  represents the 2-norm of the penetration vector. 

The ( ),a bPD p p  can be obtained from a bp pNFP . If the reference point bpr  of bp  is in the interior of a bp pNFP , ( ),a bPD p p  
is equal to the minimum distance from bpr  to a bp pNFP . According to Definition 3, if two pieces do not intersect, the value of 
penetration depth is 0. Similarly, ( ),a bPD p p  denotes the shortest moving distance that brings bp  completely into bin b , 
so we can determine ( ),a bPD p p  by calculating the shortest distance between reference point bpr  and the boundary of  bin 
b . 

This research utilises the square of the penetration distance for measuring overlap. Let the set of pieces packed into bin jb  be 
jP , the set of piece reference point placement positions be jV  and the set of piece rotation angles be jR . We denote 

( ), ,ab j i ih P V R  as the overlap between ap  and bp , which can be denoted using the penetration depth as 

( ) ( )2, , , ,a b

a bab j j j j a t b th P V R b PD p v p vθ θ= ⊕ ⊕ . In the same way, the overlap between ap  and jb  can be described as 

( ) ( )2, , , , a

aa j j j jj a tk P V R PD b p vb θ= ⊕ . Then the expression of the overlap is shown in Eq. (13). 

( ) ( ) ( )
1 1

, , , , , , , , ,
j j

j j j j ab j j j j a j j j j
a b n a n

Overlap P V R b h P V R b k P V R b
≤ < ≤ ≤ ≤

= +   (13) 

4. Assignment strategy 
 

In studying the 2DIBPP, such an approach is often adopted: packing pieces into a bin until it is full and cannot contain more 
pieces, then closing it and opening a new one to carry on the packing process (Parreno et al., 2010). In this paper, we first 
assign pieces to bins and then pack the pieces into every single bin. That is, the assignment and packing are independent of 
each other, and the assignment process is executed before packing. As the assignment is mainly based on piece area, and 
pieces vary in shape, especially when concave surfaces are present, inevitably, one or more pieces cannot be packed into the 
specified bin. Given this situation, we also design corresponding modified measures. 

The general framework of our method is adapted from Martinez-Sykora et al. (2017). 
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4.1.  1DBPP 
Firstly, each piece is approximately represented by its area is , then the First Fit Decreasing (FFD) (Kang & Park, 2003) 
algorithm is used to obtain the maximal bin number needed to pack every piece, designated as xmaN . The subsequent binary 
variables are defined: x, 1, 2,...,j mae j N∀ = . If bin jb  is used in the packing process, the value of je  is 1, otherwise 0; 

x,  1, 2,..., ,  1, 2,...,ij maw i n j N∀ = ∀ = . If piece ip  is packed into jb , the value of ijw  is one, otherwise zero. Then the integer 
programming (IP) model for distributing pieces to different bins can be expressed as 1DBPP, described as follows. 

x

1
min   maN

jj
e

=  (14) 
subject to  

1
1n

i ij maxi
s w LW               j N

=
≤ ≤ ≤  (15) 

x                           1 , 1ij j maw e i n j N≤ ≤ ≤ ≤ ≤  (16) 
x

1
1                    1maN

ijj
w i n

=
= ≤ ≤  (17) 

{ } { } x0,1 ,  0,1      1 , 1j ij mae w i n j N∈ ∈ ≤ ≤ ≤ ≤  (18) 

The formula (14) minimizes the bin volume used to pack all the pieces. Constraint (15) ensures that the pieces’ total area 
packed into a bin will not exceed the bin’s space. Constraint (16) ensures that if a piece is packed into a specified bin, that bin 
will appear in the eventual solution. Constraint (17) makes sure that every piece will be packed into a bin, i.e., all pieces will 
be involved in the packing process. Moreover, constraint (18) ensures that je  and ijw  are binary variables. It is worth noting 
that this solution would be optimal if we find an optimal solution to this IP model and successfully pack the pieces allocated 
to each bin into it. 
 
4.2.  Piece assignment strategy 
 

In this section, we use the PBP (Martinez-Sykora et al., 2017) strategy to assign pieces bins, which allocates pieces to bins 
through working out an IP model of the 1DBBP. 

