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 The Vehicle Routing Problem with Loading Constraints (VRPLC) is strongly related to real life 
applications in distribution logistics. It addresses the simultaneous loading and routing of 
vehicles, which are two crucial activities in transportation. Since treating these operations 
separately may result in impractical solutions, the development of applications for VRPLCs has 
gained the attention of researchers in recent years. Several heuristic methods have been proposed, 
but they consider only a limited group of practical characteristics that arise in real world 
situations. This study proposes a hybrid heuristic method based on the Greedy Randomized 
Adaptive Search Procedure (GRASP) metaheuristic and the Clarke and Wright Savings 
algorithm, to solve a VRPLC with several loading and routing constraints that have not been 
considered simultaneously before. Experimental results show that the proposed procedure 
produces competitive solutions in short processing times. Lastly, the impact of the added 
operational constraints is also analyzed. 
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1. Introduction 

 
In recent years, there has been growing interest in the simultaneous determination of both the optimal 
routes and the packing patterns of vehicles, as this combination can assist in producing better global 
solutions for distribution logistics (Hokama et al., 2016). This can be carried out by modeling and solving 
a problem known as the Vehicle Routing Problem with Loading Constraints (VRPLC) (Zachariadis, 
Tarantilis, & Kiranoudis, 2013). The VRPLC is the combination of two well-known NP-hard problems: 
The Container Loading Problem (CLP) and the Vehicle Routing Problem (VRP) (Iori & Martello, 2010). 
Because of its potential for practical applications, the VRPLC is an emergent research stream in logistics 
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(Zachariadis et al., 2016), and several heuristic applications have been proposed to solve different 
versions of the problem. 

In spite of this, there are several practical considerations, which could drive solution approaches towards 
more realistic scenarios, that have not been considered in the majority of solution approaches. Among 
the group of overlooked operational constraints, weight distribution inside the container of the vehicles 
and route balancing have been recognized as interesting research directions. This is because, on one hand, 
an improper weight distribution can increase fuel consumption (Baldi et al., 2012), and it could also 
impact on the safety of personnel and the safe handling of a container (Davies & Bischoff, 1999). On the 
other hand, achieving an efficient balance of the delivery routes (e.g. in terms of carried weight, traveled 
time or distance) helps to introduce aspects of fair treatment between the drivers of a transporting 
company (Sicilia et al., 2016). 

Considering the above, the objective of this article is to present a heuristic method for solving a version 
of the VRPLC with characteristics not previously considered simultaneously: Container weight limit, the 
load-bearing strength of items, weight distribution of the load stored inside the container of the vehicle, 
delivery time windows, and balancing of the vehicle fleet. According to Laporte (2009), heuristic 
developments should be oriented towards simpler and more flexible methods, even if this means a small 
loss in accuracy, in order to avoid ‘over-engineered’ solution procedures. Moreover, flexibility and 
simplicity have also been recognized as essential attributes of good heuristics (Cordeau et al., 2002). In 
this regard, the proposed method is a simple streamlined procedure, with low processing computational 
times for both large or small instances, and the flexibility to incorporate further practical considerations. 
More specifically, the method is a hybrid heuristic that combines a Greedy Randomized Adaptive Search 
Procedure (GRASP) heuristic and a Clarke and Wright Savings (CWS) algorithm. This hybrid heuristic 
expands on the previous work by Vega-Mejía and Montoya-Torres (2017) by providing a more detailed 
explanation of the solution procedure and a deeper analysis of the computational results and implications 
of the considered practical constraints. It is expected that the proposed heuristic procedure serves as a 
starting point to represent real life situations in distribution operations more precisely. 

The remainder of the article is organized as follows. Section 2 provides a brief review of commonly used 
heuristic approaches and previously considered loading and routing constraints. Section 3 presents a more 
formal definition of the VRPLC addressed in this article. Section 4 describes in detail the proposed hybrid 
heuristic. Section 5 describes the computational experiments that were carried out, providing the 
benchmark instances that were employed and the analysis of the experimental results. Finally, Section 6 
presents some concluding remarks and provides interesting ideas for future research in VRPLC 
applications. 

