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 This paper aims at presenting a customer order scheduling environment in which the setup times 
are explicit and depend on the production sequence. The considered objective function is the total 
tardiness minimization. Since the variant under study is NP-hard, we propose a mixed-integer linear 
programming (MILP) model, an adaptation of the Order-Scheduling Modified Due-Date heuristic 
(OMDD) (referred to as Order-Scheduling Modified Due-Date Setup (OMMD-S)), an adaptation 
of the Framinan and Perez-Gonzalez heuristic  (FP) (hereinafter referred to as Framinan and Perez-
Gonzalez Setup (FP-S)), a matheuristic with Same Permutation in All Machines (SPAM), and the 
hybrid matheuristic SPAM-SJPO based on Job-Position Oscillation (JPO). The algorithms under 
comparison have been compared on an extensive benchmark of randomly generated test instances, 
considering two performance measures: Relative Deviation Index (RDI) and Success Rate (SR). 
For the small-size evaluated instances, the SPAM is the most efficient algorithm, presenting the 
better values of RDI and SR. For the large-size evaluated instances, the hybrid matheuristic SPAM-
JPO and MILP model are the most efficient methods.  
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1. Introduction 

Consumer demand, combined with global competition among firms, has been introducing new production paradigms in a 
crescent quest for quality, resulting in the allocation of manufacturing of components of specialized goods to several plants 
or production environments (Fernandez-Viagas & Framinan, 2015). As a result, in recent years, production scheduling 
researchers have focused on the assembly scheduling problems, such as the customer order scheduling environment (Framinan 
et al., 2018). The customer order scheduling problem (COSP) is defined as 𝑛 orders to be scheduled on 𝑚 dedicated parallel 
machines, where each machine can process only one type of operation. The COSP presents several real-world applications, 
such as paper production, pharmaceutical industry, assembly operations, and in the repair of airplanes and vessels (Magazine 
and Julien, 1990; Leung et al., 2005b; Roemer, 2006).  
Usually, the setup times are embedded in the processing times in the current literature on customer order scheduling (Prata et 
al., 2021a). Nevertheless, this may not be a realistic assumption in many practical situations since the machines allow for 
some versatility in handling various items, which typically necessitates some set-up operations. In our proposal, each order 
presents an associated setup time, which is sequence-dependent, as well as a due date, related to the customer requirements.  

Based on recent studies (Framinan et al., 2019, Wu et al., 2021, Prata et al., 2021a, Prata et al., 2021b), we can observe that 
the variant introduced here is not reported previously. This paper aims at presenting the COSP with sequence-dependent setup 
times to minimize the total tardiness. We develop a mixed-integer linear programming (MILP) model, as well as explore some 
problem properties. As a solution procedure, we extend two existing constructive heuristics. Also, we present a matheuristic 
based on the reduction of the number of decision variables. Finally, we carried out extensive computational experiments with 
random-generated test instances. 
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The remaining sections of this paper are structured as follows: Section 2 addresses some related approaches, Section 3 
describes the problem under study, Section 4 presents the proposed solution approaches, Section 5 summarizes the 
computational results. Finally, Section 6 addresses the final remarks as well as suggestions for future works. 
2. Literature Review 
 

Since the considered problem has not been previously reported, we are looking for related approaches. The presented studies 
are classified based on the notation provided by Framinan et al. (2018). Wagneur and Sriskandarajar (1993) presented the 
COSP as an open shop scheduling problem in which the overlap of jobs in the available machines is allowed. Furthermore, 
the order scheduling to minimize the total tardiness performance measure DPm→0 | | ΣT is classified as NP-hard. A notation 
for the classification of order scheduling problems is introduced by Leung et al. (2005a). Roemer (2006) addressed a 
concurrent open shop in which the jobs are scheduled in dedicated parallel machines. Leung et al. (2005b) addressed COSPs 
with release and due dates. The performance measures f to be minimized are total completion time and total tardiness. Several 
structural properties and complexity analyses are addressed. In addition, two constructive heuristics, as well as a tabu search 
metaheuristic, are proposed. Leung et al. (2006) addressed two variants of the COSP two objective functions: the minimization 
of the maximum lateness and the total number of late orders. A constructive heuristic and an exact method are developed as 
solution approaches. Lee (2013) addressed an important property for DPm→0 | | ΣT: the global optimal solution always can 
be found with fixed permutations in the available machines. In addition, a MILP model, a Branch-and-Bound (B&B) 
algorithm, and the Order-Scheduling Modified Due-Date heuristic (OMDD) are presented. Framinan and Perez-Gonzalez 
(2017) approached the COSP for the minimization of the total completion time. An algorithm using a look-ahead mechanism 
is developed, which is employed as an initial solution for a Greedy Search Algorithm (GSA) metaheuristic (Karabulut, 2016). 
Framinan and Perez-Gonzalez (2018) extended this heuristic for total tardiness minimization. Furthermore, the matheuristics 
JPF and JPO are introduced. The second one is the state-of-the-art algorithm for the DPm→0 | | ΣT. Kung et al. (2018) studied 
a COSP minimizing the total completion time objective with unequal ready times. As theoretical contributions, several 
problem properties are addressed, as well as two lower bounds. With respect to solution procedures, four simulated-annealing-
based and four genetic-algorithm-based metaheuristics are presented, as well as a B&B exact method. Riahi et al. (2019) 
studied the DPm→0 | | ΣC variant. Several priority rules are developed, as well as a new constructive heuristic that considers 
all feasible positions in the partial permutation for not scheduled orders. A Perturbative Search Algorithm (PSA) metaheuristic 
is proposed, outperforming the GSA metaheuristics presented by Framinan and Perez-Gonzalez (2017). Lin et al. (2019) 
studied a COSP minimizing the weighted number of tardy orders. Some theoretical contributions are addressed, such as 
dominance rules and a lower bound. Furthermore, a B&B algorithm and four bee-colony-based metaheuristics are presented. 
Wu et al. (2019) addressed a COSP considering ready times. Several dominance properties and two lower bounds are 
presented, which are embedded into a B&B algorithm. Five constructive heuristics are adapted to this variant. Besides, an 
Iterated Greedy (IG) algorithm is developed. Wu et al. (2021) addressed the COSP considering due dates and scenario-
dependent processing times. The performance measure is the minimization of the maximum total tardiness across all scenarios. 
Four lower bounds, as well as four dominance relations, were proposed. Furthermore, some local search and IG population-
based algorithms were presented. The IG approaches outperformed the OMDD-based heuristics, although they increased the 
time required for the problem resolution. Prata et al. (2021a) addressed the COSP with explicit setups that depend on the 
production sequence to minimize the makespan. Two mixed-integer linear programming models are developed for this 
problem, along with two matheuristics that reduce the number of decision variables. Their so-called Fixed Variable List 
Algorithm (FVLA) is shown to outperform all other methods under comparison. Prata et al. (2022) addressed the customer 
order scheduling with sequence-dependent setup times with the total completion time objective. A MILP model and a hybrid 
discrete differential evolution algorithm are developed. As innovative characteristics, this metaheuristic presents a parameter-
free restart operator and two local search procedures based on heuristic dominance properties. Computational experimentation 
pointed to the superiority of the discrete differential evolution algorithm in comparison with other methods. 
 
