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 In this paper it is presented an improvement of the branch and bound algorithm for the permutation 
flow shop problem with blocking-in-process and setup times with the objective of minimizing the 
total flow time and tardiness, which is known to be NP-Hard when there are two or more machines 
involved. With that objective in mind, a new machine-based lower bound that exploits some 
structural properties of the problem. A database with 27 classes of problems, varying in number of 
jobs (n) and number of machines (m) was used to perform the computational experiments. Results 
show that the algorithm can deal with most of the problems with less than 20 jobs in less than one 
hour. Thus, the method proposed in this work can solve the scheduling of many applications in 
manufacturing environments with limited buffers and separated setup times.  
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1. Introduction 

In a flow shop scheduling problem, a number of jobs must be processed on each of the m machines. Every job must go on 
through the same machines in the same order (i.e., all jobs must be processed first on machine 1, then on machine 2, and so 
on). The permutation constraint means that all jobs must be processed on every machine in the same exact sequence, all 
machines can process no more than one job at a time, and interruptions are not accepted. The blocking constraint with zero 
buffer represents the lack of intermediate queues between machines, which blocks a machine in case a job finishes its 
processing on it and the next machine is still processing another job. Lastly, the setup constraint means that the setup times 
are separate from the processing times on the machines. 
 
The total tardiness represents the time exceeded at the end of a task in relation to its due date. When not met, this criterion 
can result in contractual fines, increasing the total cost, in addition to the loss of reliability, a factor that results in loss of 
customers and damage to the company's reputation. 
 
According to Garey et al. (1976) the flow shop problem with two or more machines and with the objective to minimize the 
total flow time is NP-hard. 
 
Many papers consider the setup time either attached to processing time or nonexistent (Mccormick et al., 1989; Pan & Wang, 
2012; Ronconi, 2004). Considering the setup time detached from the processing time grants more flexibility for the scheduling, 
allowing, for example, a machine to be prepared right after it finishes the processing of the previous job, even before the 
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previous machine has finished processing the job. This ensures a better use of time, consequently a possible reduction in the 
total flow time and, perhaps, in the tardiness. Moreover, there is a different setup time for each pair of jobs in each machine. 
 
There are papers that considered the problem with unrestrained buffers (Nawaz et al., 1983), which may not represent the 
reality of an Industry. In an environment with limited buffers, there is a possibility of a machine blockage. In this paper, a 
zero buffer constraint is considered, i.e., there is no buffer in between machines. The lack of buffers can induce blocking to 
occur, which is when a job that has already been processed on a specific machine blocks it until the next machine is ready to 
receive it.  Any flow shop problem with limited buffers can be modeled as a flow shop problem with zero buffer, because a 
machine with zero setup and processing times for all jobs can represent a unit capacity buffer (Mccormic et al., 1989). Figure 
1 shows a Gantt chart of the problem. 
 
The chart in Fig. 1 starts immediately after the job i finished being processed on both machines 1 and 2. So, the chart begins 
with both machines being setup to start processing job j (𝑆௜௝ଵ and 𝑆௜௝ଶ). It can be noted that the setup on machine 2 can start 
even before machine 1 has finished its setup. After the setup on machine 2 is finished, it must wait for machine 1 to finish 
processing job j before it can start processing it, so it stays idle for a while. Each machine can start setting up for the next job 
(𝑆௝,௝ାଵ,ଵ and 𝑆௝,௝ାଵ,ଶ) immediately after it finishes processing job j. In this case, observe that machine 1 has finished processing 
job j+1 prior to the end of the setup process on machine 2. Since there is no buffer between the machines, a block occurs. That 
is, the job must stay on Machine 1 waiting, impeding it from initiating the setup for job j+2. 
 

 
Fig. 1. Example of a blocking flow shop scheduling problem with setup times 

 
Miyata and Nagano (2019) presented a review of 139 papers that address the m-machine flow shop scheduling problem with 
blocking constraints. Results show that most of the papers propose metaheuristics or constructive heuristics methods to solve 
the problem (77% of the papers in total), and most of the papers focus on minimizing makespan (62% of the papers reviewed). 

 
Heuristics methods are usually used to solve large-sized blocking flow shop problems due to their complexity. One of the first 
authors to explore the blocking environment were Reddi & Ramamoorthy (1972), which consisted of reducing a flow shop 
problem with two machines, zero buffer, and the objective function of minimizing the makespan to a special case of the 
Traveling Salesman Problem, which can be solved in polynomial time using the Gilmore-Gomory algorithm (Gilmore & 
Gomory, 1964). Mccormick et al. (1989) developed a constructive heuristic named Profile Fitting (PF), which attempts to 
schedule the tasks to minimize the sum of idle times, as well as machine blocking times. Ignall and Schrage (1965) developed 
a branch and bound algorithm to minimize the mean completion time in a two-machine case and the makespan on a flow shop 
environment with three machines. Bansal (1977) expanded this machine based lower bound to an environment with m 
machines with the objective to minimize the total flow time considering all release dates equal to zero. Ahmadi & Bagchi 
(1990) proposed a machine based lower bound with the preemptive relaxation, which, in terms of value, outperformed the 
formulation of Bansal (1977). Chung et al. (2002) considered the total flow time problem in a flow shop environment, then 
introduced a new lower bound that surpassed both previous methods. Results show that the algorithm can handle problems 
with 15 jobs or less and can solve most problems with up to 20 jobs. Chung et al. (2006) proposed an adaptation of the lower 
bound proposed by Chung et al. (2002) to minimize the total tardiness. Results show that the algorithm can solve problems 
with 𝑛 ≤ 20. Only a few papers explore the use of a branch and bound algorithm to solve the flow shop problem with blocking. 
Ronconi and Armentano (2001) developed a lower bound based on departure time that was used to minimize both the total 
tardiness and the makespan in flow shops with zero buffer problems. Ronconi (2005) outrun the lower bound for the blocking 
flow shop problem with the objective of minimizing the makespan proposed by Ronconi & Armentano (2001) in most of the 
cases. Their lower bound determined an underestimated departure time of the last job in a non-partial sequence. Moslehi & 
Khorasanian (2013) developed a lower bound that minimizes the total flow time in a flow shop problem with zero buffer 
constraint. The proposed algorithm is capable of solving problems with 𝑛 ≤ 18 and 𝑚 ≤ 10 of 17 instances of the Taillards 
(Taillard, 1993) benchmark in less than 20 minutes. Sanches et al. (2016) proposed the use of different initial upper bounds 
(UB) to reduce the computational time of the branch and bound algorithm in flow shop problems with blocking and the 
objective of minimizing the makespan. Many heuristic methods were evaluated to provide an initial UB, and a significant 
reduction of the computational time was noticed in some of them. Nagano et al. (2020) proposed a machine-based lower 
bound for the problem. The lower bound exploits the machine idleness and the occurrence of blocking and proved to be able 
to optimally solves small and medium problems. The proposed lower bound was applied to a branch and bound algorithm and 
compared to the lower bound proposed by Moslehi & Khorasanian (2013), results show that the former outperforms the latter. 
 