2. Background 
 

Provided that the VRPLC is an NP-Hard problem, the decision to develop heuristic solutions is supported 
and favored in the literature about such problems. Some commonly used heuristic approaches are based 
on well-known metaheuristics, such as Tabu Search (TS) (e.g. Bortfeldt & Homberger, 2013; Gendreau 
et al., 2006), GRASP (e.g. Moura & Oliveira, 2009), Ant Colony Optimization (ACO) (e.g. Fuellerer et 
al., 2010), Simulated Annealing (SA) (e.g. Ceschia et al., 2013), and Variable Neighborhood Search 
(VNS) (e.g. Tricoire et al., 2011). According to Junqueira and Morabito (2015), these solution approaches 
can be grouped into three distinctive approaches. The first one is called “loading after routing”, which 
basically determines the delivery routes of the vehicles first, and then starts validating that the loading 
patterns are feasible. In the second approach, called “loading while routing”, as a delivery node is 
included in a delivery route, the heuristic procedure determines if the resulting packing pattern is feasible. 
The third approach is a combination of the other two. A fourth approach is proposed by Bortfeldt and 
Homberger (2013). The approach “pack first – route second” consists of first building a loading 
arrangement for each node in the delivery network, and then building the delivery routes, verifying that 
the loading arrangement for each route is feasible.  
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Both the CLP and VRP have been extensively studied in the literature, and recent reviews include the 
works by Bortfeldt and Wäscher (2013) who presented an updated classification framework for Packing 
Problems (PP) based on the use of the practical attributes of the problem; Montoya-Torres et al. (2015), 
who analyzed VRPs with multiple depots; and (Lin et al., 2014), who presented the evolution of VRP 
into Green VRP. The review by Caceres-Cruz et al. (2014) focused on the combination of VRPs with 
other activities related to transportation, to construct what they refer to as Rich VRPs (RVRP). According 
to their classification, the VRPLC is a type of RVRP. Regarding VRPLCs, the recent reviews by Iori and 
Martello (2010) and Junqueira and Morabito (2015) presented an account of the algorithmic approaches 
used to solve the problem. To the best of our knowledge, the most recent review on VRPLCs corresponds 
to the work by Vega-Mejía, Montoya-Torres and Islam (2019b), who analyzed how the different 
attributes of the problem (i.e. objective functions and operational constraints) could be realigned towards 
sustainable transportation applications. 

Some of the previous studies argue for the necessity of including several practical characteristics when 
solving packing or routing problems. However, Bortfeldt and Wäscher (2013) concluded from their 
review work on Packing Problems (PP), that many of the practical constraints originally described by 
Bischoff and Ratcliff (1995) had been neglected in PP studies. Moreover, Iori and Martello (2010) and 
Junqueira and Morabito (2015) suggested the inclusion of several operational attributes of the VRPLC 
(e.g. split deliveries, weight distribution, route balancing, time windows, pickup and delivery) as future 
research directions in the development of solution methods. In their review, Junqueira and Morabito 
(2015) showed that studies have mostly concentrated on ten practical constraints: (i) Rotation of items, 
(ii) vertical stability, (iii) Last In – First Out (LIFO) loading/unloading, (iv) fragility of items, (v) box to 
pallets and pallets into vehicles, (vi) weight related constraints, (vii) time windows, (viii) time-
constrained routes, (ix) pickup and delivery, (x) and split deliveries. However, the studies they analyzed 
considered only half of these attributes, at the most. Similar findings can be observed in the previous 
review works (e.g. Vega-Mejía et al., 2019b). To the best of our knowledge, the practical constraints 
considered in the present study have not been considered simultaneously in heuristic solution procedures 
for VRPLCs before.  

Other recent studies seem to follow the trend described by Junqueira and Morabito (2015). For instance, 
Dominguez, Juan and Faulin (2014) considered as practical constraints the weight limit of the container 
of the vehicles, LIFO loading/unloading, and the possibility of rotating the items, in the minimization of 
the transportation costs of a 2-Dimensional (2D) VRPLC. To solve the problem, the authors employed a 
Random-Biased CWS algorithm, where the packing conditions were checked, as the routes were merged 
(i.e. loading while routing). This prevented the generation of any infeasible solutions. The heuristic 
method proposed by Zhang et al. (2015), aimed at minimizing fuel consumption in a CVRP with 3-
Dimensional (3D) items, considers sufficient vertical support and the fragility of items, LIFO conditions, 
container weight limits and a heterogeneous vehicle fleet. The authors implemented an Evolutionary 
Local Search (ELS), whose initial solution was generated using a CWS algorithm for the routing part, 
and sorting rules of the items based on their fragility, LIFO order, vertical support and volume, for the 
packing problem.  

Bortfeldt, Hahn, Männel and Mönch (2015) proposed two hybrid algorithms to analyze the impact of the 
neighborhood structure on the quality of the solution of a 3D VRPLC with the objective of minimizing 
the total traveled distance. In the first algorithm, the routing sub-problem is solved by an Adaptive Large 
Neighborhood Search (ALNS). In the second algorithm, the routing problem is solved employing a VNS, 
whose initial solution is generated by a CWS algorithm. In both hybrid algorithms, the packing procedure 
is performed with a Tree Search Algorithm (TSA). As was the case in the study by Zhang et al. (2015), 
the items were tagged as either fragile or non-fragile. 