3. Problem description 

The DPm→0 | STsd | ΣT is NP-hard problem since it can be reduced, if all setup times are equal to zero, to the canonical 
customer order scheduling problem to minimize total completion time, which is known to be an NP-hard problem (Wagneur 
and Sriskandarajar, 1993). Here we propose a MILP model to find high-quality solutions or even global optimal solutions to 
the problem under study. Each order 𝑘 has an associated due date 𝑑 , a processing time 𝑝  in machine 𝑖, and a sequence-
dependent 𝑆 . The problem is to find a sequence of orders where the total tardiness is minimized. Next, we define the 
tardiness for a given order, as well as the total tardiness minimization. The completion time in machine 𝑖 for a given order 
processed in postion 𝑗 of sequence 𝛱, 𝐶 , 𝛱 , can be calculated recursively as in Eq. (1): 𝐶 , 𝛱 = 𝐶 , 𝛱 + 𝑝 , + 𝑆 , , , 𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛 (1) 
with 𝐶 , 𝛱 : = 0, ∀𝑖. Therefore, 𝐶 𝛱  is the completion time of the order scheduled in position 𝑗 is defined as in Eq. (2): 
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In the same way, the tardiness for a given order scheduled in position 𝑗 can be defined as in Eq. (3): 
𝑇 𝛱 = max{𝐶 𝛱 − 𝑑 ; 0}. (3) 

Finally, the total tardiness is calculated as 𝑇 𝛱 = ∑ 𝑇 𝛱 . Likewise, the summation of the completion times 𝐶 𝛱  for 
a given sequence 𝛱 can be calculated as 𝐶 𝛱 = ∑ 𝐶 𝛱 . 
The problem notation is presented as follows. 

Indices and sets 
Set of machines 𝐼 = {1, … ,𝑚}; 
Set of orders 𝐾 = {1, … ,𝑛}; 
Set of positions 𝐽 = {1, … ,𝑛}. 
Parameters 𝑝 : machine-dependent processing time of the order 𝑘; 𝑆 : sequence-dependent setup times. 𝑑 : due date of the order 𝑘; 𝑀: a sufficiently large number. 
Decision variables 𝑇 : tardiness of order 𝑘; 𝐶 : completion time of position 𝑗 in machine 𝑖; 𝐷 : setup time for the order scheduling in the position 𝑗 of machine 𝑖.  𝑥  = 1, if the order 𝑘 is scheduled in the position 𝑗 of machine 𝑖.0, otherwise  

Thereby, resulting MILP model can be described in the following manner: 

min 𝑇  (4) 

subject to:  

𝑥 = 1, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (5) 

𝑥 = 1, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾 (6) 

𝑆 𝑥 + 𝑥 − 1 ≤ 𝐷 , ∀𝑖 ∈ 𝐼, ∀𝑗 > 1, ∀𝑘, 𝑙 ∈ 𝐾 (7) 
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𝐷 + 𝑝 ⋅ 𝑥 ≤ 𝐶 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (8) 

𝐶 − 𝑑 + 𝑥 ⋅ 𝑀 ≤ 𝑀 + 𝑇  ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (9) 

𝑥 ∈ {0,1}, 𝑇 ≥ 0, 𝐶 ≥ 0, 𝐷 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽 (10) 

Eq. (4) is the objective function to be minimized. Constraints Eq. 5  and Eq. 6  are permutation restrictions. Constraint set 
Eq. (7) determines the setup time of the machine 𝑖 from order 𝑘 before order 𝑙. We consider that all the available machines 
performed the setup operation previously in the first position. Set of constraints Eq. 8  computes the completion times of the 
orders. Constraint set (Eq. (9)) determines the tardiness associated with each customer order. Finally, constraint sets (Eq. (10)) 
determine the scope of the variables. 
We define the big-M value as the summation of the processing and setup times, as in Eq. (11). 
𝑀 = 𝑝 + 𝑆  (11) 

Finally, it should be noticed that for this problem we have to consider the possibility of different permutations for every 
machine. Contrary to the variant without sequence-dependent setup times, where the optimal solution is obtained applying 
the same permutation on all the available machines by Lee (2013). Here, we show a counterexample to this fact. 

Proposition 1: The optimal solution does not necessarily present the same permutation in all the available machines for the 𝐷𝑃𝑚 → 0|𝑆𝑇 |∑𝑇 . 
Proof: Considering the following example, as described in Table 1. Also, we consider a due date of 5 units of time (u.t.) for 
both orders. 
 
Table 1  
Illustrative example.  Processing times   Setup times-machine 1   Setup times-machine 2  O1 O2   O1 O2   O1 O2 

M1 2 1  O1 - 1  O1 - 2 
M2 3 4  O2 10 -  O2 1 -  

Using the same permutation in all machines, we obtain the results illustrated in Fig. 1, which present a total tardiness of the 4 
u.t. and 8 u.t. time units, respectively. If we use distinct permutations in the machines, we can obtain a total tardiness of 3 u.t. 
time units, as illustrated in Fig. 2. Thus, solutions with distinct permutations in the machines can lead to smaller total tardiness 
than solutions with fixed permutations in the machines. 

  
(a) (b) 

Fig. 1.  Solutions with fixed permutations 
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Fig. 2.  Solution with distinct permutations. 

4. Proposed solution approaches 

Since the proposed variant is a NP-hard problem, we presented heuristic algorithms to find high-quality solutions within 
admissible computational time. 