Machine 1

Machine 2

S ij 1 S j ,j +1,1P j 1

S ij 2

P j +1,1 Block

S j ,j +1,2P j 2
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The flow shop problem with both blocking and setup time constraints was very little explored in the literature. Rios-Mercado 
& Bard (1999) were one of the pioneers to address this problem. In their work, the lower bound proposed by Ignall & Schrage 
(1965) was adapted to the problem. A lower bound for the makespan in a flow shop problem with blocking and sequence 
dependent setup times was created by Takano & Nagano (2017). The proposed lower bound addresses two structural 
properties of the problem: an upper bound for the machine idle and a lower bound for the machine blocking time. Takano & 
Nagano (2019) evaluated 28 different constructive heuristics for the permutation flow shop problem with blocking and setup 
and the objective function to minimize the makespan. Takano & Nagano (2020) also addressed the problem with the 
minimization of the makespan objective. They proposed two mixed-integer programming (MILP) models and adapted the 
two models proposed by Ronconi & Birgin (2012) for the problem. Also, an Iterated Greedy (IG) algorithm proposed by Pan 
& Ruiz (2014) was adapted for the problem and compared to the MILP models. Robazzi et al. (2021) presented an 
improvement of the branch-and-bound algorithm for the blocking-in-process and setup times permutation flow shop problem 
with total flow time criterion. Tests show that the algorithm can handle most of the n < 20 problems in less than one hour. 
 
In this paper two different lower bounds for the branch and bound algorithm for permutation flow shop problems with blocking 
and sequence dependent setup time constraints are presented. The proposed lower bounds aim to optimally solve small and 
medium size problems. One of which deals with the total flow time criterion and the second one deals with the total tardiness 
criterion. 
 
The problem is defined, and its equations are detailed in Section 2. The branch and bound algorithm method is described, and 
the development of the lower bounds are demonstrated and explained in Section 3. The results of the computational tests are 
displayed in Section 4 and, finally, in section 5 the conclusions are presented. 
 
2.  Problem Definition 
 
Regardless of the evaluation criterion, a set of equations can be used to define the flow shop problem with blocking and 
sequence dependent setup time constraints. Thereunto, the following variables are used: 
 
σ: arbitrary sequence of jobs; 
k: available machine; 
i: job that directly precedes job j in the sequence; 
pjk: processing time of the j-th job in the sequence on machine k; 
Sijk: setup time of machine k between the i-th and the j-th job in the sequence; 
S01k: setup time of machine k before processing the first job in the sequence; 
Rjk: completion time of the setup of machine k to the j-th job in the sequence; and 
Djk: departure time of the j-th job in the sequence on machine k. 
 
Equations 1 to 5 show how the departure times are calculated for a given sequence: 
 𝑅ሾଵሿ௞ = 𝑆ሾ଴ሿሾଵሿ௞ ∀ 1 ≤ 𝑘 ≤ 𝑚 (1) 𝐷௝ଵ = max൫𝑅௝ଶ,𝑅௝ଵ + 𝑝௝ଵ൯ ∀ 1 ≤ 𝑗 ≤ 𝑛 (2) 𝐷௝௞ = max൫𝑅௝,௞ାଵ,𝐷௝,௞ିଵ + 𝑝௝௞൯ ∀ 1 ≤ 𝑗 ≤ 𝑛; 2 ≤ 𝑘 ≤ 𝑚 − 1 (3) 𝐷௝௠ = 𝐷௝,௠ିଵ + 𝑝௝௠ ∀ 1 ≤ 𝑗 ≤ 𝑛 (4) 𝑅௝௞ = 𝐷௜௞ + 𝑆௜௝௞ ∀ 2 ≤ 𝑗 ≤ 𝑛; 1 ≤ 𝑘 ≤ 𝑚  
 
First, the completion times of the setup of the first job in the sequence on all machines (R[1]k) are calculated by Eq. (1). Then, 
the departure times of the first job on all machines (D[1]k) are calculated by Eqs. (2-4). Then, Eq. (5) is used to calculate Rjk 
for the subsequent job on all machines . Eqs. (2-4) are used again to calculate the departure times (Djk) of the next job on all 
machines. This is repeated until the departure time of the last job on the last machine is calculated. 
 
The sum of all departure times of all jobs on the last machine (Djm) is the total flow time, and the sum of all tardiness of all 
jobs (𝐷௝௠ − 𝑑௝) is the total tardiness. Therefore, to calculate the total flow time (TFT) and the total tardiness (TT), Eq. (6) and 
Eq. (7) are used respectively. 
 𝑇𝐹𝑇 = ෍𝐷௝௠௡

௝ୀଵ  
(6) 

𝑇𝑇 = ෍max൫𝐷௝௠ − 𝑑௝ , 0൯௡
௝ୀଵ  

(7) 

where: 𝑑௝ is the due date of job j. 
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3. The Branch and Bound Algorithm 
 
The branch and bound algorithm is a method used to obtain the best feasible solution of a problem. It does so by replacing the 
original problem by a set of sub-problems, called nodes, which are usually much easier to solve. This replacement process 
can be repeated until the best feasible solution is obtained. For the scheduling problem, each node is defined by a Partial 
Sequence (PS). A Non-Partial Sequence (NPS) is the set of jobs that are not included in a PS, and there is one for each node. 
 
Every time a node is branched, two or more new nodes are created by including a job from |NPS| to the |PS| that belongs to 
the node that is being branched. A lower bound of the optimization criterium is calculated for each new node, which represents 
the smallest value that can be obtained by that |PS|, regardless of the sequence of the jobs in |NPS|. 
 
In this paper, the depth first rule to select the nodes that will be branched. This rule states that the node with the most jobs in 
|PS| is branched. the lowest lower bound breaks the ties. This paper aims to evaluate the quality of the proposed lower bounds; 
therefore, the initial solution is at first defined as a very high value, called big M, and is updated every time a smaller feasible 
solution is obtained. 
 
3.1. Proposed Lower Bounds 
 
The lower bound used determines the effectiveness of a branch and bound algorithm. Minor computational complexities and 
tightness of these lower bounds define their efficiency. Thus, the proposed lower bounds focus on both these characteristics, 
and, for that, they use the following definitions: 
 𝑝ሾ௝ሿ௞: is the (j-s)-th smallest processing time among all jobs that have not yet  been scheduled on machine k; 𝑆௜ሾଵሿ௞: is the smallest setup time after job i among all jobs that have not yet  been scheduled on machine k; 𝑆ሾଵሿ௝௞: is the smallest setup time before job j among all jobs that have not yet  been scheduled on machine k; 𝐸𝐷௧௞: is an underestimation of the departure time of a job in position 𝑡 > 𝑠 on  machine k. Where s is the last job in the 
partial sequence σ; 𝑑ሾ௝ሿ: is the (j-s)-th smallest due date among all jobs that have not yet been  scheduled. 
 
The lower bound adopts a relaxation in which one machine can process just one job at a time whilst the others can handle all 
n jobs at a time. Also, another relaxation assumed is that the setup time used is always the smallest one available. To do that, 
it is used the following notations: 
 𝑆𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ = ൛𝑆ሾଵሿ,|௉ௌାଵ|,௞, 𝑆ሾଵሿ,|௉ௌାଶ|,௞, … , 𝑆ሾଵሿ,௝,௞ , … , 𝑆ሾଵሿ,௡,௞ , ൟ 
 𝑆ሶ𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ = 𝑆𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ arranged in a non-decreasing order. 
 𝐸𝐷௧௞ is given by Eq. (8). 
 