In the assignment process, the greedy method tends to assign smaller pieces first, which allows for a larger number of pieces 
to be assigned to a bin but leaves larger pieces behind, ultimately resulting in an overall poor solution and secondary allocation. 
As a result, the PBP averts this circumstance by concentrating on allocating pieces to only one bin and employs an objective 
function which tends to assign bigger pieces first, as is shown in formula (19). maxs  is the piece area with the largest area in 
the piece set P . iw  is a two-valued variable that equals one when ip  is allocated to the bin and zero otherwise. In fact, piece 
allocation is a knapsack problem, aiming to maximize the piece area assigned to a bin. 

2

1
max   n i

ii
max

s
w

s=

 
 
 

  (19) 

1
            1n

i ii
s w LW i n

=
≤ ≤ ≤  (20) 

{ }0,1                       1iw i n∈ ≤ ≤  (21) 

This section also briefly describes another direct construction heuristic (DCH) strategy. Unlike PBP, DCH does not pre-assign 
pieces but solves piece allocation in the packing process. DCH directly packs pieces into bins in a given sorting order 
according to these pieces’ area, using the packing approach in Section 5. The steps of the DCH are described below. 

(1) Arrange all pieces in a non-increasing sequence of area, and open a bin. 
(2) For each piece ip , pack it into the open bin using the packing algorithms. If a bin is filled, close it and open a new one.  
(3) Repeat procedure (2) until all pieces are arranged into the bins. 
 
5. Packing algorithms 
 
5.1.  Getting a definite collection of promising rotation angles 
 

In this paper, we consider two cases regarding the rotation of pieces. Firstly, we let the pieces rotate by some limited rotation 
angles, denoted as limitϑ , and the detailed information of these angles can be seen in Table1 from Martinez-Sykora et al. 
(2017). Next, we consider the case where the pieces can rotate freely. 

In the first case, we generate a feasible placement position set using the packing algorithms and record the best results for 
each rotation angle set. 
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There are many possible rotation angles in the free rotation case, and only a subset can be assessed. Based on the mechanism 
introduced by Abeysooriya et al. (2018), we propose a two-stage method to reduce infinite rotation angles to a finite collection, 
whose principle is to identify a promising angle subset in accord with the piece distribution in the present partial solution. 

In the first stage, pack the first piece ap . Place the longest side of the piece parallel to the bin’s edge. Choose a random type 
of discharge if there is more than one longest edge. 

In the second stage, pack the other pieces. We start this stage by packing piece bp  in a momentary position and angle using 
the method in the first case, ensuring that bp  touches the boundary of the pieces placed earlier and the best rotation angle is 
selected. As bp  touches the boundary of other pieces, two new orientation angles will be defined by each touching point or 
edge. 

       
(a)                                                                  (b)   

        
(c)                                                                  (d)  

Fig. 4. (a) An edge-vertex combination, (b) A vertex-vertex combination, (c) An edge-edge combination, (d) Angles generated 
by the bin’s edge 

An edge-vertex combination, a vertex-vertex combination and an edge-edge combination can be seen in Fig. 4. Piece ap  
consists of counter-clockwise direction of edges, while bp  is composed of clockwise direction of edges. In each case, bp  is 
rotated by an angle β in the counter-clockwise direction and an angle γ in the clockwise direction. In other words, if the 
direction of edges directs away from the point or edge of contact, the piece is rotated counter-clockwise by an angle of β. If 
the direction of edges directs towards the point or edge of contact, the piece is rotated clockwise by an angle γ. Two 
independent touching points and consequent four new orientations can be seen in the second example of Fig. 4(a). The above 
constitute new candidate rotation angles, and according to the placement program, the best placement angles and positions 
for pieces of these angles are obtained. These are compared with the short-lived placement positions and rotation angles. If 
new angles fail to provide a superior position, the packing algorithms take the momentary position and rotation angle as the 
final result. If bp  contacts the bin’s edge, the angles generated by the bin’s edge will also be considered, as displayed in Fig. 
4(d). 

Through this method, a definite collection of promising rotation angles freeϑ  is obtained, narrowing the scope of the search 
neighbourhood. 

5.2.  Placement of a single bin 
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This paper uses the overlap minimization method (Elkeran, 2013; Zhang et al., 2022; Liu et al., 2020; Leung et al., 2012) to 
pack assigned pieces into bins, which is widely used in solving the 2DISPP. 
 