4.1 Constructive heuristics 

The OMDD-S heuristic is an extension of the OMDD proposed by Lee (2013), considering sequence-dependent setup times. 
Our proposal is described in the following steps. • Step 0: Set 𝛺: = 1,2, … ,𝑛 , 𝛱: = ∅ and 𝑡 = 0 1 ≤ 𝑖 ≤ 𝑚 . • Step 1: Choose a given order in 𝛺 using the index 𝛼 : 𝛼 = max max {𝑡 + 𝑆 + 𝑝 } − max {𝑡 };𝑑 − max {𝑡 } . (12) • Step 2: Delete a given order from 𝛺, including it at the end of 𝛱. • Step 3: Refresh 𝑡 . If |𝛺| = 𝑛 − 1, then 𝑡 : = 𝑡 + 𝑝 ; otherwise, 𝑡 : = 𝑡 + 𝑆 + 𝑝 , where 𝑤 is the last but one 
elemetn from 𝛱. • Step 4: While Ω is not empty, return to Step 1. 
Also, we present the FP-S heuristic, as an extension of the FP algorithm (Framinan and Perez-Gonzalez, 2018), including the 
sequence-dependent setup times. The above-mentioned algorithm builds a permutation Π: = 𝜋 , … ,𝜋  from a set of 
unscheduled orders 𝒰. Initially, 𝒰 has all the orders since none of the orders was scheduled. In iteration 𝒦, each order in 𝒰 
is chosen to be inserted in the last position of Π. Aiming to choose a given order from the candidate list, considering 𝜔 ∈ 𝒰 
with a due date 𝑑 , a partial permutation 𝑆  is builded inserting 𝜔  in the last position of Π, i.e. Π: = 𝜋 , … ,𝜋 ,𝜔 . 
Therefore, the tardiness indicator 𝜂  for the candidate 𝑙 is calculated as in Equation (Eq.13): 
𝜂 = max{𝐶 𝑆 − 𝑑 ; 0} + 𝑇𝑆  (13) 

In which the first term is the portion of the total tardiness if l is selected, in which CSl is the partial completion time of the 
permutation Sl and dl is the associated due date. The second term TSl estimates the parcel for the total tardiness of the remainder 
orders. Fig. 3 illustrates the FP-S constructive heuristic. 
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We adopt as a permutation in which all the orders are included before the procedure. For each iteration, we calculate TSl 
considering the remnant orders are allocated after the orders previously selected. We consider the sequence returned by the 
Earliest Due Date (EDD) heuristic. This algorithm is a well-known priority rule to solve a scheduling problem with due dates. 
We select a given order, append it at the end of the partial permutation, and remove it. As the remnant orders were already 
selected, they are not calculated again in the next iteration. Our FP-S heuristic is described as follows. • Step 0: Determine an initial permutation Ω using the EDD dispatch rule. • Step 1: For each position j of the sequence, calculate the indicator for each unscheduled order. • Step 2: For each  𝜔 ∈ Ω, estimate the completion times of 𝜔  for each available machine. • Step 3: Determine the first term of indicator 𝜂 , using Equation (Eq. 13). Next, determine the second term of indicator 𝜂 . • Step 4: Choose the order presenting the smaller value of 𝜂 . Insert 𝜔  at the end of permutation Π. Update the list Ω. • Step 5: Update the completion times for each machine. 
4.2 Matheuristics 

4.2.1 SPAM 

As in the problem under study, each machine can receive a distinct sequence we face a problem with a non-permutational 
encoding. We can observe that this encoding does not necessarily lead to better solutions because the search space can increase 
substantially. Fernandez-Viagas et al. (2019) demonstrate that permutational encodings can provide better results than non-
permutational encodings in other production scheduling problems. This is because a solution procedure can evaluate a higher 
number of solutions with a permutational encoding, for a given time limit. 

An intuitive procedure to solve the problem under study is to consider a fixed permutation in all machines. In this way, we 
can replace the decision variable xijk in the model defined in Equations (Eq.4) – (Eq.10) by a decision variable xkj equals to 1 
if the order k is processed in position j, 0 otherwise. The Same Permutation in All Machines (SPAM) matheuristic reduces the 
number of binary decision variables from mn2 to n2. We can observe that the optimal solution returned by the SPAM 
matheuristic is not necessarily the optimal solution to the original problem.  
4.2.2 A hybrid matheuristic 

We also propose a hybrid matheuristic based on the JPO algorithm proposed by Framinan and Perez-Gonzalez (2018), 
denominated Job-Position Oscillation with the Same Permutation in All Machines (SPAM-JPO). We consider only solutions 
with a fixed permutation, restricting that a given order could be replaced 𝛿 positions at most in the sequence. 
Let a permutation 𝛱 with all orders 𝑘 𝑘 = 1, … ,𝐾 , we can obtain the position 𝑤 𝛱  of order k. Therefore, a set of feasible 
positions for the order k is determined so that the order k can be replaced with a maximal number of 𝛿 positions backward or 
forward. The value 𝛿 is a required input of the matheuristic. The set of possible positions for the order k is given by 𝑘 é 𝒫 𝛱, 𝛿 = {𝑤_ 𝛱, 𝛿 ,𝑤_ 𝛱, 𝛿 + 1, … ,𝑤 𝛱, 𝛿 }, where 𝑤_ 𝛱, 𝛿 = max{0;𝑤 𝛱 − 𝛿} and 𝑤 𝛱, 𝛿 =min{𝑛;𝑤 𝛱 + 𝛿}. Thereby, for each order k the decision variables 𝑥  are not significant for 𝑗 ∈ 𝒫 𝛱, 𝛿 . Similarly, the 
set of orders that can be placed in a position j can be stated as 𝒪 𝛱, 𝛿 = {𝑘: 𝑗 ∈ 𝒫 𝛱, 𝛿 }. The hybrid matheuristic SPAM-
JPO is expressed as follows. 

min 𝑇  (14) 

subject to:  

𝑥∈𝒪 , = 1, ∀𝑗 ∈ 𝐽 (15) 

𝑥∈𝒫 , = 1, ∀𝑘 ∈ 𝐾 (16) 
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𝑆 𝑥 + 𝑥 − 1 ≤ 𝐷 , ∀𝑖 ∈ 𝐼, ∀𝑗 > 1, ∀𝑘, 𝑙 ∈ 𝐾 (17) 

