

* Corresponding author
E-mail: prasantibalu@gmail.com (U. Balakrishna)

2022 Growing Science Ltd.
doi: 10.5267/j.ijiec.2021.10.002

International Journal of Industrial Engineering Computations 13 (2022) 267–276

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An exact algorithm for constrained k-cardinality unbalanced assignment problem

A. Prakasha, Uruturu Balakrishnab* and Jayanth Kumar Thenepallec

aResearch Scholar, Department of Mathematics, JNTUA Anantapurammu, India
bProfessor, Department of Science & Humanities,Sreeenivasa Institute of Technology and Management Studes, Chittoor, India
cAssistant Professor, Department of Science & Humanities, Sreeenivasa Institute of Technology and Management Studes, India
C H R O N I C L E A B S T R A C T

Article history:
Received May 11 2021
Received in Revised Format
June 28 2021
Accepted October 22 2021
Available online
October, 22 2021

 An assignment problem (AP) usually deals with how a set of persons/tasks can be assigned to a set
of tasks/persons on a one-to-one basis in an optimal manner. It has been observed that balancing
among the persons and jobs in several real-world situations is very hard, thus such scenarios can
be seen as unbalanced assignment models (UAP) being a lack of workforce. The solution
techniques presented in the literature for solving UAP’s depend on the assumption to allocate some
of the tasks to fictitious persons; those tasks assigned to dummy persons are ignored at the end.
However, some situations in which it is inevitable to assign more tasks to a single person. This
paper addresses a practical variant of UAP called k-cardinality unbalanced assignment problem (k-
UAP), in which only of persons are asked to perform jobs and all the persons should perform at
least one and at most jobs. The k-UAP aims to determine the optimal assignment between persons
and jobs. To tackle this problem optimally, an enumerative Lexi-search algorithm (LSA) is
proposed. A comparative study is carried out to measure the efficiency of the proposed algorithm.
The computational results indicate that the suggested LSA is having the great capability of solving
the smaller and moderate instances optimally.

© 2022 by the authors; licensee Growing Science, Canada

Keywords:
k-cardinality
Unbalanced assignment problem
Zero-one integer programming
Lexi-search algorithm

1. Introduction

The classical assignment problem (AP) is an exceptional case of Transportation problem that aims to seek an optimal schedule
between persons ()m and jobs ()n with one-to-one correspondence. Votaw and Orden (1952) however first discussed the
concept of assignment problem; the Hungarian method by Kuhn (1955) is the first and significant solution technique for
solving AP. Generally, an AP with m n= is known as the balanced assignment problem or simply an assignment problem.
However, in most of the practical scenarios, the number of persons and jobs may not be the same (i.e.)m n≠ . A problem
of this kind is called unbalanced assignment problem (UAP). Based on the number of persons and jobs involved, the problems
can be further classified into two types, namely
(i) UAP with m n<
(ii) UAP with m n>

Due to the scarcity of workforce, several UAP models can be viewed as problems of the first type (i.e.)m n< . These kinds
of problems are generally tackled using Hungarian methods and converting unbalanced assignment models into balanced ones
by just deploying dummy/ fictitious persons for the first type of problems and dummy/ fictitious jobs for the second type of
models. Thus, for the problem of the first kind, few jobs remain idle whereas few persons remain unassigned for the second
type of problems. Some of the persons or jobs remain unassigned and thus they persist idle for both kinds of problems. As a
result, any organization attains some loss due to not utilizing the resources effectively. Therefore, it is inevitable to address
the UAB scenarios in which no persons or jobs are to be left idle.

268

Reviewing the literature, Malhotra and Bhatia (1984) addressed two practical variants AP’s, where the first one is UAP with
m n> and the second one is the UAP with an additional constraint on the minimum number of jobs to be executed by each
person. Arora and Puri (1998) studied time minimizing assignment problems in which each job should be performed by
precisely a single person and each person can do more than one job with an assumption that all the persons can execute the
jobs at the same time. To solve this problem optimally, an exact LSA has been proposed. Kumar (2006) has developed a
modified Hungarian method to solve an UAP in which the number of jobs is more than the machines. This modified method
effectively assigns the given number of jobs to the machines. Iampang et. al., (2010) considered the UAP with m n> and
solves by using a cost and space-efficient methods. This study showed that the solution obtained by cost and space-efficient
method is better than that of Kumar’s method discussed earlier. Majumdar and Bhunia (2012) presented an efficient Genetic
algorithm (GA) for solving UAP with m n< . Yadaiah and Haragopal (2016) developed the Lexi-search algorithm for
solving UAP with m n> . Bhunia et. al., (2017) first considered the UAP with m n< over interval costs together with an
additional condition over the number of jobs permitted to do by each person. A GA based solution method is developed to
solve this problem effectively. Recently, Thenepalle and Singamsetty (2019) addressed UAP with multiple dimensions and
two objectives, where the first objective minimizes the overall time to perform the jobs and the second objective maximizes
the overall production on executing the tasks. This model also includes an additional condition over the number of jobs that a
person is permitted to perform. To tackle this problem, an exact LSA is developed, which effectively provides efficient Pareto
optimal solutions. The works cited above show the significance and scope of UAP with additional practical constraints.