5.2.1. Initial solution generation using BL algorithm 
 

We first use the BL algorithm in Algorithm 3 to produce an original layout for every piece. Algorithm 3 attempts to place the 
allocated pieces into one of the bins, and the candidate placement positions of the pieces are obtained using NFP . When the 
BL algorithm is called, the length of the bin is regarded as infinite, so it is possible to produce an initial layout where pieces 
are discharged beyond the boundary of the bin. Under this condition, we consider that the pieces overlap the bin. We use 
Overlap  to measure the overlap. To achieve a reasonable layout, we first randomly select two pieces from the pieces packed 
in the bin, then switch their positions by invoking the Swap algorithm and minimize the Overlap using the Separation  
algorithm. If and only if Overlap equals zero, the solution will be accepted. At this time, a constant True  will be returned, 
otherwise False . Additionally, the iterations of random search are controlled by number . Algorithm 2 describes the overlap 
minimization method in detail. 

Algorithm 2: Pack the pieces in the piece set jP  assigned to bin jb  to obtain the final position jV  and rotation angle jR  
of the pieces 
Input: The assigned piece set jP  and the bin jb  
Output: The final position jV  and rotation angle jR  

1 ( ) ( ), ,jj j jV R B PL b=  

2 ( ) , , ,   0j j j jif Overlap P V R b ==  

3  return True  
4 1for  num    to  number  do=  
5 a b jRandomly select  p  and   p   from  P  

6 ( ) ( )' ', , , , , ,j j a b j j j jV R Swap p p P V R b=  

7 ( ) ( )'' '' ' ', , , ,j j j j j jV R Separate P V R b=  

8  ( ) ( )'' '' , , , , , ,j j j j j i i jif Overlap P V R b Overlap P V R b<  

9 ( ) ( )'' '', ,j j j jV R V R=  

10 ( ) , , ,   0j j j jif Overlap P V R b ==  
11  return True  
12  return False  

Algorithm 3 details the process of generating initial positions and angles for the pieces using the BL algorithm. Before this, 
the pieces are first arranged in a non-increasing order of area to obtain a corresponding order and then placed in the bin one 
by one in this order. For each piece in the piece set jP , the set 

1Q  of vertices and intersections of the 
j kmp pNFP  is used as 

candidate placement positions, and the leftmost bottom point with no overlap (discounting the overlap between the piece and 
the right edge of the bin) is chosen for each piece. 

mj
θ  symbolizes the rotation angle of the 

thm  piece from jb . 

Algorithm 3: Generate the initial positions of the pieces in the piece set jP  in the bin jb  
Input: The assigned piece set jP  and the bin jb  
Output: The original position jV  and rotation angle jR   

1 1 j
mfor j  to n  do=  

2 m m m m

limit free
j j j jfor each  or  doθ ϑ θ ϑ∈ ∈  

3 1 1mfor  k   to  j   do= −  

4          
( )1 j kmp pGet  the vertices and  intersection denote Q  of  NFP  

 
5 ( ) ( ),, , j jj jV R BL PQ b=

 
6 ( ),j jreturn V R
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5.2.2. Swap algorithm 

The initial solution generated by the BL algorithm has a non-zero overlap in many cases, which requires using the Swap  
algorithm (Leung et al., 2012) to exchange the positions of two pieces. Meanwhile, the Separation algorithm is used to 
minimize the Overlap. Pieces ap  and bp  are randomly selected from jP , and the Swap algorithm attempts to swap their 
positions and return the new position of each piece in jP . This is done by first removing ap  from jb  by setting its position 
to ( ),+∞ +∞ , then moving bp  to the original position of ap  with the smallest overlap, and then reinserting ap  into jb  with 
the smallest overlap. The Swap  algorithm is shown in Algorithm 4. 