𝐸𝐷௧௞ = max൮max൮𝑆𝑇௦ାଵ,௞ + ෍ 𝑝ሾ௝ሿ௞௧ିଵ
௝ୀ௦ାଵ ; 𝑆𝑇௦ାଵ,௞ାଵ + ෍ 𝑝ሾ௝ሿ,௞ାଵ௧ିଶ

௝ୀ௦ାଵ + 𝑆ሶ𝑒𝑡𝑢𝑝௞ାଵሺ𝑡 − 1ሻ൲ + 𝑆ሶ𝑒𝑡𝑢𝑝௞ሺ𝑡ሻ; 𝑆𝑇௦ାଵ,௞ିଵ + ෍ 𝑝ሾ௝ሿ,௞ିଵ௧
௝ୀ௦ାଵ ൲ + 𝑝ሾ௧ሿ௞ 

(8) 

 
where 𝑆𝑇௦ାଵ,௞ is the underestimate of the starting time of the processing of job (s+1) on machine k, as shown in Eq. (9). 
 𝑆𝑇௦ାଵ,௞ = max൫𝐷௦௞ + 𝑆௦,ሾଵሿ,௞; 𝑆𝑇௦ାଵ,௞ିଵ + 𝑝ሾ௦ାଵሿ,௞ିଵ൯ (9) 
 
For 𝑘 = 1 and 𝑘 = 𝑚, the formulation excludes the 𝑘 − 1 and 𝑘 + 1 terms, respectively. In Fig. 2 it is shown how 𝐸𝐷௧௞ and 𝑆𝑇௦ାଵ,௞ are represented in a GANTT chart. 
 

 
Fig. 2. 𝐸𝐷௧௞ and 𝑆𝑇௦ାଵ,௞ representation in a GANTT chart 
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A different lower bound is proposed for each of the criterions. 
 
3.1.1. Total Flow Time 
 
According to Pinedo (2008) the SPT rule is optimal for total flow time criterion on a single machine, thus it is possible to 
obtain a lower bound for the flow shop problem. The lower bound of a partial sequence σ of size s is estimated as follows: 
 𝐿𝐵்ி் = 𝑇𝐹𝑇ሺ𝜎ሻ + maxଵஸ௞ஸ௠ 𝐿𝐵௞்ி் (10) 𝐿𝐵௞்ி் = ෍ ൭𝐸𝐷௧௞ + ෍ 𝑝௧௥௠

௥ୀ௞ାଵ ൱௡
௧ୀ௦ାଵ  

(11) 

 
3.1.2. Total Tardiness 
 
The proposed lower bound for the total tardiness is based on the idea proposed by Chung et al. (2006) to underestimate the 
tardiness. 
 𝐿𝐵்் = 𝑇𝑇ሺ𝜎ሻ + maxଵஸ௞ஸ௠ 𝐿𝐵௞ (12) 𝐿𝐵௞்் = ෍ max൭𝐸𝐷௧௞ + ෍ 𝑞ሾ௧ି௦ሿ,௥௠

௥ୀ௞ାଵ − 𝑑ሾ௧ି௦ሿ; 0൱௡
௧ୀ௦ାଵ  

(13) 

 
4. Computational Results 
 
In this section the computational tests performed to evaluate the effectiveness of the proposed lower bounds (LB) are 
described. The problem instances database from Ronconi & Armentano (2001), in which the processing times were randomly 
generated in a uniform distribution varying from 1 to 99, were used for the computational tests. This database consists of 27 
different problem classes, every one varying in number of jobs and machines, each with 20 unique problems, totaling 540 
instances. 
 
Setup times are not included in the database provided by Ronconi & Armentano (2001). Thus, to evaluate the impact of the 
setup times in the lower bounds, four different databases for the setup times were randomly generated for these tests. To form 
these databases, the range of values over which the setup times were uniformly distributed were: 
 
• Database 1: from 01 to 09; 
• Database 2: from 01 to 49; 
• Database 3: from 01 to 99; 
• Database 4: from 01 to 124. 
 
The ranges of the setup times were defined roughly to 10%; 50%; 100%; and 150% of the processing time respectively. 
Thereby, it is possible to evaluate the influence of the setup time on the lower bounds. E.g., if the results for the problems of 
database 1 and the results of database 4 are similar, consequently it can be established that the value of the setup time does 
not influence or have little influence in determining the best lower bound. Each of the setup time databases was combined 
with the processing time database, totaling four different databases, each with 540 instances. This results in 2160 different 
problems. 
 
As proposed by Ronconi & Armentano (2001), the due dates of the jobs were uniformly distributed between 𝑃ሺ1 − 𝑇𝐹 − 𝐷𝑅/2ሻ and 𝑃ሺ1 − 𝑇𝐹 + 𝐷𝑅/2ሻ. Where, 𝑇𝐹 is the Tardiness Factor, 𝐷𝑅 is the Dispersion Range of the due dates, 
and P is a lower bound of the problem with unlimited buffer. P is defined by Eq. (14), which is an adaptation of the equation 
proposed by Ronconi & Armentano (2001). The adaptation was required because the original equation did not consider setup 
times, thus, the due date would be too short to evaluate the method. 
 𝑃 = maxቌ maxଵஸ௞ஸ௠෍𝑝௝௞௡

௝ୀଵ + minଵஸ௝ஸ௡෍𝑝௝௤௞ିଵ
௤ୀଵ + minଵஸ௝ஸ௡ ෍ 𝑝௝௤௠

௤ୀ௞ାଵ ; maxଵஸ௝ஸ௡෍𝑝௝௞௠
௞ୀଵ ቍ + ∑ ∑ ∑ 𝑠௜௝௞௡௜ୀଵ௡௝ୀଵ௠௞ୀଵ 𝑛𝑚  

(14) 

These scenarios represent different configurations by changing the values of 𝑇𝐹 and 𝐷𝑅, as follows: 
 
• Scenario 1: Low Tardiness Factor (𝑇𝐹 = 0.2) and small Dispersion Range (𝐷𝑅 = 0.6); 
• Scenario 2: Low Tardiness Factor (𝑇𝐹 = 0.2) and wide Dispersion Range (𝐷𝑅 = 1.2); 
• Scenario 3: High Tardiness Factor (𝑇𝐹 = 0.4) and small Dispersion Range (𝐷𝑅 = 0.6); 
• Scenario 4: High Tardiness Factor (𝑇𝐹 = 0.4) and wide Dispersion Range (𝐷𝑅 = 1.2). 
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The experimentation codes were written in C and ran on an Intel Core i7-8700K 3.7GHz, 16GB RAM DDR4 3000MHz using 
Microsoft Visual Studio Community 2017. A time limit of 3600 seconds was set for the execution of the algorithm. 
 
To analyze the efficiency of the different lower bounds, the relative percentage deviation was calculated for both the average 
number of created nodes and the computational times, applying the following equation: 
 𝑅𝑃𝐷௏௔௥௜௔௧௜௢௡ = ఙೇೌೝ೔ೌ೟೔೚೙ିఙ∗ఙ∗ ∗ 100  (15) 

 
In Equation 15, 𝜎௏௔௥௜௔௧௜௢௡ is the mean value of either the number of created nodes or the computational time obtained with 
the LB tested and 𝜎∗ is the best value obtained among all the LB variations. 
 