Several variants have been addressed in the literature as AP has practical utility. The k-cardinality assignment problem (k-AP)
is one of the variants of the classical AP, which was first introduced by Dell'Amico and Martello (1997). The so-called k-AP
can be defined as: Let there are m persons and n jobs, whose cost matrix for performing each job by a person is given by

() , 0ij m n ijC c c×= ≥ . Let a positive integer k where k m≤ . The k-AP aims to select k persons and k jobs from m

persons and n jobs, respectively such that the overall cost incurred is minimized on performing k jobs by k persons. The
model k-AP has several potential applications namely satellite communication and switching problems (Dell'Amico and
Martello, 1997), production planning (Gabrovšek et. al., 2020) etc. With its wide applicability, several researchers have
considered k-AP and developed various solution methods. For the development of k-AP, we may see the works (Dell'Amico
and Martello, 1997; Dell'Amico et. al., 2001; Volgenant, 2004; Feng and Yang, 2006; Bai, 2009; Belik and Jörnsten, 2016).
However, all the above-cited works on k-AP looks for choosing k persons and k jobs from m persons and n jobs,
respectively, which still seem a balanced k-AP. The models of k-cardinality unbalanced assignment problem (k-UAP) with
some practical constraints are still open. In addition to the k-AP, many researchers have applied the cardinality constraint in
various combinatorial optimization problems such as TSP (Bhavani and Murthy, 2006), Minimum spanning tree problem
(Kumar and Purusotham, 2017 & 2018), Multi-objective TSP (Thenepalle and Singamsetty, 2018) etc.

The above-cited works motivate to attempt a practical variant of UAP called k-cardinality unbalanced assignment problem
with additional constraint (k-UAP). This study also includes a cardinality constraint over the number of persons and an
additional condition over number of jobs that is to be done by each person. To deal with this problem optimally, an exact
LSA is proposed.

The remaining of the paper is organized as follows: A detailed description of the k-UAP and its formulation is given in Section
2. Section 3 describes the preliminaries and the steps involved in the proposed LSA. Section 4 reports computational results.
Finally, the conclusions and scope of future work are given in Section 5.

2. Mathematical Formulation

Let the sets {1,2,3,.. }I m= and {1,2,3,.. }J n= consists of m persons and n jobs, respectively with m n< . Let k

be a non-negative integer such that k m≤ . The objective coefficient ijc (the cost incurred on executing thj job by thi
person) is defined on each (,) ,i j i I j J∀ ∈ ∈ . Further, an additional condition over n that a person is permitted to execute
is also considered. The problem k-UAP seeks to find the optimal assignment of performing n jobs by k out of m persons
such that each job is to be given to just one person and a person is permitted to execute multiple jobs.

2.1. Assumptions

a). Number of persons is less than the number of jobs (. .)i e m n< .
b). n jobs are assigned to k out of m persons.
c). Each job is executed by just one person.
d). m k− persons remain unassigned
e). k persons can do at least one and atmost 1n k− + jobs.
f). All the jobs are started simultaneously.

A. Prakash et al. / International Journal of Industrial Engineering Computations 13 (2022) 269

The mathematical model of proposed k-UAP using zero-one integer linear programming (0-1 ILP) is as follows:

1 1
min

m n

ij ij
i j

Z c x
= =

=
(1)

subject to

1
1,

m

ij
i

x j J
=

= ∀ ∈
(2)

1
0,

n

ij
j

x i I
=

≥ ∀ ∈
(3)

1 1

m n

ij
i j

x n
= =

=
(4)

1
0 1,

n

ij
j

x n k i I
=

≤ ≤ − + ∀ ∈
(5)

{ }1,0 , ,ijx i I j J= ∀ ∈ ∈ (6)

Here, total processing cost/time on performing the jobs is minimized through the objective function (1). The Constraint (2)
assures that each job should be performed by just one person. The Constraint (3) represents out of m persons, m k− persons
remain unassigned whereas the k persons need to do more than or equals to one job. The Constraint (4) ensures that all the
given n jobs should be performed. Constraint (5) ensures each of the k persons is allowed to perform at least one and at
most 1n k− + jobs and remaining persons will not be assigned to any job. Finally, the binary variable ijx in Constraint (6)

takes 1 when thi person performs a thj job and 0, otherwise.

3. Lexi-search Algorithm: Preliminaries

3.1. Pattern

A pattern is usually a two-dimensional matrix X that refers the feasible assignment. The value of the pattern X is computed
using the following formula.