𝐷min{ : , }
_ , + 𝑝min{ : , }

_ ,∈𝒪 , ⋅ 𝑥 ≤ 𝐶 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (18) 

𝐶 − 𝑑∈𝒪 , ⋅ 𝑥 ≤ 𝑇 , ∀𝑗 ∈ 𝐽 (19) 

𝑥 ∈ {0,1}, 𝑇 ≥ 0, 𝐶 ≥ 0, 𝐷 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, 𝑗 ∈ 𝒫 𝛱, 𝑗  (20) 

Eq. (19) is the total tardiness minimization. Constraint sets Eq. (15) and Eq. (16) impose that the problem solution is a fixed 
permutation. Constraint set Eq. (17) calculates the setup time for the order scheduled in the position j of the 
machine i. Constraint set Eq. (18) calculates the completion time of each order processed in position j. Constraint set Eq. (19) 
defines the tardiness for of each order processed in position j. Lastly, constraint sets Eq. (20) express the domain of the 
decision variables. Our SPAM-JPO matheuristic can be summarized as follows. Taking an initial permutation into account, determine a corresponding solution with the positional decision variables 𝑥 . While a general time limit tlimit is not exceeded, solve the MILP model defined by Eqs. (14-20), using a permutation 𝛱, an oscillation parameter 𝛿, and a secondary time limit 
tw. Update the solution found as well as the parameter 𝛿. Finally, return the best solution found. 
 
5. Computational results 
 
5.1 Experimental design 

Aiming to perform a fair comparison between the evaluated methods, we developed a testbed similar to the test problems 
proposed by Lee (2013). However, in our test instances, we consider the generation of sequence-dependent setup times. We 
generate two data sets: the small-sized test instances with 𝑚 ∈ {3,5,9}, 𝑛 ∈ {8,12,16}, and the large-sized test instances with 𝑚 ∈ {2,5,8} and 𝑛 ∈ {10,20,30,40}.  Since the problem under study was not reported yet, we randomly generated the 
evaluated test instances, based on the related instances previously presented. The testbed is composed of test instances with 𝑚 ∈ {2,5,8} and 𝑛 ∈ {10,20,30,40}. The processing times follow a uniform distribution 𝑈 1,100 . The sequence-dependent 
setup times follow three uniform distributions {𝑈 1,25 ,𝑈 26,75 ,𝑈 76,125 }. The due date 𝑑  follows a uniform 
distribution, where: • 𝑃 is the summation of processing and setup times divided by the number of available machines. Aiming to generate 
tight due dates, we multiply this expression by a factor 𝜇. 

𝑃 = ∑ ∑ 𝑝 + ∑ ∑ ∑ 𝑆𝑚 ⋅ 𝜇, • RDD is the interval for due dates: 𝑅𝐷𝐷: {0.2,0.5,0.8}; • TF is the tardiness factor for the due dates: 𝑇𝐹: {0.2,0.5,0.8} 
For each combination of parameters were generated 10 test instances, totalizing 3240 instances. The methods under 

comparison are listed below. 

• EDD heuristic (a well-know algorithm for problems with due dates); 

• OMDD heuristic proposed by Lee (2013); 

• FP heuristic proposed by Framinan and Perez-Gonzalez (2018); 

• JPO matheuristic by Framinan and Perez-Gonzalez (2018); 

• The proposed OMDD-S heuristic; 
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• The proposed FP-S heuristic; 

• The proposed SPAM matheuristic; 

• The proposed hybrid matheuristic SPAM-JPO; 

• The proposed MILP model. 

 

We can observe that the warm start of the JPO and SPAM-JPO matheuristics was the OMDD-S. Framinan and Perez-Gonzalez 
(2018) used the FP heuristic as the warm start. We decided to use the OMDD-S as the initial solution, taking into consideration 
preliminarily computational experiments. 

The methods under comparison were evaluated considering four indicators: • Relative Deviation Index (𝑅𝐷𝐼) indicator as a performance measure, which is a standard indicator for scheduling 
problems with due-date objectives. Let 𝐻 be a set of methods, the 𝑅𝐷𝐼 found for the method 𝑠 ∈ 𝐻 when tested in 
instance 𝑡 is calculated as in Eq. (21). 

 

             𝑅𝐷𝐼 = 0, if min∈ 𝑇 = max∈ 𝑇 ,𝑇 − min∈ 𝑇max∈ 𝑇 − min∈ 𝑇 ⋅ 100, otherwise.   

(21) 

where 𝑇  is the tardiness value returned by method 𝑠 in instance 𝑡. In our study, min ∈ 𝑇  the best solution found 
among the methods under comparison. • SR (success rate). This indicator is determined as the number of instances in which a given solution procedure return the better solution divided by the number of evaluated test instances Eq. (21):  𝑆𝑅 = 𝑛𝑛 × 100 (22) where 𝑛  is the number of test problems where the solution procedure returned the best solution and 𝑛  is the number of evaluated test problems. • Optimality (Opt) evaluates if the solution obtained by the method under comparison in each test instance is the global 
optimal solution. 

• computational time, expressed in seconds. For the small-sized and large-sized test problems, we generated 10 instances for each combination of parameters, totalizing 2430 and 3240 instances, respectively. The proposed test instances are available here: https://www.researchgate.net/publication/352289324_Evaluated_Instances. The methods under comparison were 
implemented with Python 3.7. Furthermore, the MILP model and the SPAM matheuristic were solved with IBM ILOG 
CPLEX version 12.8.0. For all the evaluated methods, we consider a time limit 𝑡  = 600s. All the algorithms were executed 
in an Intel Core i5-3470 with 3.20 GHz and 8 GB RAM. 
5.2 Results and discussion 

5.2.1 Small-sized test instances 

Tables 2 and 3 illustrate the computational results for different m and n values, considering the average RDI values, the 
standard deviations, the percentage of optimal solutions found, and the average computational times. We can observe that in 
the first set of instances (𝑚 = 3 and 𝑛 = 8), the MILP model presented better results. However, with the increase of the size 
of the problems, the matheuristic SPAM returned better results. Based on Table 4, we can emphasize that the MILP model 
returned the largest number of optimal solutions for the small-sized test instances. 
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Table 2  
Small-sized test instances: RDI values for m and n (part 1) 

m  n    EDD FP FP-S      OMDD  
           Average  St. Dv.   Time  Average     St. Dv.   Time  Average  St. Dv.   Time  Average  St. Dv.   Time 