4.1. Total Flow Time 
 
Three variations of the proposed lower bound (𝐿𝐵்ி்) were compared with one another to test the efficiency of the method. 
This was necessary as no other lower bound for the 𝐹௠|𝑏𝑙𝑜𝑐𝑘, 𝑆௜௝௞|∑𝐶௝௠  was found in the literature. The goal of these tests 
is to analyze which varieties of the 𝐿𝐵்ி்solve the problems in less computational time. The three proposed variations are: 
 
• 𝐿𝐵ଵ்ி்: 𝑆௜ሾଵሿ௞ and 𝑆ሾଵሿ௝௞ were defined as zero and were not included in the searches; 
• 𝐿𝐵ଶ்ி்: 𝑆ሶ𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ was defined as zero and was not included in the searches; 
• 𝐿𝐵ଷ்ி்: LB was fully calculated. 
 
Every problem was solved using each one of the 𝐿𝐵்ி் variations, and all algorithms were conducted under the same 
circumstances. The average CPU time consumed, the average number of nodes that needed to be created, and the number of 
unsolved problems considering the setup times databases 1, 2, 3, and 4 are displayed on Tables 1, 2, 3, and 4, respectively. 
 
Table 1 
Comparison of the variations of 𝐿𝐵்ி் – Database 1 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 
10 2 581 576 530 0.01 0.008 0.01 0 0 0 
10 3 8760 8510 8390 0.071 0.06 0.069 0 0 0 
10 4 44300 40400 40200 0.293 0.223 0.28 0 0 0 
10 5 382000 381000 382000 1.904 1.722 1.944 0 0 0 
10 7 696000 661000 672000 3.28 3.185 3.398 0 0 0 
10 10 1560000 1580000 1600000 7.891 8.873 8.768 0 0 0 
12 2 2170 2180 1930 0.061 0.043 0.058 0 0 0 
12 3 99500 82700 81300 0.84 0.575 0.689 0 0 0 
12 4 5510000 5260000 5210000 26.32 26.221 28.437 0 0 0 
12 5 13500000 13200000 13300000 66.189 63.332 67.047 0 0 0 
12 7 41600000 41500000 40900000 223.579 205.25 224.6 0 0 0 
12 10 90900000 77800000 79400000 539.634 437.121 490.666 0 0 0 
14 2 16900 18100 15100 0.644 0.456 0.578 0 0 0 
14 3 8360000 2840000 8130000 57.063 21.574 57.114 0 0 0 
14 4 73100000 111000000 109000000 427.835 550.287 595.402 1 2 2 
14 5 205000000 193000000 193000000 1191.026 1076.282 1129.617 3 2 3 
14 7 299000000 307000000 289000000 2101.254 1976.018 2098.374 8 7 8 
14 10 589000000 614000000 575000000 3510.736 3495.732 3511.206 19 19 19 
16 2 104000 117000 92200 5.135 3.696 4.657 0 0 0 
16 3 3460000 3530000 3180000 129.559 89.907 119.861 0 0 0 
16 4 165000000 141000000 160000000 1105.745 878.71 1065.442 4 3 4 
18 2 843000 1030000 750000 55.86 40.276 51.584 0 0 0 
18 3 27100000 37800000 34600000 840.463 711.829 873.607 0 1 1 
18 4 204000000 270000000 225000000 2410.37 2313.624 2359.329 9 10 9 
20 2 6180000 7690000 5380000 495.834 381.78 452.126 0 0 0 
20 3 72400000 62400000 51000000 2653.069 2306.895 2488.527 12 9 10 
20 4 256000000 281000000 260000000 3600.001 3600.001 3600.001 20 20 20 
Average 76439526.33 80479313.56 76138653.70 720.54 673.84 712.35 2.81 2.70 2.81 
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Table 2 
Comparison of the variations of 𝐿𝐵்ி் – Database 2 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 

10 2 1420 1310 1100 0.028 0.018 0.02 0 0 0 
10 3 20800 19600 24400 0.191 0.152 0.187 0 0 0 
10 4 72100 48800 45100 0.544 0.387 0.432 0 0 0 
10 5 206000 242000 214000 1.382 1.355 1.333 0 0 0 
10 7 519000 496000 513000 3.305 2.867 3.095 0 0 0 
10 10 1310000 1200000 1210000 6.753 6.917 7.048 0 0 0 
12 2 12400 12900 9590 0.183 0.248 0.277 0 0 0 
12 3 703000 821000 800000 5.097 4.963 4.076 0 0 0 
12 4 4090000 2430000 2790000 29.105 17.793 21.131 0 0 0 
12 5 5250000 6080000 6140000 39.324 37.569 41.504 0 0 0 
12 7 24600000 25500000 25400000 147.206 142.323 153.871 0 0 0 
12 10 64900000 51100000 50300000 447.156 335.646 359.675 0 0 0 
14 2 69600 74100 54900 2.657 1.658 2.177 0 0 0 
14 3 8220000 6020000 5760000 97.614 70.584 72.341 0 0 0 
14 4 66200000 32600000 34200000 550.658 300.324 369.081 1 0 0 
14 5 178000000 135000000 161000000 1312.986 985.334 1193.124 4 2 4 
14 7 302000000 394000000 315000000 2661.016 2828.815 2654.844 11 11 11 
14 10 484000000 484000000 447000000 3365.358 3238.832 3308.02 18 16 17 
16 2 520000 595000 407000 27.855 19.407 22.54 0 0 0 
16 3 42300000 33900000 31400000 724.443 539.128 646.615 2 1 1 
16 4 262000000 198000000 192000000 2491.518 1731.481 1995.478 9 7 7 
18 2 4530000 5420000 3550000 314.373 221.093 251.807 0 0 0 
18 3 122000000 174000000 113000000 3171.886 2801.018 2947.936 15 12 14 
18 4 120000000 150000000 99800000 3576.416 3407.678 3501.395 19 16 18 
20 2 21800000 30700000 18600000 2053.918 1574.208 1736.984 3 2 2 
20 3 59100000 86000000 57200000 3600.001 3600.001 3600.001 20 20 20 
20 4 297000000 280000000 275000000 3600.001 3600.001 3600.001 20 20 20 
Average 76645345.19 77713359.63 68200707.04 1045.59 943.33 981.30 4.52 3.96 4.22 

 

Table 3 
Comparison of the variations of 𝐿𝐵்ி் – Database 3 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 