1 1
()

m

i

n

ij ij
j

V X c x
= =

=
(7)

3.2. Alphabet table

The cost matrix []ij m nC c ×= consists mn ordered pairs. The elements of C are organized in ascending sequence and

marked from 1 to mn , saved in an array SN (Sundara Murthy, 1976). If 1 2,a a SN∈ and 1 2a a< then 1 2() ()C a C a≤ .

Let 1 2(, , ...,)r rL a a a= , ia SN∈ be a string of r indices. The indices in rL are organized in such a way that 1+<i ia a
∀ 1, 2,..., 1i r= − . The word rL with 1+<i ia a ∀ 1,2,..., 1i r= − is termed as ‘sensible word’ and otherwise, it is

referred to as ‘non-sensible word’. The systematic sequence of r indices from SN is known as a ‘word’ of length r . The
word rL of length r n< is said to be the partial feasible word, whereas the word rL having length r n= is called a
complete feasible word.

3.3. Lexi-search mechanism

 The Lexi-search algorithm (LSA) is a systematized Branch & Bound (B&B) approach, proposed by Pandit (1962) for
resolving the loading problem. This approach is proved to have a great capability in solving many combinatorial optimization
problems optimally (Pandit,1962).

 “It is possible to list out all the solutions in a systematic hierarchy, which also have a hierarchical ordering of the
corresponding values of the solutions”.

270

The performance of the LSA usually be governed by on the choice of the suitable alphabet table, which can be done in two
ways (Sundara Murthy, 1976).

“The process of checking the feasibility of a partial word is easy; on the other hand, the calculation of lower bound is
complex”.

“The computation of lower bound is easy; while the feasibility checking is difficult”.

3.4. Bounds Calculation

As the objective function Z is of minimization type, the upper bound (TS=UB) of Z is supposed to have a very large value.
The lower bound LB and the value of V for a partial word Lr is determined as follows:

() () () ()r r r rLB L V L CT a n r CT a= + + − − ; where 1() () (a)r r rV L V L C−= + with 0() 0V L =

3.5. Proposed LSA

The step by step process of proposed LSA for k-UAP is illustrated below.

Step-1: Initialization
k and cost matrix ([)]ijC c= .

 Set 9999TS UB= = .

Step-2: If the problem dimension fulfills the condition m < n and k ≤ m, then move to Step 3; else, no feasible solution for

the problem and move to Step-14.
 Step-3: Generate the alphabet table for the cost matrix (C). Move to Step-4.

Step-4: The search begins with rL = (1a) = 1. Move to Step-5.

Step-5: Calculate ()rLB L . If ()rLB L TS< then go to Step-6; else, move to Step-10.

Step-6: If rL is feasible, then we admit it and remain for next partial word of order 1r + and go to Step-7; else, consider the

successive partial word of order r by taking another letter that succeeds ra in its thr position and move to Step-5.
Step-7: If r n= then go to Step-8; else, go to Step-9.
Step-8: Update TS by ()rLB L and move to Step-11.

Step-9: The partial word rL can be concatenated by using 1 ()r r rL L a−= ⊗ where ⊗ defines the concatenation operation
and go to Step-5.

Step-10: If 1r = , then go to Step-14; else move to Step-11.
Step-11: Take TS UB= and proceed further by taking 1r r= − and go to Step-5.
Step-12: Continue the Steps 5-11 sequentially till TS has no further development and go to Step-13.
Step-13: Record TS . Move to Step-14.
Step-14: Stop

Finally, the currrent TS gives the optimal solution.

4. Numerical Example

To demonstrate the proposed LSA, a suitable example with five persons (m=5), seven jobs (n=7) and cardinality over number
of persons is restricted to two (k=2) is considered. The person-job assignment matrix C=[cij] is provided in Table 1.

Table 1
The cost of performing every job by each person

 J1 J2 J3 J4 J5 J6 J7
P1 21 12 2 26 21 7 18
P2 9 10 5 22 25 12 20
P3 15 24 30 16 29 21 15
P4 19 28 11 32 27 17 26
P5 14 23 26 2 3 4 3

A. Prakash et al. / International Journal of Industrial Engineering Computations 13 (2022) 271

The alphabet table for the cost matrix []ijC c= is provided in Table 2. In Table 2, the the array notations

, , , ,SN Ct CCt R C indicates Index number, values of cost matrix in ascending order, cumulative cost, row, column indices,
respectively.