Algorithm 4：Randomly swap ap  and bp  in jb   
Input: Pieces ap  and bp  from jP , bin jb  
Output: The position jV  and rotation angle jR  after the swap operation 

1 ( ) ( ) ( ), | , ,
aj a p aj jV R r θ= = = +∞ +∞  

2 ( ) ( ), , , , ,j j b j jj jV R Move p P V R b=  

3 ( ) ( ), , , , ,j j a j jj jV R Move p P V R b=  

4 ( ) ,j jreturn V R  

The method Move (Leung et al., 2012) is called in Algorithm 3, which moves ap  and bp  from their original positions to 
new ones with less overlap. Taking the second line in algorithm 3 as an example, in order to avoid a situation where piece 

bp  has not been moved, Overlap needs to be recalculated, as shown in Eq. (22). 

( )'( , , , , ) verlap( , , , ) verlap ,j j j j j jb bj j bOverlap p P V R b O P V R b O p p= +  (22) 

In equation (22), '
bp  is defined as the piece after bp  has been moved, and ( )',b bOverlap p p  represents the overlap between 

bp  and '
bp . Adding this term makes sure that bp  will not stay at its original position, thus ensuring its effective movement. 

For each rotation of bp , the set of vertices and midpoints on the edges of a bp pNFP  are considered as candidate positions. The 
position and angle with the least overlap is chosen as the ultimate position of bp . Algorithm 5 shows the Move procedure. 

Algorithm 5: Move piece bp  in bin jb  to minimize overlap 

Input: Piece bp  to be moved in piece set jP , bin jb  
Output: The position jV  and rotation angle jR  of the pieces after the movement of bp  

1 minOverlap = +∞  

2 limit fr
b bb

ee
bfor each   or   doθ ϑ θ ϑ∈ ∈  

3 1 j
mfor j  to n  do=  

4 2( )
b jmp pGet the vertices and  midpoint edges of  denote Q  of  NFP  

5 2( )
b jp bGet the vertices and  midpoint of edges add  to Q  of  IFP   

6 for each point q Q do∈  

7 ( ) ( )' ', ,j j j jV R V R=  

8         ( ) ( ) ( ), | , ,
bj a p b bj jV R r qθ θ= = =   

9 ( , , , , )b j j j jif  Overlap p P V R b   minOverlap<  

10  ( , , , , )b j j j jminOverlap Overlap p P V R b=  
11  else  
12 ( ) ( )' ', ,j j j jV R V R=  

13 ( ) ,j jreturn V R  

 
5.2.3. Separation algorithm 
 

This part employs the Separation algorithm to detach the overlapping pieces after the Swap operation, which is proposed by 
Leung et al. (2012). By fixing the rotation jR  in Eq. (13), we can obtain Eq. (23), in which we omit jP  and jb  for the sake 
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of expression. 
( ) ( ) ( )

1 1j j
j ab j a j

a b n a n

Overlap V h V k V
≤ < ≤ ≤ ≤

= +   (23) 

An unconstrained non-linear programming model is utilised to deal with this problem. The following are the detailed steps. 

(1)  Express the ( )ab jh V  and ( )a jk V  in terms of penetration depth as follows. 

( ) ( )( )
( ) ( )( )

2

2

, ,1

, ,1

a b

a

j
ab j a t b t

j
a j a t i

h V  PD p v p v a b n

k V PD p v b a n

= ⊕ ⊕ ≤ < ≤

= ⊕ ≤ ≤
 (24) 

(2)  The penetration vector v  is used to replace the penetration depth in step 1 and is denoted as 
( ) ( ) ( ) ( )( )1 2, ,..., jab j ab j ab j ab jn

h V h V h V h V∇ = ∇ ∇ ∇ , in which ∇  is the gradient symbol and ( ), ,1
t t

j
t x yV V t n∇ = ∂ ∂ ∂ ∂ ≤ < . 

Thus, ( )ab jh V  and its gradient can be expressed in terms of ( ) , 1 j
ab jf V  a b n∇ ≤ ≤ ≤  as follows. 

( )
( ) ( )
( ) { } { }

2

1,..., \ ,

ab j

a ab j b ab j

t ab j i

h V    v 

h V  = - f V  = 2v

h V  = 0, t n m n

=

∇ ∇

∇ ∈

 (25) 

Similarly, ( )a jk V  and its gradient can be expressed as follows. 