10 2 2350 2050 1580 0.039 0.032 0.03 0 0 0 
10 3 25300 17200 17100 0.274 0.177 0.205 0 0 0 
10 4 49500 49300 38400 0.542 0.421 0.446 0 0 0 
10 5 153000 124000 118000 1.284 0.973 1.068 0 0 0 
10 7 405000 296000 293000 2.272 2.124 2.431 0 0 0 
10 10 698000 808000 771000 4.728 5.416 5.95 0 0 0 
12 2 12000 11500 8660 0.317 0.218 0.26 0 0 0 
12 3 255000 200000 250000 3.771 2.31 2.953 0 0 0 
12 4 603000 748000 639000 10.668 8.469 9.621 0 0 0 
12 5 3140000 2330000 2360000 35.531 22.606 27.407 0 0 0 
12 7 11300000 11100000 10700000 97.695 82.675 90.788 0 0 0 
12 10 33200000 20600000 22100000 266.644 171.832 218.601 0 0 0 
14 2 76200 76200 55600 2.665 1.983 2.378 0 0 0 
14 3 1480000 2290000 1590000 36.153 37.268 40.787 0 0 0 
14 4 24100000 10500000 16500000 328.047 162.731 239.095 0 0 0 
14 5 104000000 46500000 65900000 1052.792 554.925 795.59 2 0 1 
14 7 216000000 223000000 219000000 2088.795 1897.037 2051.695 7 7 7 
14 10 365000000 358000000 337000000 3335.304 3050.372 3238.649 15 14 14 
16 2 1270000 1060000 728000 57.811 33.615 37.202 0 0 0 
16 3 31500000 33000000 28100000 619.392 455.64 527.823 1 1 1 
16 4 104000000 110000000 92800000 2197.687 1757.055 1922.422 6 6 7 
18 2 3480000 4190000 2640000 253.645 167.221 196.373 0 0 0 
18 3 61500000 89000000 58100000 3342.785 2933.593 3050.296 14 11 10 
18 4 140000000 183000000 140000000 3600.001 3546.032 3592.311 20 19 19 
20 2 21600000 30500000 18600000 2077.88 1618.644 1799.302 6 1 2 
20 3 62200000 93400000 64100000 3600.001 3600.001 3600.001 20 20 20 
20 4 144000000 147000000 125000000 3600.001 3600.001 3600.001 20 20 20 
Average 49261087.04 50659342.59 44718901.48 985.80 878.27 927.91 4.11 3.67 3.74 
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Table 4 
Comparison of the variations of 𝐿𝐵்ி் – Database 4 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 

10 2 1860 1560 1200 0.033 0.022 0.024 0 0 0 
10 3 13200 11600 17900 0.174 0.156 0.187 0 0 0 
10 4 51900 52600 40100 0.524 0.417 0.419 0 0 0 
10 5 111000 96500 91900 1.108 0.834 0.94 0 0 0 
10 7 305000 242000 249000 2.849 2.016 2.415 0 0 0 
10 10 691000 526000 554000 4.369 4.197 4.892 0 0 0 
12 2 17000 16500 11900 0.242 0.318 0.341 0 0 0 
12 3 168000 135000 121000 3.159 2.036 2.497 0 0 0 
12 4 859000 646000 593000 10.668 5.908 8.88 0 0 0 
12 5 1060000 944000 1260000 16.945 9.8 17.235 0 0 0 
12 7 6850000 6480000 6530000 70.271 57.843 67.667 0 0 0 
12 10 21100000 17900000 18400000 222.954 164.728 196.393 0 0 0 
14 2 90300 95800 65900 1.999 1.874 2.691 0 0 0 
14 3 4120000 3060000 2000000 62.388 43.66 41.695 0 0 0 
14 4 26700000 43300000 31200000 361.938 401.366 358.702 0 0 0 
14 5 16800000 14400000 14400000 376.944 255.084 337.281 0 0 0 
14 7 208000000 234000000 215000000 2362.521 2197.001 2275.122 8 9 8 
14 10 260000000 259000000 236000000 3452.525 3085.414 3310.143 16 11 14 
16 2 464000 560000 365000 25.5 18.455 20.377 0 0 0 
16 3 10900000 10900000 7580000 435.885 279.153 317.886 0 0 0 
16 4 81400000 73200000 74600000 2695.172 1872.869 2437.614 9 4 6 
18 2 3680000 4570000 2730000 265.789 178.755 203.287 0 0 0 
18 3 45400000 67100000 44600000 2864.808 2692.193 2823.943 13 9 12 
18 4 132000000 121000000 130000000 3531.263 3492.868 3507.656 19 19 19 
20 2 14700000 22700000 12300000 1417.233 1157.732 1159.092 1 1 1 
20 3 64900000 93100000 62300000 3600.001 3600.001 3600.001 20 20 20 
20 4 140000000 149000000 100000000 3600.001 3600.001 3600.001 20 20 20 
Average 38532676.30 41593983.70 35592996.30 940.27 856.47 899.90 3.93 3.44 3.70 

 
The RPD was calculated for all databases separately, and the results are shown in Table 5. 
 
Table 5 
RPD of the variations of the 𝐿𝐵்ி் for all databases 

Database Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 𝐿𝐵ଵ்ி் 𝐿𝐵ଶ்ி் 𝐿𝐵ଷ்ி் 
Database 1 0.00 0.06 0.00 0.07 0.00 0.06 0.04 0.00 0.04 
Database 2 0.12 0.14 0.00 0.11 0.00 0.04 0.14 0.00 0.07 
Database 3 0.10 0.13 0.00 0.12 0.00 0.06 0.12 0.00 0.02 
Database 4 0.08 0.17 0.00 0.10 0.00 0.05 0.14 0.00 0.08 

Average 0.08 0.13 0.00 0.10 0.00 0.05 0.11 0.00 0.05 
 
From Tables 1, 2, 3, and 4 it is possible to notice that the higher is the range of values for the setup times, the smaller is the 
number of nodes. This occurred for all variations of the 𝐿𝐵்ி். Therefore, it can be concluded that this element is not 
significant for the tests. From Table 5 it is possible to acknowledge that the lower bound 𝐿𝐵ଷ்ி் was the one that reduced the 
most the number of nodes for all databases. However, 𝐿𝐵ଶ்ி் solved more problems in less computational time. 𝐿𝐵ଵ்ி் could 
not perform very well for all databases. 
 
4.2. Total Tardiness 
 
Three variations of the proposed lower bound (𝐿𝐵்்) were compared with one another to test the efficiency of the method. 
This had to be done because no other lower bound for the 𝐹௠|𝑏𝑙𝑜𝑐𝑘, 𝑆௜௝௞|∑𝑇௝  was found in the literature. The objective of 
the tests is to analyze which varieties of the 𝐿𝐵்் solve the problems in less computational time. The three proposed variations 
are similar to the ones proposed for the Total Flow Time criterion. 
 
As the range of the setup time did not influence the results of the total flow time problems, only the 1-125 distribution was 
used for the total tardiness tests. Each of the problems was combined with the four different scenarios, totaling 2160 different 
problems. 
 