Table 2
Alphabet table

SN Ct CCt R C SN Ct CCt R C
1 2 2 1 3 19 19 194 4 1
2 2 4 5 4 20 20 214 2 7
3 3 7 5 5 21 21 235 1 1
4 3 10 5 7 22 21 256 1 5
5 4 14 5 6 23 21 277 3 6
6 5 19 2 3 24 22 299 2 4
7 7 26 1 6 25 23 322 5 2
8 9 35 2 1 26 24 346 3 2
9 10 45 2 2 27 25 371 2 5
10 11 56 4 3 28 26 397 1 4
11 12 68 1 2 29 26 423 4 7
12 12 80 2 6 30 26 449 5 3
13 14 94 5 1 31 27 476 4 5
14 15 109 3 1 32 28 504 4 2
15 15 124 3 7 33 29 533 3 5
16 16 140 3 4 34 30 563 3 3
17 17 157 4 6 35 32 595 4 4
18 18 175 1 7

The logical flow of the proposed LSA is presented in Table 3. The column SN in Table 3 denotes the index number. As the
total jobs done by two persons is seven, thus the length of the word rL becomes 7. Hence, the columns after SN are denoted
by 1, 2, 3, 4, 5, 6, 7, each one indicating the letters in corresponding places of a word. The next two columns Vc & LB
represent the value and lower bound of a partial word rL , respectively. The subsequent two columns R and C, respectively
denotes the row and column indices of the respective letter. Finally, the last column Remark represents accept the partial word
when it is feasible and marked as Ac i.e Accept; otherwise Rj i.e reject. Initially, the algorithm starts by assuming a trial
solution TS=999999, a large value. For each SN, LB of a partial word is evaluated and confirmed if it fulfills the bounds or
not. A partial word is marked Ac only when the LB is less than the trial solution and satisfies the constraints given in Section
3. A partial word is marked Rj when it fails to satisfy any one of the constraints given in Section 3. Similarly, if the LB≥TS,
then it is rejected and denoted by ≥TS, Rj. In Table 3, it is seen that the initial feasible solution (TS = 40) is found at 13th row
and the respective feasible word is L7=(1,2,3,4,5,11,13).

Table 3
Logical flow of proposed LSA

SN 1 2 3 4 5 6 7 V LB R C Remark
1 1 2 26 1 3 Ac
2 2 4 26 5 4 Ac
3 3 7 26 5 5 Ac
4 4 10 26 5 7 Ac
5 5 14 26 5 6 Ac
6 6 19 26 2 3 Rj
7 7 21 30 1 6 Rj
8 8 23 33 2 1 Rj
9 9 24 35 2 2 Rj
10 10 25 37 4 3 Rj
11 11 26 38 1 2 Ac
12 12 38 38 2 6 Rj
13 13 40 40 5 1 A,TS = 40
14 12 26 40 2 6 ≥TS, Rj
15 6 15 31 2 3 Rj
16 7 17 36 1 6 Ac
17 8 26 36 2 1 Rj
18 9 27 38 2 2 Rj
19 10 28 40 4 3 ≥TS, Rj
20 8 19 40 2 1 ≥TS, Rj
21 5 11 32 5 6 Ac
22 6 16 32 2 3 Rj
23 7 18 37 1 6 Rj
24 8 20 41 2 1 ≥TS, Rj
25 6 12 38 2 3 Rj

272

Table 3
Logical flow of proposed LSA (Continued)

SN 1 2 3 4 5 6 7 V LB R C Remark
26 7 14 44 1 6 ≥TS, Rj
27 4 7 32 5 7 Ac
28 5 11 32 5 6 Ac
29 6 16 32 2 3 Rj
30 7 18 37 1 6 Rj
31 8 20 41 2 1 ≥TS, Rj
32 6 12 38 2 3 Rj
33 7 14 44 1 6 ≥TS, Rj
34 5 8 39 5 6 Ac
35 6 13 39 2 3 Rj
36 7 15 45 1 6 ≥TS, Rj
37 6 9 46 2 3 ≥TS, Rj
38 3 5 33 5 5 Ac
39 4 8 33 5 7 Ac
40 5 12 33 5 6 Ac
41 6 17 33 2 3 Rj
42 7 19 38 1 6 Rj
43 8 21 42 2 1 ≥TS, Rj
44 6 13 39 2 3 Rj
45 7 15 45 1 6 ≥TS, Rj
46 5 9 40 5 6 ≥TS, Rj
47 4 5 40 5 7 ≥TS, Rj
48 2 2 33 5 4 Ac
49 3 5 33 5 5 Ac
50 4 8 33 5 7 Ac
51 5 12 33 5 6 Ac
52 6 17 33 2 3 Ac
53 7 24 33 1 6 Rj
54 8 26 36 2 1 Ac
55 9 26 36 2 2 Ac, TS =36
56 9 27 37 2 2 ≥TS, Rj
57 7 19 38 1 6 ≥TS, Rj
58 6 13 39 2 3 ≥TS, Rj
59 5 9 40 5 6 ≥TS, Rj
60 4 5 40 5 7 ≥TS, Rj
61 3 3 41 5 5 ≥TS, Rj

To improve the solution, a backtracking strategy is applied and the next improved solution (TS=36) is obtained at 55th row of
the Table 3, whose feasible word is L7=(2,3,4,5,8,9). Since there is no further improvement of the current solution (VT=36),
the search process completes at 61st row and the latest found solution (VT=36) is considered as the optimal solution. The full-
length words of feasible and optimal solutions and their corresponding schedules are reported in Table 4.