3 8 95.5924 10.7901 0.0000 72.7618 26.1200 0.0010 45.0979 24.0381 0.0014 69.9282 25.4258 0.0010 
    12 97.9772 6.9836 0.0001 75.9761 25.5007 0.0030 48.9008 22.8246 0.0045 72.9033 27.9774 0.0030 
    16 92.1670 24.7728 0.0001 73.274 30.1649 0.0066 47.3200 26.5247 0.0103 70.0654 31.4608 0.0069 

5 8 93.2917 14.4990 0.0000 68.9482 25.3962 0.0013 42.6921 23.2525 0.002 63.9066 27.7710 0.0013 
    12 95.1717 12.1162 0.0001 72.4786 24.0260 0.0038 46.8317 23.7087 0.0062 70.3361 27.2906 0.0039 
    16 88.7469 26.0195 0.0001 69.2486 28.9762 0.0087 48.4049 27.7139 0.0144 67.2913 30.6391 0.0090 

9 8 91.3742 16.2296 0.0000 68.3929 25.7720 0.0019 42.1489 22.6573 0.0031 60.788 26.8431 0.0019 
    12 90.7482 15.9556 0.0001 68.6689 23.9219 0.0056 44.3806 22.2601 0.0098 64.7505 25.2717 0.0058 
    16 80.2203 29.7194 0.0001 60.9753 29.9828 0.0127 40.2145 25.8252 0.0226 57.2266 31.6399 0.0131 
Total 91.6988 19.4780 0.0001 70.0805 27.0107 0.005 45.1101 24.5031 0.0083 66.3551 28.7118 0.0051 

 
Table 3  
Small-sized test instances: RDI values for m and n (part 2) 

m n       OMDD-S SPAM                 MILP 
             Average St. Dv. Time  Average St. Dv. Time  Average St. Dv. Time  

3 8 39.6805 22.7597 0.0003 5.9073 8.6510 5.2375 2.8183 7.1515 334.8832 
       12 39.6883 23.0271 0.0007 2.6774 6.7317 438.3857 18.1819 20.9791 601.7716 
       16 41.2252 26.7577 0.0011 2.2289 6.2924 542.1021 23.2568 25.6060 540.4455 

5 8 34.9788 21.1950 0.0005 2.2768 4.9861 9.7212 23.7074 28.8696 550.4171 
       12 38.3124 23.1388 0.0009 1.0847 5.5263 479.4585 46.7985 30.8030 600.1471 
       16 36.8398 25.4770 0.0015 1.3108 5.0498 555.001 49.9690 33.9772 549.4129 

9 8 32.1479 20.2378 0.0006 0.0859 0.7310 19.4298 56.5587 30.3852 600.2293 
       12 35.4173 21.4594 0.0014 0.5604 4.0074 555.9576 68.1536 29.6034 608.7139 
       16 29.3475 24.8520 0.0022 1.5982 6.1035 565.6225 67.5235 35.8523 582.6817 
Total 36.4042 23.5445 0.0010 1.9700 5.9310 352.324 39.6631 35.7772 552.078  

Table 4  
Small-sized test instances: optimality percentage for m and n 

m        n           EDD  FP       FP-S  OMDD  OMDD-S   SPAM  MILP      
3 8 0.00% 0.00% 1.11% 0.00% 1.11% 17.78% 61.11% 
        12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.11% 
        16 6.30% 6.30% 6.30% 6.30% 6.30% 10.37% 12.22% 

5 8 0.00% 0.37% 0.00% 0.00% 0.00% 4.07% 17.04% 
        12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.74% 
        16 5.93% 5.93% 5.93% 5.93% 5.93% 9.26% 11.48% 

9 8 0.00% 0.00% 0.00% 0.00% 0.00% 0.37% 1.11% 
        12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
        16 5.56% 5.56% 5.56% 5.56% 5.56% 7.04% 7.78% 

Total 1.98% 2.02% 2.10% 0.0198 2.10% 5.43% 12.51% 

Tables 5 and 6 present the same aggregated results analyzed by the TF and RDD values. We can observe that the SPAM 
matheuristic returned the better results, expressed in terms of the average and standard deviation values. Analyzing Table 7, 
we can also observe that the MILP model obtained the largest percentual of optimality. 

Table 5  
Small-sized test instances: RDI values for TF and RDD (part 1) 

TF    RDD   EDD FP   FP-S        OMDD      
               Average St. Dv. Time  Average St. Dv. Time  Average St. Dv. Time  Average St. Dv. Time  

0.2     0.2     97.2370 8.8203 0.0001 78.5159 26.0079 0.0049 55.4418 27.1227 0.0083 77.8198 27.5458 0.0051 
        0.5     88.6677 27.4747 0.0001 70.8692 31.8983 0.0050 49.3033 28.6754 0.0082 68.6830 32.7437 0.0051 
        0.8     85.1766 31.4354 0.0001 69.8468 33.359 0.0049 49.5453 30.5102 0.0082 65.3195 34.7565 0.0051 

0.5     0.2     94.2726 12.7031 0.0001 72.1748 26.3138 0.0050 46.3215 22.3224 0.0082 72.3025 25.9000 0.0051 
        0.5     92.1407 15.6173 0.0000 72.5721 25.2546 0.0049 44.8446 21.2566 0.0083 67.2162 28.1337 0.0051 
        0.8     89.5994 20.0316 0.0001 70.2081 26.2634 0.0050 42.7151 24.0551 0.0083 65.9920 29.0104 0.0051 

0.8     0.2     94.3325 13.0639 0.0001 66.6091 23.0282 0.0050 42.7166 20.5596 0.0082 58.6990 24.3036 0.0051 
        0.5     92.2061 16.5154 0.0001 63.613 23.5619 0.0050 37.7572 18.4806 0.0082 59.3584 24.4476 0.0051 
        0.8     91.6570 15.9317 0.0001 66.3153 22.9051 0.0050 37.3459 19.1649 0.0083 61.8058 24.6797 0.0051 

Total 91.6988 19.4780 0.0001 70.0805 27.0107 0.0050 45.1101 24.5031 0.0083 66.3551 28.7118 0.0051    
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Table 6  
Small-sized test instances: RDI values for TF and RDD (part 2) 