Every problem was solved using every one of the variations of 𝐿𝐵்், and all algorithms were conducted under the same 
circumstances. The average CPU time consumed, the average number of nodes that needed to be created, and the number of 
unsolved problems considering database 1, 2, 3, and 4 for the due date are displayed on Tables 6, 7, 8, and 9, respectively. 
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Table 6 
Comparison of the variations of 𝐿𝐵்் – Scenario 1 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 
10 2 4780.00 5240.00 4750.00 0.05 0.05 0.07 0.00 0.00 0.00 
10 3 13500.00 12200.00 11100.00 0.09 0.08 0.09 0.00 0.00 0.00 
10 4 49000.00 36900.00 37500.00 0.21 0.16 0.21 0.00 0.00 0.00 
10 5 126000.00 120000.00 133000.00 0.48 0.49 0.60 0.00 0.00 0.00 
10 7 128000.00 125000.00 139000.00 0.53 0.49 0.64 0.00 0.00 0.00 
10 10 220000.00 210000.00 220000.00 1.13 1.01 1.25 0.00 0.00 0.00 
12 2 55000.00 61400.00 54300.00 0.74 0.61 0.76 0.00 0.00 0.00 
12 3 161000.00 219000.00 160000.00 1.81 1.96 1.96 0.00 0.00 0.00 
12 4 626000.00 514000.00 591000.00 3.76 3.16 3.74 0.00 0.00 0.00 
12 5 1550000.00 1490000.00 1600000.00 8.00 7.03 8.38 0.00 0.00 0.00 
12 7 4470000.00 4310000.00 4470000.00 21.71 17.32 21.06 0.00 0.00 0.00 
12 10 17000000.00 11900000.00 17000000.00 76.24 49.86 79.68 0.00 0.00 0.00 
14 2 1140000.00 1240000.00 1110000.00 20.11 15.75 20.26 0.00 0.00 0.00 
14 3 3100000.00 3120000.00 3040000.00 42.07 32.61 42.36 0.00 0.00 0.00 
14 4 89800000.00 88700000.00 83900000.00 296.07 280.34 307.70 1.00 1.00 1.00 
14 5 29600000.00 29300000.00 29600000.00 167.34 140.54 177.43 0.00 0.00 0.00 
14 7 111000000.00 111000000.00 134000000.00 494.00 465.26 613.69 1.00 1.00 1.00 
14 10 218000000.00 228000000.00 219000000.00 1333.92 1271.46 1387.24 3.00 1.00 3.00 
16 2 22900000.00 26000000.00 22500000.00 503.51 401.18 494.22 0.00 0.00 0.00 
16 3 36000000.00 42500000.00 35600000.00 959.38 775.63 990.13 2.00 0.00 2.00 
16 4 192000000.00 194000000.00 187000000.00 1749.47 1524.07 1797.74 3.00 3.00 5.00 
18 2 104000000.00 148000000.00 101000000.00 3207.50 3173.92 3227.69 14.00 12.00 14.00 
18 3 109000000.00 149000000.00 106000000.00 3462.08 3357.03 3463.34 18.00 17.00 18.00 
18 4 257000000.00 318000000.00 249000000.00 3600.00 3600.00 3600.00 20.00 20.00 20.00 
20 2 91200000.00 139000000.00 87400000.00 3438.04 3431.20 3434.36 19.00 19.00 19.00 
20 3 84000000.00 118000000.00 81100000.00 3600.00 3600.00 3600.00 20.00 20.00 20.00 
20 4 280000000.00 315000000.00 265000000.00 3600.00 3600.00 3600.00 20.00 20.00 20.00 
Average 61227528.89 71476434.81 60358172.22 984.75 953.75 995.36 4.48 4.22 4.56 

 
Table 7 
Comparison of the variations of 𝐿𝐵்் – Scenario 2 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 
10 2 484.00 488.00 480.00 0.01 0.00 0.01 0.00 0.00 0.00 
10 3 2590.00 2600.00 2580.00 0.03 0.02 0.02 0.00 0.00 0.00 
10 4 33600.00 33700.00 34600.00 0.12 0.13 0.13 0.00 0.00 0.00 
10 5 95700.00 96000.00 95600.00 0.36 0.29 0.35 0.00 0.00 0.00 
10 7 95300.00 95300.00 95300.00 0.36 0.33 0.42 0.00 0.00 0.00 
10 10 321000.00 321000.00 321000.00 1.45 1.23 1.58 0.00 0.00 0.00 
12 2 4330.00 4650.00 4290.00 0.06 0.05 0.06 0.00 0.00 0.00 
12 3 217000.00 217000.00 217000.00 0.88 0.73 0.89 0.00 0.00 0.00 
12 4 340000.00 319000.00 320000.00 1.81 1.17 1.47 0.00 0.00 0.00 
12 5 1600000.00 1460000.00 1580000.00 5.54 5.28 6.10 0.00 0.00 0.00 
12 7 1290000.00 1890000.00 1290000.00 5.73 6.83 6.13 0.00 0.00 0.00 
12 10 14900000.00 14900000.00 14900000.00 63.70 58.60 67.56 0.00 0.00 0.00 
14 2 20100.00 20500.00 19900.00 0.41 0.28 0.43 0.00 0.00 0.00 
14 3 448000.00 451000.00 448000.00 3.13 3.18 3.24 0.00 0.00 0.00 
14 4 28500000.00 28700000.00 28700000.00 96.81 88.98 101.37 0.00 0.00 0.00 
14 5 67100000.00 67100000.00 67100000.00 234.25 218.57 233.38 0.00 0.00 0.00 
14 7 142000000.00 146000000.00 140000000.00 503.47 494.63 517.26 2.00 2.00 2.00 
14 10 197000000.00 199000000.00 196000000.00 1023.60 981.50 1056.56 2.00 2.00 2.00 
16 2 69600.00 71500.00 69300.00 1.03 0.75 1.05 0.00 0.00 0.00 
16 3 4150000.00 4170000.00 4150000.00 29.35 22.99 29.96 0.00 0.00 0.00 
16 4 125000000.00 126000000.00 121000000.00 565.00 524.82 574.08 2.00 2.00 2.00 
18 2 2040000.00 2050000.00 2030000.00 16.75 12.86 18.49 0.00 0.00 0.00 
18 3 15400000.00 15500000.00 15400000.00 139.11 104.06 139.63 0.00 0.00 0.00 
18 4 288000000.00 313000000.00 290000000.00 1946.61 1795.10 1999.94 9.00 7.00 9.00 
20 2 9780000.00 12000000.00 9590000.00 384.27 321.47 389.54 1.00 1.00 1.00 
20 3 131000000.00 141000000.00 131000000.00 1065.12 934.17 1069.22 4.00 4.00 4.00 
20 4 239000000.00 279000000.00 237000000.00 2383.76 2246.78 2390.50 11.00 10.00 11.00 
Average 46978063.11 50126027.33 46717335.19 313.80 289.81 318.87 1.15 1.04 1.15 
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Table 8 
Comparison of the variations of 𝐿𝐵்் – Scenario 3 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 
10 2 1160.00 1310.00 1170.00 0.01 0.01 0.02 0.00 0.00 0.00 
10 3 4030.00 4290.00 4160.00 0.03 0.03 0.04 0.00 0.00 0.00 
10 4 74800.00 76300.00 74800.00 0.27 0.21 0.25 0.00 0.00 0.00 
10 5 192000.00 192000.00 190000.00 0.63 0.56 0.66 0.00 0.00 0.00 
10 7 295000.00 294000.00 295000.00 1.05 0.94 1.14 0.00 0.00 0.00 
10 10 588000.00 587000.00 588000.00 2.44 2.30 2.63 0.00 0.00 0.00 
12 2 15800.00 17400.00 15500.00 0.24 0.19 0.28 0.00 0.00 0.00 
12 3 98000.00 172000.00 119000.00 0.72 0.79 0.80 0.00 0.00 0.00 
12 4 2890000.00 2730000.00 2810000.00 9.16 9.08 9.61 0.00 0.00 0.00 
12 5 3510000.00 2650000.00 2360000.00 13.06 10.43 10.01 0.00 0.00 0.00 
12 7 10000000.00 10000000.00 9990000.00 37.13 34.11 38.33 0.00 0.00 0.00 
12 10 36000000.00 36500000.00 35000000.00 148.18 147.94 153.43 0.00 0.00 0.00 
14 2 146000.00 167000.00 143000.00 3.31 2.47 3.23 0.00 0.00 0.00 
14 3 404000.00 421000.00 403000.00 7.69 5.66 8.00 0.00 0.00 0.00 
14 4 50000000.00 49000000.00 50000000.00 179.28 166.34 195.97 0.00 0.00 0.00 
14 5 151000000.00 173000000.00 146000000.00 523.33 574.06 532.01 1.00 1.00 1.00 
14 7 420000000.00 428000000.00 402000000.00 1437.28 1421.48 1439.72 7.00 7.00 7.00 
14 10 430000000.00 455000000.00 427000000.00 2017.61 1945.54 2024.71 9.00 8.00 9.00 
16 2 1580000.00 1860000.00 1560000.00 44.50 36.61 46.67 0.00 0.00 0.00 
16 3 5920000.00 6440000.00 5770000.00 137.76 103.98 144.00 0.00 0.00 0.00 
16 4 88600000.00 99100000.00 101000000.00 501.02 465.89 571.22 1.00 1.00 1.00 
18 2 19000000.00 22800000.00 18700000.00 733.53 581.72 747.42 0.00 0.00 1.00 
18 3 66000000.00 52500000.00 64600000.00 1527.82 1051.67 1590.11 2.00 1.00 3.00 
18 4 169000000.00 217000000.00 207000000.00 2838.19 2423.27 2935.56 11.00 7.00 12.00 
20 2 71300000.00 109000000.00 68000000.00 3274.35 3219.59 3319.16 17.00 16.00 17.00 
20 3 91500000.00 142000000.00 77800000.00 3600.00 3474.41 3600.00 20.00 17.00 20.00 
20 4 119000000.00 245000000.00 111000000.00 3600.00 3600.00 3600.00 20.00 20.00 20.00 
Average 64337732.96 76093048.15 64163838.15 764.39 714.05 776.85 3.26 2.89 3.37 