Table 4
Feasible and optimal schedules

SN Full-length word Feasible/Optimal Schedule Feasible/ Optimal Solution
1 L7 = (1,2,3,4,5,11,13) (1,3), (5,4), (5,5), (5,7), (5,6), (1,2), (5,1) 40
2 L7 = (2,3,4,5,6,8,9) (5,4), (5,5), (5,7), (5,6), (2,3), (2,1), (2,2) 36

The feasible and optimal schedules reported in Table 4 are also represented as 1 2 3P J J→ ∧ , 5 1 4 5 6 7P J J J J J→ ∧ ∧ ∧ ∧ and

2 1 2 3P J J J→ ∧ ∧ , 5 4 5 6 7P J J J J→ ∧ ∧ ∧ respectively. For better understanding 1 2 3P J J→ ∧ indicates that second and third
jobs are performed by first person. Similarly, 5 4 5 6 7P J J J J→ ∧ ∧ ∧ denotes fourth, fifth, sixth and seventh jobs are done by
fifth person.

5. Computational Results

All the experiments were tested in Matlab 2017a, Intel Core i5 2.10 with GHz CPU B950 and 4 GB of RAM PC running
Microsoft Windows 2010 OS. The computational results including comparative results of relaxed version of k-UAP and
computational results of k-UAP using proposed LSA tested on some selected test instances as used by Majumdar & Bhunia
(2012). To compare the results of the proposed LSA against the results of Majumdar & Bhunia (2012), the current model k-
UAP will transform to an equivalent model addressed by Majumdar & Bhunia (2012) by setting k m= and imposing a
constraint over the jobs that are permitted to do by each person.

5.1 Comparision of proposed LSA and Genetic Algorithm of Majumdar & Bhunia (2012)

The proposed LSA performance can be assessed through a comparative study of the genetic algorithm (GA) developed by
Majumdar and Bhunia (2012) for UAP with m n< , whose best GA results (GA*) are considered for comparison purposes.
These results are acquired by testing two distinct variants of GA (GA-1 and GA-2) over the cases of sizes 5 × 7, 5 × 8, 6 × 10

A. Prakash et al. / International Journal of Industrial Engineering Computations 13 (2022) 273

and 7 × 10 with distinct parametric values. Note that these instances are denoted as AP-1, AP-2, AP-3 and AP-4, respectively.
All these instances are also provided in the Appendix. Tables 5-7 provide the comparative details of LSA and GA*.

Table 5
Comparative results of LSA against GA* for AP-1 and AP-2

Algorithm Instances→ AP-1 AP-1 AP-2 AP-2 AP-2
GA*

Jobs 2 3 2 3 4
Worst Solution 137 136 1530 1510 1500
Optimal Solution 133 128 1520 1470 1450
Best Runtime 0.001 0.001 0.001 0.001 0.001
Optimal Solution
Corresponding
Schedule& Alternate
Schedule (@)

P1 →J2 ^ J3
P2 →J4
P3 →J5
P4 →J7
P5 →J1 ^ J6

@P1 →J3 ^ J6
P2 →J4
P3 →J5
P4 → J7
P5 →J1 ^ J2

P1 →J3
P2 →J4
P3 →J5
P4 →J7
P5 →J1 ^ J2^ J6

P1 →J2 ^ J3
P2 →J4 ^ J8
P3 →J5
P4 →J7
P5 →J1 ^ J6

@P1 →J3^ J6
 P2 →J4 ^ J8
P3 →J5
P4 →J7
P5 →J1 ^ J2

P1 →J3
P2 → J4 ^ J8
P3 →J5
P4 →J7
P5 →J1 ^ J2 ^ J6

P1 →J3
P2 →J8
P3 →J4
P4 →J7
P5 →J1 ^ J2^ J5 ^ J6

LSA Jobs 2 3 2 3 4
Worst Solution 137 140 1560 1590 1580
Optimal Solution 133 128 1520 1470 1450
Best Runtime 0.010 0.010 0.010 0.010 0.010
Optimal Solution
Corresponding
Schedule & Alternate
Schedule (@)

P1 →J2 ^ J3
P2 →J4
P3 →J5
P4 →J7
P5 →J1 ^ J6

@P1 →J3
 P2 →J4
P3 →J5
P4 →J6 ^ J7
P5 →J1 ^ J2

P1 →J3
P2 →J4
P3 →J5
P4 →J7
P5 →J1 ^ J2 ^ J6

P1 →J3 ^ J6
P2 →J4 ^ J8
P3 →J5
P4 →J7
P5 →J1 ^ J2

@P1 →J3
 P2 →J4 ^ J8
P3 →J5
P4 →J6 ^ J7
P5 →J1 ^ J2

P1 →J3
P2 → J4 ^ J8
P3 →J5
P4 →J7
P5 →J1 ^ J2^ J6

P1 →J3
P2 →J8
P3 →J4
P4 →J7
P5 →J1 ^ J2 ^ J5 ^ J6

In Table 5, for all the instances of AP-1 and AP-2, the best results of LSA match with GA*. The CPU run time of LSA varies
from 0.010 to 0.014 seconds, whereas GA* converges to 0.001 seconds. In Table 6 and Table 7, the best solutions acheived
through LSA match with GA* for 4 cases, such as AP-3 (with 2 and 4 jobs) and AP-4 (with 2 and 3 jobs).