TF RDD OMDD-S SPAM MILP 
               Average St. Dv. Time  Average St. Dv. Time  Average St. Dv. Time  

0.2     0.2      51.5566 24.1698 0.0010 4.3980 8.6981 373.9367 22.5721 29.3454 541.7492 
       0.5      44.0141 27.3227 0.0010 3.3462 7.2883 306.9237 27.1313 34.3152 494.8373 
       0.8      42.4777 30.1257 0.0010 4.0201 9.2227 297.3631 27.2049 34.7209 482.5090 

0.5     0.2      37.8550 19.4474 0.0010 0.9346 3.6179 375.1919 39.0991 32.4801 566.5620 
       0.5      36.4583 20.5938 0.0010 1.6021 5.0088 64.7990 44.6720 37.0097 573.6156 
       0.8      32.7976 22.2552 0.0010 1.2377 4.3834 360.7954 46.0753 37.4934 575.5708 

0.8     0.2      29.2587 17.6455 0.0010 0.6277 2.8225 359.8273 48.1889 31.7879 582.6589 
       0.5      27.2532 17.4737 0.0010 0.8362 3.1991 367.9543 52.0129 35.1051 577.6879 
       0.8      25.9665 16.3588 0.0010 0.7279 3.1273 364.1244 50.0111 35.1252 573.5116 

Total 36.4042 23.5445 0.0010 1.9700 5.9310 352.324 39.6631 35.7772 552.0780 

Fig. 5 describes the aggregated results considering TF. We can observe that matheuristic SPAM returned the best average 
results for the small-sized test instances. The MILP model obtained good results for TF = 2: however, for TF equals 0.5 and 
0.8, it was outperformed by the SPAM and OMDD-S methods, respectively. Figure 6 illustrates the aggregated boxplots 
concerning the RDD indicator. Considering these results, we can highlight that the SPAM matheuristic returned the better 
average results for all the methods under comparison. 

Table 7  
Small-sized test instances: % of optimality for TF and RDD 

TF     RDD        EDD       FP        FP-S      OMDD      OMDD-S    SPAM      MILP      
0.2           0.2          0,00% 0,00% 0,00% 0,00% 0,00% 4,44% 13,70% 

              0.5          7,41% 7,41% 7,41% 7,41% 7,41% 12,22% 21,85% 
              0.8          10,37% 10,37% 10,37% 10,37% 11,11% 14,81% 27,41% 

0.5           0.2          0,00% 0,00% 0,00% 0,00% 0,00% 2,96% 10,37% 
              0.5          0,00% 0,00% 0,00% 0,00% 0,00% 2,96% 9,63% 
              0.8          0,00% 0,37% 0,37% 0,00% 0,00% 4,07% 8,15% 

0.8           0.2          0,00% 0,00% 0,37% 0,00% 0,37% 3,33% 6,30% 
              0.5          0,00% 0,00% 0,00% 0,00% 0,00% 1,48% 7,78% 
              0.8          0,00% 0,00% 0,37% 0,00% 0,00% 2,59% 7,41% 

Total   1,98% 2,02% 2,10% 1,98% 2,10% 5,43% 12,51% 

  
Fig. 5. Small-sized test instances: boxplot for average 𝑅𝐷𝐼 

values depending on 𝑇𝐹 Fig. 6. Large-sized test instances: boxplot for average 𝑅𝐷𝐼 
values depending on 𝑅𝐷𝐷 

Table 8 presents the results for the SR indicator. We can observe that the SPAM matheuristic returned the largest SR value 
between all the evaluated methods. Based on the performance indicators analyzed in the computational results, we can 
conclude that SPAM matheuristic is the best method for the small-sized test instances. 

Table 8 
Small-sized test instances: SR values 

EDD      FP       FP-S     OMDD     OMDD-S   SPAM      MILP 
1,98% 0,65% 0,93% 0,82% 1,37% 30,75% 8,93% 

5.2.2 Large-sized test instances 

Table 9 and Table 10 illustrates the computational results considering distinct values for 𝑚 and 𝑛. Taking into consideration 
the first set of instances (𝑚 = 2 and 𝑛 = 10), we can observe that the SPAM returns the best solutions among all the 
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considered methods. However, with the increasing of the values of 𝑚 and 𝑛, MILP model and SPAM-JPO return the best 𝑅𝐷𝐼 values. 
Table 9  
Large-sized test instances: RDI values for m and n (part 1) 

m n EDD FP FP-S OMDD OMDD-S 
           Average St. Dv. Average St. Dv. Average St. Dv. Average St. Dv. Average St. Dv. 
2 10 96.0493 9.3616 74.0344 25.0666 56.2164 27.9392 71.7100 26.1257 38.9925 21.3457 
     20 78.0808 39.7039 59.7296 36.7141 50.7682 35.8774 60.5183 37.2953 34.4581 28.589 
     30 51.2699 47.9732 38.7929 38.8785 32.3783 34.8791 37.3421 38.5414 14.9562 21.4639 
     40 30.6115 41.6665 20.7499 29.2799 16.2446 24.2014 20.6954 29.5093 5.5452 12.3045 
5 10 93.7887 12.8440 73.2340 23.6784 58.8424 26.2345 67.0770 26.035 37.4087 21.3143 
     20 68.5931 38.5886 51.8989 33.9248 47.7679 33.6858 49.4103 34.2563 26.2327 27.6293 
     30 24.8256 30.0024 15.7638 19.9920 14.0551 19.2174 14.7223 19.7352 5.0594 13.3444 
     40 12.5403 18.9989 7.7343 11.3168 6.2689 9.0028 7.2335 12.0397 0.8205 3.8954 
8 10 91.5210 15.5189 68.1319 24.8727 56.2488 25.4111 64.4638 26.754 34.851 20.2135 
     20 47.8643 34.6722 35.4441 30.6042 32.0611 30.927 34.0785 30.4616 16.3654 24.0684 
     30 13.8092 17.0370 8.3775 9.3839 7.6681 9.6344 7.2338 9.0156 1.2870 3.4212 
     40 7.0822 10.0866 4.0645 5.4368 4.1008 5.6089 3.7166 5.1589 0.0762 0.4868 
Total 51.3363 43.6517 38.1630 36.6161 31.8851 32.8421 36.5168 36.2386 18.0044 24.0698 

 
Table 10  
Large-sized test instances: RDI values for m and n (part 2) 

m n SPAM MILP SPAM-JPO JPO 
              Average St. Dv. Average St. Dv. Average St. Dv. Average St. Dv. 