( )
( )

( ) { } { }

( ) ( ) ( ) ( )( )
( )

2

1 2

1,..., \

, ,...,

, ,1

j

t t

a j

a a j

j
t a j

a j a j a j a jn

j
t x y

k V   v 

g V  = 2v

k V  = 0, t n m

k V k V k V k V

V V t n

=

∇

∇ ∈

∇ = ∇ ∇ ∇

∇ = ∂ ∂ ∂ ∂ ≤ <

 (26) 

(3)  The limited memory BFGS (L-BFGS) (Boggs & Byrd, 2019) method is invoked in steps 1 and 2 to solve the unrestricted 
nonlinear programming problem (23) to get the minimum value. 
 

6. Local search algorithm for solution improvement 
 

In this section, we use a local search (LS) algorithm to better the final solution, modified from LS2 by Martinez-Sykora et al. 
(2017). Combining Eq. (9) to Eq. (11), we can see that the F  value increases when either of the two cases occurs. First, the 
number of bins used is reduced. Second, the number of bins remains unchanged, but the utilisation of one of the bins increases. 
In both cases, the new solution is accepted.  

Given a solution containing N  bins, sort these bins in a non-decreasing sequence of use ratio, i.e., 1 2 NU U U≤ ≤ ≤ . In the 
LS algorithm, we first select the least utilised bin cb  and then try to move pieces from cb  into a collection of bins

{ } { }
1 2
, ,..., , , \

zd d d cB b b b z N B B b′ ′= < ⊆  rather than just one bin, which distinguishes this algorithm from LS1 (Martinez-

Sykora et al., 2017). This method, therefore, increases the possibility of moving pieces from cb  to other bins.  

The steps of the algorithm are as follows. Firstly, the pieces in cb  are sorted in a decreasing sequence of area. To each bin in 
B′ , the pieces are disposed in the non-decreasing order of area. For each bin '

kdb , piece kdp  is removed in the order in which 
they have been sorted, so that an empty space is created, and each piece in cb  is then considered to be moved to this empty 
area. Starting from the first piece, the pieces in cb  are moved in turn to '

kdb  using the packing algorithms. The other pieces 
in cb  are then tried in turn. If no bin in B′  can hold a particular piece, it is temporarily stored in the set 2Array . Once all the 
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pieces in cb  have been considered, we consider moving the pieces removed from each bin back to their original place. Again, 
if the movement is unsuccessful, the piece is also temporarily stored in 2Array . 

In this case, we start to check if any bin in B′  has increased in utilisation. If none of these bins has been utilised more, the 
move is invalid. If 2Array  is empty, one bin has been reduced, and the new solution is accepted. Otherwise, the pieces in 

2Array  are loaded into a new bin, and the above process is repeated, i.e., one piece is loaded into one bin at a time in the non-
increasing sequence of its area. If a bin cannot maintain all the pieces from 2Array , the new solution requires one more bin 
than the original one and is discarded. Meanwhile, a False  is returned. If a bin can hold all the pieces from 2Array  and the 
final F  value increases, the new solution is accepted, and a True  is returned. Algorithm 6 shows the procedure of the LS 
algorithm. 

Algorithm 6: Using a LS strategy to better the solution 
Input: Bins 

1 2
, , ,...,

zc d d db b b b (
1 2

...
zc d d dU U U U≤ ≤ ≤ ≤ ) and the pieces packed inside 

Output: z  or 1z +  new bins that pack the same piece set with a larger value of F  
1 1 1 2 2

' ' ', , ,..., ,
r rc d d d d d d cArray b b b b b b b b= = = = = ∅  

2 improved True=  
3 while improved do  
4 improved = False  
5 for  k = 1  to  z  do  

6 '
k kd dfor  each  piece  p  in  b  

7 ', 0,
d k kkout p in d d  s s s  and remove p  from b= =   

8 2 ,
kdArray Array  add  p  to the end of Array=  

9             2a  for each  piece  p  in  Array  do  

10                 '
ka dUse the packing algorithm to see whether p  can be placed into b   

11 aif  p  can be placed  

12 '
2,

a k
  in in p a ds s s  remove p   from Array and  update b= +  

13  else  
14 Study the next piece  
15 in outif  s s>   
16 2if  Array == ∅  

17 ( )
1 2

' ' ', ,...,
zd d d  return b b b a sulution with one bin less have been found  

18   else  
19 '

2 , ,
k kd dArray Array  sort the array by non-increasing area, b b improved True= = =  

20 else  
21 '

k kj jb b=  

22 if  the number of pieces in Array has decreased  
23 ',c cUse the packing algorithm to pack pieces from Array into b  and construct a new bin b  
24 if  all pieces can be packed  

25 1 2

' ' ', , ,...,
zc d d dreturn True, return b b b b   

26 else  
27 return False  
28 else  
29  return False  

By analysing the above process, we can get that the LS algorithm starts from the least utilised bin and considers each bin in 
turn. Whenever we find an improvement, we start with the new solution and re-examine all the bins until we finally get a 
better result. 