 

Table 9 
Comparison of the variations of 𝐿𝐵்் – Scenario 4 

Size Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 
n m 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 
10 2 687.00 717.00 683.00 0.01 0.01 0.01 0.00 0.00 0.00 
10 3 2220.00 2290.00 2220.00 0.02 0.02 0.02 0.00 0.00 0.00 
10 4 45600.00 47900.00 49300.00 0.17 0.15 0.19 0.00 0.00 0.00 
10 5 195000.00 192000.00 191000.00 0.61 0.57 0.67 0.00 0.00 0.00 
10 7 301000.00 324000.00 292000.00 1.05 0.99 1.07 0.00 0.00 0.00 
10 10 617000.00 621000.00 623000.00 2.46 2.70 2.69 0.00 0.00 0.00 
12 2 5540.00 5970.00 5460.00 0.08 0.07 0.09 0.00 0.00 0.00 
12 3 92400.00 92300.00 91200.00 0.57 0.53 0.80 0.00 0.00 0.00 
12 4 2190000.00 2200000.00 2240000.00 7.66 6.70 7.27 0.00 0.00 0.00 
12 5 3230000.00 3140000.00 3150000.00 12.63 10.82 12.72 0.00 0.00 0.00 
12 7 8680000.00 8680000.00 8680000.00 33.34 29.25 32.62 0.00 0.00 0.00 
12 10 29100000.00 30500000.00 29100000.00 122.75 125.32 132.39 0.00 0.00 0.00 
14 2 66500.00 70100.00 65200.00 1.37 0.98 1.39 0.00 0.00 0.00 
14 3 319000.00 326000.00 318000.00 4.97 3.44 5.34 0.00 0.00 0.00 
14 4 95400000.00 95900000.00 91600000.00 263.49 262.85 268.08 1.00 1.00 1.00 
14 5 56100000.00 56100000.00 56000000.00 212.44 207.40 223.20 0.00 0.00 0.00 
14 7 334000000.00 331000000.00 325000000.00 1190.85 1144.73 1191.39 4.00 4.00 4.00 
14 10 524000000.00 525000000.00 504000000.00 2233.82 2193.73 2261.98 10.00 10.00 10.00 
16 2 262000.00 278000.00 260000.00 7.12 5.13 7.64 0.00 0.00 0.00 
16 3 20600000.00 21000000.00 20500000.00 137.63 121.73 147.73 0.00 0.00 0.00 
16 4 147000000.00 148000000.00 147000000.00 694.45 664.44 722.31 1.00 1.00 1.00 
18 2 924000.00 985000.00 919000.00 38.10 26.67 38.70 0.00 0.00 0.00 
18 3 13300000.00 14100000.00 13200000.00 463.03 331.32 476.44 1.00 0.00 1.00 
18 4 508000000.00 450000000.00 493000000.00 2655.60 2319.31 2683.73 12.00 9.00 12.00 
20 2 23600000.00 30300000.00 23000000.00 1067.56 906.62 1085.97 4.00 2.00 4.00 
20 3 171000000.00 182000000.00 157000000.00 2502.55 2261.50 2522.73 12.00 9.00 12.00 
20 4 271000000.00 274000000.00 250000000.00 3340.09 3162.65 3351.77 17.00 16.00 17.00 
Average 81852998.04 80550565.81 78751372.70 555.35 510.73 562.18 2.30 1.93 2.30 

 
The RPD was calculated for all databases separately, and the results are shown in Table 10. 
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Table 10 
RPD of the variations of the 𝐿𝐵்் for all databases 

Database Ave. Node Count Ave. CPU Time (ms) Number of Unsolved 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 𝐿𝐵ଵ்் 𝐿𝐵ଶ்் 𝐿𝐵ଷ்் 
Scenario 1 0.01 0.18 0.00 0.03 0.00 0.04 0.06 0.00 0.08 
Scenario 2 0.01 0.07 0.00 0.08 0.00 0.10 0.11 0.00 0.11 
Scenario 3 0.00 0.19 0.00 0.07 0.00 0.09 0.13 0.00 0.17 
Scenario 4 0.04 0.02 0.00 0.09 0.00 0.10 0.19 0.00 0.19 
Average 0.02 0.12 0.00 0.07 0.00 0.08 0.12 0.00 0.14 

 
From Tables 6, 7, 8, and 9 it was possible to notice that wider dispersion rates of the due dates facilitate obtaining the optimal 
solution. On the other hand, higher tardiness factors make it more difficult to achieve the optimal solution, mostly in problems 
with more jobs. From Table 10 it was possible to point out that, similar to the results obtained for the total flow time problems, 𝐿𝐵ଶ்் solved more problems in less computational time. However, 𝐿𝐵ଷ்் was the lower bound that most reduced the number 
of nodes. In both cases 𝐿𝐵ଵ்் could not perform very well. Since the most noteworthy measure for the B&B algorithm is the 
computational time, it can be assumed that the search of  𝑆ሶ𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ is inadequate for both problems considered in this paper. 
 
5. Conclusion 
 
In this paper it is considered a permutation flow shop scheduling problem with blocking and setup time constraint and with 
the total flow time and the total tardiness criterions, which are known to be NP-hard for problems with two or more machines. 
A machine based lower bound that considers the existence of blocking and idle times in the process is suggested for each of 
the problems (𝐿𝐵்ி் and 𝐿𝐵்்), and they are both implemented in a branch and bound algorithm. Four databases for the setup 
times were generated, each with a specific range of values. The analysis shows that this range of values does not affect the 
effectiveness of the lower bounds. 
 