2 10 2.5691 5.0185 4.1034 6.0077 4.5762 6.4201 22.7252 18.4103 
        20 9.4939 13.0045 1.4788 3.8262 10.6221 15.5238 29.8185 25.6702 
        30 29.6135 35.5353 3.3109 11.3456 6.2066 9.5153 14.9408 21.4362 
        40 47.8850 46.3269 7.4285 16.0226 3.2077 7.8071 5.5452 12.3045 

5 10 44.4169 31.2991 0.8070 3.4905 2.6394 5.1434 35.9667 20.1085 
        20 56.7089 40.8491 1.5417 5.5628 18.0544 24.0035 26.0185 27.2406 
        30 63.7955 47.0304 8.1344 18.8562 3.5100 10.4422 5.0594 13.3444 
        40 63.6526 48.1386 13.7993 23.4163 0.6903 3.8231 0.8205 3.8954 

8 10 59.8336 29.7481 0.5792 2.9924 2.3233 5.0796 34.0763 19.5936 
        20 72.9362 42.2317 2.1991 6.2835 10.4192 18.2998 16.2987 23.8797 
        30 70.3357 45.7281 8.7350 15.6913 1.0305 2.7315 1.2870 3.4212 
        40 65.4765 47.5565 16.1070 24.7707 0.0684 0.4767 0.0762 0.4868 
Total 48.8931 44.5045 5.6854 14.6673 5.2790 12.3564 16.0528 22.1632 

Table 11 describes the optimality percentages for the evaluated methods in the large-sized test instances, considering m and 
n values. We can observe that the MILP model and the hybrid matheuristic SPAM-JPO can find the largest number of optimal 
solutions. Analyzing the sets of instances separately, we can highlight that for m=5 and n=10, the MILP model obtained the 
largest percentage of optimality (64.81%). 

Table 11  
Large-sized test instances: % of optimality for m and n 

m n  EDD       FP        FP-S  OMDD  OMDD-S  SPAM  MILP  SPAM-JPO   JPO       
2 10 0.00% 0.00% 0.00% 0.00% 0.37% 56.30% 43.33% 39.26% 4.07% 
             20 20.00% 20.00% 20.00% 20.00% 20.00% 25.93% 25.93% 23.33% 20.37% 
             30 40.00% 40.00% 40.00% 40.00% 40.00% 41.48% 41.48% 40.37% 40.00% 
             40 45.19% 45.19% 45.19% 45.19% 45.19% 42.22% 45.19% 45.19% 45.19% 
5 10 0.00% 0.00% 0.00% 0.00% 0.37% 4.44% 64.81% 49.63% 0.37% 
             20 17.78% 17.78% 0.1778 17.78% 17.78% 20.74% 21.11% 17.78% 17.78% 
             30 33.70% 33.70% 33.70% 33.70% 33.70% 33.33% 34.07% 33.70% 33.70% 
             40 40.37% 40.37% 40.37% 40.37% 40.37% 35.93% 40.37% 40.37% 40.37% 
8 10 0.00% 0.00% 0.00% 0.00% 0.37% 0.37% 55.19% 40.74% 0.37% 
             20 15.56% 15.56% 15.56% 15.56% 15.56% 19.26% 19.26% 16.30% 15.56% 
             30 31.85% 31.85% 31.85% 31.85% 31.85% 28.89% 31.85% 31.85% 31.85% 
             40 38.15% 38.15% 38.15% 38.15% 38.15% 33.33% 38.15% 38.15% 38.15% 
Total 23.55% 23.55% 23.55% 23.55% 23.64% 28.52% 38.40% 34.72% 23.98% 

Based on Table 9 and Table 10, we can observe that FP-S algorithm outperforms the FP heuristics since the first one presents 
smaller average 𝑅𝐷𝐼 values for all the sets of instances, except for the problems with 𝑚 = 8 and 𝑛 = 40. However, the 
difference between the 𝑅𝐷𝐼 values between FP-S and FP heuristics in these test instances is only 0.0363%. We can also 
emphisize that OMDD-S algorithm outperforms the OMDD heuristic since it returned best average 𝑅𝐷𝐼 values for all the test 
instances. Furthermore, OMDD-S presented the better results considering all the methods under comparison for five groups 
of test instances.  
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Table 12 and Table 13 present the 𝑅𝐷𝐼 values (average and standard deviation) considering TF and RDD. Once again, SPAM 
and OMDD-S have returned the best values for the RDI indicator. Also, the FP heuristic has presented the worst performance 
among the methods under comparison. 

Table 12 
Large-sized test instances: RDI values for TF and RDD (part 1) 

TF RDD    EDD FP FP-S OMDD OMDD-S 
                Average St. Dv. Average St. Dv. Average St. Dv. Average St. Dv. Average St. Dv. 

0.2       0.2     49.7108 46.3151 37.9304 39.5661 32.3280 35.8786 39.0234 39.8507 24.8065 28.6791 
         0.5     44.1941 45.6207 35.7960 39.8416 33.3222 37.9785 35.1458 39.3492 21.5752 29.1973 
         0.8     35.8728 44.9106 27.9817 37.7023 24.3531 34.2296 26.2024 36.6533 14.4111 23.694 

0.5       0.2     60.7937 42.2037 46.5010 38.2813 39.9098 35.5864 46.3644 37.7785 26.4463 26.4100 
         0.5     52.1433 44.0704 39.5498 37.8962 34.9246 35.7333 37.6886 37.8441 19.9796 26.1782 
         0.8     45.3101 44.6130 32.7084 35.6869 26.9918 31.5203 32.0222 36.1065 15.1196 22.7104 

0.8       0.2     64.1586 36.8215 44.7169 30.9769 34.4809 25.7323 41.7298 30.6978 14.5048 17.2718 
         0.5     57.2549 38.8929 40.3317 31.0763 30.9592 25.4458 36.5535 30.5876 12.9058 16.5442 
         0.8     52.5883 41.7649 37.9509 34.1006 29.6960 28.5363 33.9210 32.5531 12.2908 17.1234 

Total  51.3363 43.6517 38.1630 36.6161 31.8851 32.8421 36.5168 36.2386 18.0044 24.0698 
 
Table 13  
Large-sized test instances: RDI values for TF and RDD (part 2) 

TF RDD SPAM MILP SPAM-JPO JPO 
                 Average St. Dv. Average St. Dv. Average St. Dv. Average St. Dv. 