7. Interpretation of experimental results 
 

This part exhibits the experimental process and analyses the data. The algorithms in this paper are programmed in Python, 
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with a 2.90 GHz processor and 8 GB of RAM to implement them. 
 

7.1.  Data 
 

We have used two benchmark instances, the nesting instances that are widely used in the 2DISPP, and the instances offered 
by López-Camacho et al. (2013). They are available from the ESICUP (EURO Special Interest Group on Cutting and Packing) 
website https://www.euro-online.org/websites/esicup/. 

There are 23 datasets in the nesting instances, and the jigsaw puzzle instances consist of two subsets, JP1 and JP2. Subset JP1 
is made up of 540 instances, divided into 18 classes with 30 problems, and all the pieces are convex. JP2 has a collection of 
480 instances (18 classes with 30 problems), and there are convex and non-convex pieces. In addition, the number of pieces 
in each class is different. In the jigsaw puzzle instances, the bins’ length and width are set to 1000 fixedly. In contrast, the 
sizes of the nesting instance bins are needed to be defined.  

Referring to the paper of Martinez-Sykora et al. (2017), for each instance, three kinds of square bins are defined depending 
on the maximal dimension of the enclosing rectangle of the pieces in their initial orientation, represented as maxd . In addition, 
pieces and bins are dimensioned in uniform units. 

(1) Nest-SB (small bins). W = L  = 1.1 maxd . 
(2) Nest-MB (medium bins). W  = L = 1.5 maxd . 
(3) Nest-LB (large bins). W  = L = 2 maxd . 

Due to the three kinds of bins, 69 instances of bin packing are produced from the 23 nesting instances. Table 1 from Martinez-
Sykora et al. (2017) exhibits the detailed information of these instances, including the piece number, the dimension of three 
bins and the limited rotation angles limitϑ  for each instance. 

7.2.   Experimental results 
 

7.2.1. Comparison between PBP and DCH 
 

This section compares the results obtained by the PBP and DCH algorithms in Table 1. We present the average bin amount (
N ), the mean value of F  and K , and the mean execution time T  with the unit in second. 

Table 1 
Comparison between the PBP and DCH 

Subsets 
DCH PBP 

N  F  K  T  N  F  K  T  
JP1 7.811 0.662 7.361 74 7.789 0.671 7.342 76 
JP2 7.406 0.674 6.997 93 7.364 0.689 6.963 66 

Nest-SB 9.352 0.389 8.899 99 9.340 0.391 8.872 96 
Nest-MB 4.981 0.404 4.676 145 4.981 0.409 4.654 126 
Nest-LB 2.994 0.376 2.587 327 2.994 0.387 2.583 288 
Average 6.509 0.501 6.104 147.6 6.494 0.509 6.083 130.4 

As far as indicator F  is concerned, all the results obtained by the PBP algorithm are larger than those obtained by the DCH, 
although the gap in some instances is not very obvious. For N  and K , PBP also gets better results, except for a few N  
values that agree with the results obtained by the DCH. As for the computation time T , compared with the DCH, most of 
which the PBP takes is shorter, except for the JP1 instance. The PBP outperforms the DCH in all parameters regarding the 
average value. PBP implements piece assignment by solving the 1DBPP one bin at a time and reduces the method’s greediness 
by modifying the objective function. DCH does not pre-assign pieces and only places the pieces in the first suitable bin, which 
results in more effort to find a bin to arrange a piece, thus boosting the computing time. As a result, we come to the conclusion 
that it is beneficial to allocate pieces to bins before packing. In the process of actual industrial production, we can also consider 
using this strategy to improve the utilisation rate of plates. Because the experimental results have proved that the PBP is 
superior to the DCH, it is used in our subsequent studies and analyses. 
 