Dominguez et al. (2016c) proposed a multi-start Biased-Randomized CWS algorithm to minimize the 
total costs of a 2D VRPLC, where the vehicle fleet consists of heterogeneous vehicles. As practical 
considerations, the rotation of the boxes was allowed and there was a limit on the weight a vehicle could 



  

 

258 

transport. The authors suggested that other practical routing aspects such as pick-up and delivery, time 
windows, and stochastic demands may offer interesting research directions. In related studies, 
Dominguez et al. (2016b) and Dominguez et al. (2016a) used biased randomization based algorithms and 
a CWS algorithm to solve 2D VRPLCs with the objective of minimizing the total distribution costs, using 
heterogeneous and homogeneous vehicle fleets, respectively. Dominguez, Juan, de la Nuez, et al. (2016) 
used an Iterated Local Search (ILS) to handle operational constraints such as the rotation of boxes, the 
weight capacity of the transporting vehicles, and LIFO loading/unloading. Dominguez, Guimarans, et al. 
(2016) employed an LNS to solve the problem, which considered box rotations, LIFO loading/unloading, 
and backhauls. In the three studies, the cargo arrangements are checked every time two routes are merged 
by the CWS. Continuing along this line of research, more recently Guimarans et al. (2018) minimized 
the total travel time in a 2D VRPLC employing a simheuristic approach (see Juan et al., 2015) that 
combined Monte Carlo Simulation and a biased randomized ILS. The authors considered some of the 
practical constraints mentioned in previous studies and added stochastic travel times to represent 
changing traffic conditions. Along with the study by Guimarans et al. (2016), these are, to the best of our 
knowledge, the only studies that have included stochastic considerations within VRPLC formulations.   

Zhang et al. (2017) proposed a hybrid heuristic that combines a Bee Colony Algorithm (BCA) with a 
TSA, to minimize the traveled distance in a 3D VRPLC with rotation of the boxes, vertical stability, 
fragility of items, the weight limit of the container, LIFO loading/unloading, and delivery time windows. 
Different from other studies in this brief review, the proposed hybrid heuristic employs a “pack first – 
route second” solution approach. As future research, the authors recommended the continuous 
improvement of the proposed heuristic so that it can be applied in other rich VRPs. Alinaghian, Zamanlou 
and Sabbagh (2017) proposed an elitist non-dominated sorting local search to minimize the total traveling 
time and, simultaneously, balance the weight load that the vehicles carry in a time-dependent 2D VRPLC. 
The authors employed a piecewise linear function to represent the concept of time dependency and claim 
that good quality solutions can be obtained by utilizing the proposed method, although many operational 
constraints, considered in previous studies, were not included (e.g. LIFO loading/unloading). It is in this 
regard that the authors recommended an avenue for further research on this problem. 

Lastly, Koch, Bortfeldt and Wäscher (2018) proposed a hybrid heuristic approach that combines an 
ALNS and packing heuristics, such as bottom-left-first and touching area heuristics, to solve a 3D 
VRPLC with time windows and pickup and delivery conditions. Practical loading constraints are 
considered as well (i.e. vertical stability, rotation of items, fragile and non-fragile items, and LIFO 
loading/unloading). The proposed hybrid checks the feasibility of the packing arrangement of a generated 
route, which could be classified as a “loading while routing” approach to solve the problem. The authors 
suggested the consideration of different backhauls conditions as interesting topics to research further.  

Based on the above and to address some of the gaps identified so far in the literature, the following 
sections define the VRPLC considered in this study, and the detailed explanation of how a hybrid 
heuristic solution method can solve it. 

3. Problem definition 
 

The VRPLC considered in this paper consists of a set of clients 𝐊 = {1, … , 𝑚} that require the delivery 
of different types of items, from a set of 3D rectangular boxes 𝐁 = {1, … , 𝑛}. Each item type is defined 
by the dimensions 𝐵𝐿 , 𝐵𝑊  and 𝐵𝐻  (representing length, width and height, respectively), weight 𝐵𝑀  
and weight bearing strength 𝐵𝑆𝑀  for ∀𝑖 ∈ 𝐁. The delivery task is performed using a homogeneous fleet 
of vehicles 𝐕 = {1, … , 𝑝}, where each vehicle has a weight capacity 𝑉𝑀 and dimensions 𝐶𝐿, 𝐶𝑊 and 𝐶𝐻 
(representing length, width and height, respectively), so that 𝐵𝐿 < 𝐶𝐿, 𝐵𝑊 < 𝐶𝑊 and 𝐵𝐻 < 𝐶𝐻. The 
delivery of the items required by a client (𝐵𝐾 , 𝑖 ∈ 𝐁, 𝑘 ∈ 𝐊) must be done using only one vehicle, but 
one vehicle can serve multiple clients. Furthermore, each vehicle starts its delivery route at the same 
central depot and returns to it after delivering all the assigned orders. This central depot can be 
represented as client 1 in set 𝐊. In addition, each client has a defined service time 𝑆𝑇  and a time window 
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between 𝑆𝑊  and 𝐸𝑊  in which they would expect the delivery of their items to take place. Also, the 
time required to go from one client 𝑘 ∈ 𝐊 to another client 𝑙 ∈ 𝐊 is 𝑇𝑇 . For simplicity, 𝑇𝑇  is also used 
as the distance between clients 𝑘 and 𝑙. 