0.2      0.2       22.0448 35.8186 2.5654 7.2692 6.6008 13.2974 20.9657 26.1605 
        0.5       25.3158 38.6867 3.9393 12.3742 5.7427 14.7685 19.8600 27.4597 
        0.8       26.1552 40.3818 5.5456 17.7981 3.3797 9.0318 12.6304 21.5056 

0.5      0.2       39.4726 41.5005 1.9476 7.9712 9.1069 14.8537 23.5571 24.2580 
        0.5       45.1672 44.4587 2.9747 11.2436 7.7670 18.1712 17.6779 23.9755 
        0.8       58.6733 44.3084 5.8597 16.5763 4.5871 13.3385 14.0253 21.9911 

0.8      0.2       71.9319 36.8566 7.7371 15.4082 3.6934 6.2072 12.9980 15.8555 
        0.5       75.3769 35.5378 9.9924 16.8006 3.1289 5.8179 11.6613 14.7730 
        0.8       75.9003 34.8084 10.6064 18.7741 3.5047 7.9139 11.0991 15.7275 

Total 48.8931 44.5045 5.6854 14.6673 5.2790 12.3564 16.0528 22.1632 

Taking into consideration the Table 12 and 13, we can observe that FP-S algorithm outperforms the FP heuristic for all the 
evaluated test instances. In addition, the OMDD-S algorithm outperforms the OMMD heuristics also for all the test instances. 
Finally, we can highlight that the SPAM matheuristic presented better average 𝑅𝐷𝐼 values than the MILP model for all the 
available test instances. Table 14 describes the percentage of optimality for the methods under comparison, classified by TF 
and RDD. We can observe that for TF=0.2 and RDD=0.8 the MILP model obtained the largest percentage of optimal solutions 
(59.72%). Subsequently, the hybrid matheuristic SPAM-JPO can find a greater number of optimal solutions in comparison 
with the remainder methods. 

Table 14  
Large-sized test instances: % of optimality for TF and RDD 

TF RDD  EDD       FP  FP-S  OMDD  OMDD-S  SPAM  MILP  SPAM-JPO  JPO 
0.2     0.2      41.67% 41.67% 41.67% 41.67% 41.67% 46.39% 51.11% 50.28% 41.94% 

        0.5      44.44% 44.44% 44.44% 44.44% 44.44% 56.39% 56.39% 53.06% 45.00% 
        0.8      49.72% 49.72% 49.72% 49.72% 49.72% 57.78% 59.72% 58.06% 50.28% 

0.5     0.2      25.00% 25.00% 25.00% 25.00% 25.00% 30.56% 38.33% 34.44% 25.28% 
        0.5      26.11% 26.11% 26.11% 26.11% 26.11% 32.22% 42.78% 36.67% 26.67% 
        0.8      24.17% 24.17% 24.17% 24.17% 24.44% 20.56% 42.78% 38.33% 25.00% 

0.8     0.2      0.00% 0.00% 0.00% 0.00% 0.00% 4.17% 18.06% 13.89% 0.00% 
        0.5      0.00% 0.00% 0.00% 0.00% 0.56% 4.44% 17.78% 13.06% 0.83% 
        0.8      0.83% 0.83% 0.83% 0.83% 0.83% 4.17% 18.61% 14.72% 0.83% 

Total 23.55% 23.55% 23.55% 23.55% 23.64% 28.52% 38.40% 34.72% 23.98% 

Fig. 7 illustrates the boxplot for average 𝑅𝐷𝐼 values taking into consideration the parameter 𝑇𝐹. Given the obtained results, 
we can highlight that the JPO-SPAM matheuristic returned the best results for all the values of TF. Besides, the MILP model 
presented the worse results for 𝑇𝐹 equals to 0.8. Figure 8 illustrates the average 𝑅𝐷𝐼 values depending on 𝑅𝐷𝐷. Once again, 
the hybrid matheuristic SPAM-JPO presented better results than all the other methods under comparison. Table 15 presents 
the SR indicator for each evaluated method. We can observe that the MILP model can find the largest number of best solutions. 
In fact, for the large-sized instances, the difference between the MILP model and the hybrid matheuristic SPAM-JPO is not 
statistically significant. 

Table 15 
Large-sized test instances: SR values 

EDD  FP  FP-S  OMDD  OMDD-S  SPAM  MILP  SPAM-JPO   JPO 
28.43% 28.43% 28.52% 28.43% 43.95% 32.47% 69.32% 59.81% 44.29% 
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Fig. 7. Large-sized test instances: boxplot for average 𝑅𝐷𝐼 values depending on 𝑇𝐹 

 
Fig. 8. Large-sized instances: boxplot for average 𝑅𝐷𝐼 values depending on 𝑅𝐷𝐷 

6. Conclusions 

This paper has introduced a COSP that considers sequence-dependent setup time for the total completion time minimization. 
An MILP model has been proposed for the proposed variant. Besides, two constructive heuristics, as well as two matheuristics, 
have also been presented. Extensive computational experiments have been reported with two datasets composed of randomly 
generated test instances, aiming to evaluate the methods under comparison. As the performance indicators, the study used the 
RDI, the SR, and the average computational time. We evaluated 5670 instances, divided into 2430 small-sized and 3240 large-
sized instances. Based on the computational experience, we can observe that for the small-sized test instances, the SPAM 
matheuristic and the OMDD-S constructive heuristic returned the best average RDI values. Thus, our proposal presented 
better results than all the other methods under comparison. Concerning the large-sized test instances, the proposed the hybrid 



  

 

236

matheuristic SPAM-JPO outperforms the JPO metaheuristic – which is the state-of-the-art solution method for the COSP to 
minimize total tardiness – with the same time limit. Therefore, the proposed matheuristic is a promising method to solve the 
problem under study. As suggestions for future studies, other matheuristics and matheuristics could be developed. The 
OMDD-S heuristic could be used as a warm start to MILP and SPAM methods, improving the solutions returned by these 
methods. Another research avenue is the consideration of other performance measures, such as total earliness or just-in-time 
problems. 
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