7.2.2. Comparison between limited rotation angles and free rotation 
 

Through the approach in Section 5.1, we get a finite set of promising rotation angles for each piece. To evaluate the effect of 
allowing pieces to rotate freely, the pieces are firstly rotated at limited angles of 90° , 180°  and 270° , and the results are 
compared with those obtained by free rotation. Table 2 displays the results. The nesting instances are used in the comparison, 
as they provide angles at which each piece set can be rotated. In the Limited angles column, the angles allowed for each piece 
set are exhibited in Table 1 from Martinez-Sykora et al. (2017). The results obtained by free rotation are displayed in the  free 
rotation column. The superior results are displayed in bold. 
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Table 2 
Analysis of Nest-MB instances at different rotation angles 

Instances 
Limited angles Free rotation 

Instances 
Limited angles Free rotation 

N  F  N  F  N  F  N  F  
albano 3 0.467 3 0.492 poly5a 8 0.420 8 0.426 
dighe1 2 0.354 2 0.271 poly2b 4 0.371 4 0.378 
dighe2 1 0.823 2 0.222 poly3b 5 0.416 5 0.422 

fu 4 0.421 4 0.421 poly4b 6 0.445 6 0.451 
han 3 0.362 3 0.366 poly5b 7 0.459 7 0.464 

jakobs1 4 0.510 4 0.482 shapes0 8 0.502 8 0.546 
jakobs2 4 0.383 4 0.358 shapes1 7 0.255 6 0.368 

mao 3 0.250 3 0.280 shapes2 10 0.358 10 0.350 
poly1a 2 0.291 2 0.300 shirts 7 0.264 6 0.368 
poly2a 4 0.323 4 0.325 swim 5 0.377 5 0.377 
poly3a 5 0.399 5 0.401 trousers 3 0.535 3 0.559 
poly4a 7 0.377 7 0.381 Average 4.87 0.407 4.826 0.392 

As can be observed from Table 2, out of the 23 instances, better results are obtained for 16 sets in the free rotation column. 
The F  values for the fu and swim instances are the same for both conditions. These demonstrate that free rotation can improve 
bin utilisation by giving pieces more viable placement options. Because of the specific nature of the production process, 
companies such as garments have strict requirements on piece placement angles. While for shipyards and other enterprises, 
because the primary purpose of piece packing is to improve the plate utilisation rate, there is no special requirement for the 
placement angles. We can conclude that when there is no practical reason to set a particular rotation angle, the free rotation 
will eliminate any deviation in creating the piece set to optimize the packing results. It is worth paying special attention to 
dighe1 and dighe2. The F  value obtained in the Limited angles column is much higher than that of the free rotation column. 
According to Table 1 from Martinez-Sykora et al. (2017), the two instances have a permissible rotation angle of 0° , i.e., the 
pieces are allowed to be packed in their original orientation, which will develop the perfect or near-perfect solution. 
Furthermore, to avoid repetitive work, only medium-sized bins are selected by us, as this is sufficient to illustrate the 
superiority of the free rotation strategy. 

7.2.3. Comparison between PBP and LS-PBP 

In the following, we will compare the results of the two cases: only using the PBP and introducing the LS strategy depicted 
in Section 6. ( )%IncF  represents the percentage of improvement in indicator F  for LS-PBP compared with PBP. 

Comparing the results in Table 3, it is clear that the LS strategy effectively improves the results. Inevitably, the computational 
time increases exponentially due to the additional computational effort associated with introducing this strategy. We note that 
processing the Nest-SB and Nest-MB datasets takes much longer than processing the Nest-LB, and this is because for the 
same set, the larger the bin size, the fewer bins are required, so there are fewer opportunities to exchange pieces across bins, 
and thus the processing time will be relatively less. In addition, we can also observe that for ( )%IncF , the percentage of Nest-
SB and Nest-MB increase are much higher than that of Nest-LB, which means the smaller the bin size, the better the effect of 
crossing bin to distribute pieces. Because the smaller-size bin can accommodate fewer pieces, the pieces' bin-cross movement 
will significantly change the final results. 

Table 3 
Comparison between PBP and LS-PBP. 