Table 6
Comparative results of LSA against GA* for AP-3

Algorithm Instances→ AP-3 AP-3 AP-3 AP-3
GA*

Jobs 2 3 4 5
Worst Solution 80 75 70 78
Optimal Solution 66 67 66 74
Best Runtime 0.060 0.060 0.060 0.060
Optimal Solution
Corresponding
Schedule& Alternate
Schedule(@)

P1 →J2 ^ J5
P2 →J4 ^ J7
P3 →J1 ^ J3
P4 →J6
P5 →J8
P6 → J9 ^ J10

P1 →J2 ^ J5
P2 →J4 ^ J6 ^ J7
P3 →J1^ J3
P4 →J10
P5 →J8
P6 → J9

P1 →J2
P2 → J4 ^ J5 ^ J6 ^ J7
P3 →J1 ^ J3
P4 →J10
P5 →J8
P6 → J9

P1 →J2
P2 → J4 ^ J5 ^ J6 ^ J7 ^ J10
P3 →J1
P4 →J3
P5 →J8
P6 → J9

LSA Jobs 2 3 4 5
Worst Solution 72 71 68 71
Optimal Solution 66 65 66 69
Best Runtime 0.010 0.010 0.010 0.012
Optimal Solution
Corresponding
Schedule & Alternate
Schedule(@)

P1 →J2 ^ J5
P2 →J4 ^ J7
P3 →J1 ^ J3
P4 →J6
P5 →J8
P6 → J9 ^ J10

P1 →J2
P2 →J4 ^ J5 ^ J7
P3 →J1 ^ J3
P4 →J6
P5 →J8
P6 → J9 ^ J10

P1 →J2
P2 → J4 ^ J5 ^ J6 ^ J7
P3 →J1 ^ J3
P4 →J10
P5 →J8
P6 → J9

P1 →J2
P2 → J3 ^ J4 ^ J5 ^ J6 ^ J7
P3 →J1
P4 →J10
P5 →J8
P6 → J9

@ P1 →J2
P2 → J1 ^ J4 ^ J5 ^ J6 ^ J7
P3 →J3
P4 →J10
P5 →J8
P6 → J9

For remaining cases, specifically AP-3 (with 3 and 5 jobs) and AP-4 (with 4 jobs) LSA provided the preferable results than
the GA*. The computational run time of LSA ranges from 0.010 to 0.015 seconds, whereas GA* ranges from 0.060 to 0.120
seconds. Here, LSA seems more competent than GA* as per with solution quality and runtime aspects. It is evident that the

274

LSA is also list out the alternative solutions efficiently, if it occurs. The other best found solutions can also be seen in Tables
5-7. This indicates the ability of LSA to list out all the possible alternative solutions. The overall results show that the LSA is
outperforming the GA* in both quality of the solution and runtime of the algorithm aspects.

Table 7
Comparative results of LSA against GA* for AP-4

Algorithm Instances→ AP-4 AP-4 AP-4
GA*

Jobs 2 3 4
Worst Solution 71 75 82
Optimal Solution 69 69 73
Best Runtime 0.120 0.100 0.110
Optimal Solution
Corresponding
Schedule& Alternate
Schedule(@)

P1 →J4
P2 →J6 ^ J7
P3 →J1
P4 →J3 ^ J8
P5 →J9
P6 → J5
P7 → J2 ^ J10

@ P1 →J4
P2 →J6 ^ J7
P3 →J10
P4 →J3 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

P1 →J4
P2 →J6
P3 →J10
P4 →J3 ^ J7 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

@ P1 →J4
P2 →J7
P3 →J10
P4 →J3 ^ J6 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

P1 →J4
P2 →J10
P3 →J1
P4 → J3 ^ J6 ^ J7 ^ J8
P5 →J9
P6 → J5
P7 → J2

LSA Jobs 2 3 4
Worst Solution 69 69 83
Optimal Solution 69 69 71
Best Runtime 0.010 0.011 0.012
Optimal Solution
Corresponding
Schedule & Alternate
Schedule(@)

P1 →J4
P2 →J6
P3 → J7 ^ J10
P4 →J3 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

@ P1 →J4
P2 → J6 ^ J7
P3 → J10
P4 →J3 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

P1 →J4
P2 →J6
P3 →J10
P4 →J3 ^ J7 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