Three different approaches to applying the proposed 𝐿𝐵்ி் were compared with one another, because no other lower bound 
for the total flow time criterion was found in the literature. They were named 𝐿𝐵ଵ்ி், 𝐿𝐵ଶ்ி், and 𝐿𝐵ଷ்ி். Overall, 𝐿𝐵ଵ்ி் was 
the lower bound that got the highest computational time and was the variation that solved fewer problems within 3600 seconds, 
also got the second highest number of nodes. So, it can be deduced that it is important for the 𝐿𝐵்ி் to incorporate both 𝑆௜ሾଵሿ௞ 
and 𝑆ሾଵሿ௝௞ in the search. 
 
Overall, 𝐿𝐵ଶ்ி் got the smallest value for both the computational time and the number of unsolved problems and 𝐿𝐵ଷ்ி் was 
the one that had to create less nodes to solve the problems. This can imply that it is not interesting for the 𝐿𝐵்ி் to incorporate 𝑆ሶ𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ in the search. 
 
Similar to what happened to the total flow time criterion, no other lower bound for the total tardiness criterion was found in 
the literature. So, as with the total flow time problems, three different approaches to applying the proposed 𝐿𝐵்் were 
compared with one another. 
 
As the tests showed that the range value of the setup time did not affect the performance of the lower bounds in the total flow 
time problems, only one of the databases was used for the total tardiness tests. The results were also very similar. 𝐿𝐵ଶ்் was 
the one that got the smallest values for both the computational time and the number of unsolved problems. This can mean that 
including 𝑆ሶ𝑒𝑡𝑢𝑝௞ሺ𝑗ሻ in the search is not interesting for the 𝐿𝐵்் either. 
 
However, for the total tardiness, 𝐿𝐵ଷ்் was the one that took the longest to solve the problems and was the variation that had 
the greater number of unsolved problems within 3600 seconds, even though it was the one that got the smallest number of 
nodes. So, it can be deduced that including both 𝑆௜ሾଵሿ௞ and 𝑆ሾଵሿ௝௞ in the calculus of the lower bound is very important for the 𝐿𝐵்். 
 
Also, regarding the total tardiness criterion, the lower bound showed to be more efficient for higher dispersion rate of the due 
dates. 
 
For future works, it is suggested the development of a dominance rule to eliminate a larger number of nodes and the study of 
the use of efficient heuristics as initial upper bounds for the branch and bound algorithm. These proposals aim to enhance the 
algorithm, while applied along with 𝐿𝐵ଶ்ி் and 𝐿𝐵ଶ்். Moreover, other exploration rules, like the best bound rule, or a hybrid 
technique, may be analyzed. Acknowledging the efficiency of the proposed lower bounds, an additional suggestion is to apply 
the rules used to incorporate blocking constraints on these lower bounds into a general case with a limited buffer greater than 
or equal to zero. 
 
 
 



  

 

266

References 
 
Ahmadi, R. H., & Bagchi, U. (1990). Improved lower bounds for minimizing the sum of completion times of n jobs over m machines in a 

flow shop. European Journal of Operational Research, 44(3), 331-336. 
Bansal, S. P. (1977). Minimizing the sum of completion times of n jobs over m machines in a flowshop: A branch and bound approach. A 

I I E Transactions, 9(3), 306-311. 
Chung, C. S., Flynn, J., & Kirca, O. (2002). A branch and bound algorithm to minimize the total flow time for m-machine permutation 

flowshop problems. International Journal of Production Economics, 79(3), 185-196. 
Chung, C. S., Flynn, J., & Kirca, O. (2006). A branch and bound algorithm to minimize the total tardiness for m-machine permutation 

flowshop problems. European Journal of Operational Research, 174(1), 1-10. 
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations 

Research, 1(2), 117-129. 
Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state-variable machine: A solvable case of the traveling salesman problem. 

Operations Research, 12(5), 655-679. 
Ignall, E., & Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling problems. Operations 

Research, 13(3), 400-412. 
Mccormick, S., Pinedo, M., J. Shenker, S., & Wolf, B. (1989). Sequencing in an assembly line with blocking to minimize cycle time. 

Operations Research, 37(6), 925-935. 
Miyata, H. H., & Nagano, M. S. (2019). The blocking flow shop scheduling problem: A comprehensive and conceptual review. Expert 

Systems with Applications, 137(1), 130–156. 
Moslehi, G., & Khorasanian, D. (2013). Optimizing blocking flow shop scheduling problem with total completion time criterion. Computers 

& Operations Research, 40(7), 1874 -1883. 
Nagano, M. S., Robazzi, J. V. S., & Tomazella, C. P. (2020). An improved lower bound for the blocking permutation flow shop with total 

completion time criterion. Computers & Industrial Engineering, 146(1), 106511. 
Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 

91-95. 
Pan, Q. K., & Wang, L. (2012). Effective heuristics for the blocking flowshop scheduling problem with makespan minimization. Omega, 

40(2), 218-229. 
Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. 

Omega, 44(1), 41-50. 
Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems. 3rd edn. Springer Publishing Company, New York. 
Reddi, S., & Ramamoorthy, C. (1972). On the flow-shop sequencing problem with no wait in process. Journal of the Operational Research 

Society, 23(3), 323-331. 
Rios-Mercado, R. Z., & Bard, J. F. (1999). A Branch-and-Bound Algorithm for Flowshop Scheduling with Setup Times. IIE Transactions 

on Scheduling & Logistics, 31(8), 721-731. 
Robazzi, J. V. S., Nagano, M. S., & Takano, M. I. (2021). A Branch-and-Bound Method to Minimize the Total Flow Time in a Permutation 

Flow Shop with Blocking and Setup Times. In: Rossit D.A., Tohmé F., Mejía Delgadillo G. (eds) Production Research. ICPR-Americas 
2020. Communications in Computer and Information Science, vol 1407. Springer, Cham. 

Ronconi, D. P. (2004). A note on constructive heuristics for the flowshop problem with blocking. International Journal of Production 
Economics, 87(1), 39-48. 

Ronconi, D. P. (2005). A branch-and-bound algorithm to minimize the makespan in a flowshop with blocking. Annals of Operations 
Research, 138(1), 53-65. 

Ronconi, D. P., & Armentano, V. A. (2001). Lower bounding schemes for flowshops with blocking in-process. Journal of the Operational 
Research Society, 52(11), 1289-1297. 

Ronconi, D. P., & Birgin, E. G. (2012). Mixed-integer programming models for flowshop scheduling problems minimizing the total 
earliness and tardiness. Just-in-Time Systems, 61(1), 91-105 

Sanches, F. B., Takano, M. I., & Nagano, M. S. (2016). Evaluation of heuristics for a branch and bound algorithm to minimize the makespan 
in a flowshop with blocking. Acta Scientiarum-Technology, 38(3), 321-326. 

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. 
Takano, M. I., & Nagano, M. S. (2017). A branch-and-bound method to minimize the makespan in a permutation flow shop with blocking 

and setup times. Cogent Engineering, 4(1), 1389638. 
Takano, M. I., & Nagano, M. S. (2019). Evaluating the performance of constructive heuristics for the blocking flow shop scheduling problem 

with setup times. International Journal of Industrial Engineering Computations, 10(1), 37–50. 
Takano, M. I., & Nagano, M. S. (2020). Solving the permutation flow shop problem with blocking and setup time constraints. International 

Journal of Industrial Engineering Computations, 11(3), 469–480. 
  
 
 

  

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

  