SubSet 
PBP LS-PBP 

N  F  K  T  N  F  K  T  ( )%IncF  

JP1 7.789 0.671 7.342 76 7.788 0.705 7.321 182 5.07 
JP2 7.364 0.689 6.963 66 7.382 0.719 6.947 196 4.35 

Nest-SB 9.340 0.391 8.872 96 9.232 0.417 8.852 1366 6.65 
Nest-MB 4.981 0.409 4.654 126 4.959 0.431 4.627 3279 5.38 
Nest-LB 2.994 0.387 2.583 288 2.975 0.397 2.567 875 2.58 
Average 6.494 0.509 6.083 130.4 6.467 0.534 6.063 1180 4.81 

 
7.2.4. Comparison with other literature 
 

Our findings are compared with those of Martinez-Sykora et al. (2017), Abeysooriya et al. (2018), Liu et al. (2020) and Zhang 
et al. (2022), which are recent developments in literature. Only the data of LS2-PBP, LJS1-MU and LJS3-MU, LS-4R and 
LocalSearch-WLFD are included in Table 4 because they were the best results in separate studies. As the above algorithms 
were written in different languages on different platforms, the experimental results are not comparable in terms of time. In 
addition, since the values of N  and K  were not explicitly listed in other literature, we only compare the F  value obtained 
by different algorithms. 



Z. Wang  / International Journal of Industrial Engineering Computations 13 (2022) 505

Table 4 
Comparison with other literature about F . 

Subset LS2-PBP LJS1-MU LJS3-MU LS-4R LocalSearch -WLFD LS-PBP (slit) LS-PBP (no slit) 
JP1 0.723 0.691 0.732 0.704 0.744 0.705 0.746 
JP2 0.729 0.701 0.747 0.701 0.777 0.719 0.768 

Nest-SB 0.432 0.393 0.403 0.442 0.445 0.417 0.448 
Nest-MB 0.452 0.418 0.409 0.445 0.482 0.431 0.482 
Nest -LB 0.403 0.425 0.410 0.438 0.443 0.397 0.446 

As can be observed, the LS-PBP (slit) column represents the F  value obtained when the cut distance is considered, and the 
results obtained by us are better than those of some of the above literature, but this advantage is not prominent. This is because, 
in our study, the pieces are not allowed to be packed as closely as possible as in all other papers. Instead, slit distance is 
reserved. Although the slit distance is small in relation to piece and bin dimensions, the effect of slit distance on the utilisation 
of the individual bin and the F value cannot be ignored when abundant pieces are packed. We also add the column LS-PBP 
(no slit), which describes the F  value obtained when the slit distance is not taken into account, so we can compare the results 
with other papers under the same standard. In this case, the comparison results are more convincing. Our method achieves the 
optimal results in JP1, nest-SB, nest-MB as well as Nest-LB, and the gap with the optimal results in JP2 is very small. Thus, 
we draw the conclusion that our algorithms are somewhat competitive. 

 
8. Conclusions 
 

In this paper, we investigate a 2DIBPP that considers slit distance and allows pieces to rotate freely. Although this problem 
often arises in industrial production, there is no good approach to solve it. Better results are obtained using our methods, and 
practical industrial production could benefit from them. Specifically, we carry out the following work. 

Firstly, we propose a mathematical model that considers the above two elements, and an equidistant edge expansion algorithm 
is introduced to handle the slit distance. Secondly, the 2DIBPP is divided into two sub-problems: piece allocation and packing. 
We also describe a DCH algorithm that handles the two sub-problems simultaneously and demonstrates the superiority of the 
PBP through comparative experiments. We then investigate the effect of free rotation versus limited angles on the nesting 
instances. Except for a few piece datasets, better solutions are found by allowing pieces to rotate, as the free rotation strategy 
eliminates any deviations in the creation of the piece dataset and thus optimises the packing results. In the packing process, a 
two-stage method is presented to obtain promising rotation angles for pieces, which effectively decreases the search 
neighbourhood and betters the results. Finally, we use the LS algorithm to improve the solution by adjusting piece allocation 
across bins. The data show that this strategy's introduction effectively enhances the packing results. 

For future work, we plan to apply the methods in this paper to bins with irregular shapes. We also plan to investigate the 
problem of packing irregular pieces into bins with some defective regions.  
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