@ P1 →J4
P2 →J7
P3 →J10
P4 →J3 ^ J6 ^ J8
P5 →J9
P6 → J1 ^ J5
P7 → J2

P1 →J4
P2 →J6
P3 →J10
P4 → J3 ^ J5 ^ J7 ^ J8
P5 →J9
P6 → J1
P7 → J2

5.2 Computational results of k-UAP using proposed LSA

This section reports the computational details of k-UAP tested using the proposed LSA. For computational experiments, we
have considered the same four test instances as used by Majumdar and Bhunia (2012). Each of these four instances with
distinct k values were tested using the proposed LSA. Each test instance is executed in ten independent runs with distinct
TS values and the summary of best found results are reported in Table 8. Table 8 consists of the results for each instance such
as the worst, optimal solutions, CPU runtime (in seconds) required to get the optimal solution and schedule corresponding to
the optimal solution.

From Table 8, the key remarks are observed:

i. The proposed LSA produces new best solutions that may help to the future comparative purposes.
ii. The proposed LSA is proficient in achieving the substitute solutions, if exists.

iii. It is note that the test instance AP-2 with k=2 could take 0.031 seconds while AP-2 with k=4 has taken 0.043
seconds to get optimal solution. Similarly, AP-3 with k=3 took 0.042 seconds whereas the test instance AP-3 with
with k=5 has used 0.028 seconds to get the optimal solution. This clearly demonstrations the performance of the
LSA depends on k values.

iv. The runtime ranging from 0.027 seconds to 0.050 seconds show that the LSA takes less time for getting best
solutions.

To conclude, the LSA appears to be more capable in providing promising solutions within considerably less time.

A. Prakash et al. / International Journal of Industrial Engineering Computations 13 (2022) 275

Table 8
Computational results of k-UAP using LSA on AP-1, AP-2, AP-3 & AP-4

Algorithm Instances→ AP-1 AP-1 AP-1 AP-2

LSA

k 2 3 4 2
Worst solution 122 129 139 1400
Optimal solution 122 123 125 1400
Best runtime
(in Sec.)

0.029 0.038 0.044 0.031

Optimal solution
corresponding
schedule & alternate
schedule(@)

P1 →J3
P5 →J1 ^ J2 ^ J4 ^
J5 ^ J6 ^ J7

P1 →J3
P2 → J4
P5 →J1 ^ J2 ^ J5 ^
J6 ^ J7

P1 →J3
P2 → J4
P4 → J7
P5 →J1 ^ J2 ^ J5 ^ J6

P1 →J3
P5 →J1 ^ J2 ^ J4 ^ J5 ^ J6 ^ J7

Instances→ AP-2 AP-2 AP-3 AP-3
k 3 4 2 3
Worst solution 1470 1570 86 78
Optimal solution 1410 1430 76 68
Best runtime
(in Sec.)

0.028 0.043 0.042 0.042

Optimal solution
corresponding
schedule & alternate
schedule(@)

P1 →J3
P2 → J8
P5 →J1 ^ J2 ^ J4 ^ J5 ^
J6 ^ J7

P1 →J3
P2 → J8
P3 → J4
P5 →J1 ^ J2 ^ J5 ^
J6 ^ J7

P2 →J1 ^ J3 ^ J4 ^ J5 ^ J6 ^
J7 ^ J8 ^ J10
P6 →J2 ^ J9

P2 →J4 ^ J5 ^ J6 ^ J7
P3 → J1 ^ J3 ^ J8
P5 →J2 ^ J9 ^ J10

Instances→ AP-3 AP-3 AP-4 AP-4

k 4 5 2 3

Worst solution 63 61 103 83

Optimal solution 63 61 90 73

Best runtime
(in Sec.)

0.030 0.027 0.050 0.039

Optimal solution
corresponding
schedule & alternate
schedule(@)

P1 →J2
P2 →J4 ^ J5 ^ J6 ^ J7
P3 → J1 ^ J3 ^ J8
P6 →J9 ^ J10

P1 →J2
P2 →J4 ^ J5 ^ J6 ^
J7
P3 → J1 ^ J3
P5 →J8
P6 →J9 ^ J10

P4 →J1 ^ J3 ^ J5 ^ J6 ^ J7 ^
J8
P7 →J2 ^ J4 ^ J9 ^ J10

P4 →J3 ^ J6 ^ J7 ^ J8
P5 →J1 ^ J5 ^ J9
P7 →J2 ^ J4 ^ J10

Instances→ AP-4 AP-4 AP-4

k 4 5 6

Worst solution 78 73 68
Optimal solution 68 68 68

Best runtime
(in Sec.)

0.035 0.036 0.033

Optimal solution
corresponding
schedule & alternate
schedule(@)

P4 →J3 ^ J6 ^ J7 ^J8
P5 → J9
P6 →J1 ^ J5
P7 →J2 ^ J4 ^ J10

P2 →J6 ^ J7
P4 →J3 ^ J8
P5 → J9
P6 →J1 ^ J5
P7 →J2 ^ J4 ^ J10

P1 →J4
P2 →J6 ^ J7
P4 →J3 ^ J8
P5 → J9
P6 →J1 ^ J5
P7 →J2 ^ J10

6. Conclusion

Due to the inadequacy of the workforce, various assignment models can be seen as problems in which the number of persons
is fewer than the number of jobs (i.e. m<n)). Thus, it is inevitable to assign multiple jobs to a single person in an effective
manner. To address one such scenario, the more generalized variant of UAP called “k-cardinality unbalanced assignment
problem” (k-UAP) is considered in this study. In addition, this model also includes an additional constraint over the total jobs
that a person is permitted to do and a cardinality over the set of persons. This model has been formulated using 0-1 ILP. An
exact LSA is developed to solve k-UAP optimally. Comparative results showed that the proposed LSA is competent over
existing algorithm. Computational results of four test instances with distinct cardinalities have been provided. The overall
results showed that the proposed LSA may be competent over the existing algorithms in providing best results of k-UAP.

References

Arora, S., & Puri, M. C. (1998). A variant of time minimizing assignment problem. European Journal of Operational
Research, 110(2), 314-325.

Bai, G. Z. (2009, December). A new algorithm for k-cardinality assignment problem. In 2009 International Conference on
Computational Intelligence and Software Engineering (pp. 1-4). IEEE.

276

Belik, I., & Jörnsten, K. (2016). A new Semi-Lagrangean Relaxation for the k-cardinality assignment problem. Journal of
Information and Optimization Sciences, 37(1), 75-100.

Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Bhunia, A. K., Biswas, A., & Samanta, S. S. (2017). A genetic algorithm-based approach for unbalanced assignment problem

in interval environment. International Journal of Logistics Systems and Management, 27(1), 62-77.
Dell'Amico, M., & Martello, S. (1997). The k-cardinality assignment problem. Discrete Applied Mathematics, 76(1-3), 103-

121.
Dell'Amico, M., Lodi, A., & Martello, S. (2001). Efficient algorithms and codes for k-cardinality assignment problems.

Discrete Applied Mathematics, 110(1), 25-40.
Feng, Y., & Yang, L. (2006). A two-objective fuzzy k-cardinality assignment problem. Journal of Computational and Applied

Mathematics, 197(1), 233-244.
Gabrovšek, B., Novak, T., Povh, J., Rupnik Poklukar, D., & Žerovnik, J. (2020). Multiple Hungarian Method for k-

Assignment Problem. Mathematics, 8(11), 2050.
Iampang, A., Boonjing, V., & Chanvarasuth, P. (2010, December). A cost and space efficient method for unbalanced

assignment problems. In 2010 IEEE International Conference on Industrial Engineering and Engineering Management
(pp. 985-988). IEEE.

Votaw, D.F., & Orden, A. (1952) ‘The personnel assignment problem’, Symposium on Linear Inequalities and
Programming, Scoop 10, US Air Force, pp.155–163.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1‐2), 83-97.
Kumar, A. (2006). A modified method for solving the unbalanced assignment problems. Applied Mathematics and

Computation, 176(1), 76-82.
Kumar, T. J., & Purusotham, S. (2017). An exact algorithm for k-cardinality degree constrained clustered minimum spanning

tree problem. In IOP Conf. Ser. Mater. Sci. Eng. (Vol. 263, p. 042112).
Kumar, T., & Purusotham, S. (2018). The degree constrained k-cardinality minimum spanning tree problem: a lexi-search

algorithm. Decision Science Letters, 7(3), 301-310.
Majumdar, J., & Bhunia, A. K. (2012). An alternative approach for unbalanced assignment problem via genetic algorithm.

Applied Mathematics and Computation, 218(12), 6934-6941.
Malhotra, R., & Bhatia, H. L. (1984). Variants of the time minimization assignment problem. Trab. Estad. Invest. Oper.,

35(3), 331-338.
Sundara Murthy, M. (1976). A bulk transportation problem. Opsearch, 13(3-4), 143-155.
Thenepalle, J. K., & Singamsetty, P. (2018). Bi-criteria travelling salesman subtour problem with time threshold. The

European Physical Journal Plus, 133(3), 1-15.
Thenepalle, J. K., & Singamsetty, P. (2019). Lexi-search algorithm for one to many multidimensional bi-criteria unbalanced

assignment problem. International Journal of Bio-Inspired Computation, 14(3), 151-170.
Volgenant, A. (2004). Solving the k-cardinality assignment problem by transformation. European Journal of Operational

Research, 157(2), 322-331.
Yadaiah, V., & Haragopal, V. V. (2016). A new approach of solving single objective unbalanced assignment problem.

American Journal of Operations Research, 6(1), 81-89.

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