The objectives of this VRPLC are to minimize the total distance traveled of the vehicle fleet and possible 
delays, to minimize the deviation of the center of gravity of the loaded vehicle from its geometrical 
center, and to balance the vehicle fleet so that each vehicle carries approximately the same payload. These 
objectives are subject to several practical loading and routing constraints, such as vertical stability, the 
load bearing strength of the items, the weight capacity of the transporting vehicle, the sequence for 
loading/unloading (i.e. LIFO), the weight distribution inside the vehicle container, delivery time 
windows, and determining a balanced vehicle fleet. To better illustrate this, the next section presents a 
Non-Linear Mixed Integer Program (NLMIP) for the problem. 

3.1.NLMIP for the VRPLC 
 

The following NLMIP model has been presented by Vega-Mejía, Montoya-Torres and Islam (2019a), 
who based their model on the MIP model proposed by Junqueira et al. (2013). For practical purposes, 
the model by Vega-Mejía et al. (2019a) is reproduced here in a summarized manner. 

3.1.1. Sets 
 

Apart from the sets mentioned previously, the following sets are used in the formulation. Set 𝐒 =
{0, … , 𝑚} represents the different transitions on the route of a vehicle. Assuming that 𝐵𝐿 , 𝐵𝑊 , 𝐵𝐻  have 

integer values ∀𝑖 ∈ 𝐁, the sets 𝐗 = 0, … , 𝑉𝐿 − min
∀ ∈𝐁

(𝐵𝐿 ) , 𝐘 = 0, … , 𝑉𝑊 − min
∀ ∈𝐁

(𝐵𝑊 )  and  

𝐙 = 0, … , 𝑉𝐻 − min
∀ ∈𝐁

(𝐵𝐻 )  represent the available positions in which boxes can be placed inside the 

vehicles’ containers. Additional sets 𝐗𝐍𝐏 and 𝐙𝐍𝐏 are also introduced to reduce the number of decision 
variables in the model. These sets are referred to as “normal patterns” (see Christofides & Whitlock, 
1977; Cui, 2007; Junqueira et al., 2013). Since the “normal patterns” limit the placement positions on 
each axis, a “normal pattern” is not defined for 𝐘, to allow the improvement of the center of gravity. 

3.1.2. Variables 
 

Binary variables 𝑎  are defined to determine the placement of the boxes inside the vehicles, and 𝑑  
to specify the delivery route of each vehicle, with 𝑖 ∈ 𝐁, 𝑘, 𝑙 ∈ 𝐊, 𝑠 ∈ 𝐒, 𝑣 ∈ 𝐕, 𝑥 ∈ 𝐗𝐍𝐏|𝑥 ≤ 𝑉𝐿 −
𝐵𝐿 , 𝑦 ∈ 𝐘|𝑦 ≤ 𝑉𝑊 − 𝐵𝑊 , 𝑧 ∈ 𝐙𝐍𝐏|𝑧 ≤ 𝑉𝐻 − 𝐵𝐻  (see Vega-Mejía et al., 2019a). Variables 𝑏  and 
ℎ , with 𝑥 ∈ 𝐗|𝑥 ≤ 𝑉𝐿 − 𝐵𝐿 , 𝑦 ∈ 𝐘|𝑦 ≤ 𝑉𝑊 − 𝐵𝑊 , 𝑧 ∈ 𝐙|𝑧 ≤ 𝑉𝐻 − 𝐵𝐻 , are used as variables to 
handle the vertical stability and LIFO constraints. Variables 𝑐 , 𝑔  and 𝑓  are used to determine the 
departure, arrival and tardiness, respectively, of vehicle 𝑣 ∈ 𝐕 when stopping at the location of client 𝑘 ∈
𝐊. The variables 𝑣𝑙𝑜𝑎𝑑  are used to calculate the weight of the load that vehicle 𝑣 ∈ 𝐕 carries when it 
leaves the central depot. The maximum and minimum weights carried by the vehicles are represented by 
variables 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 and 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑, respectively. And variables 𝑐𝑜𝑔𝑦 , 𝑑𝑒𝑣𝑐𝑜𝑔  and 𝑣𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑔𝑒  
are used for determining the geometrical location of the center of gravity, how much it deviates from the 
mid-point of the width of the container, and the weight of vehicle 𝑣 ∈ 𝐕 in stage 𝑠 ∈ 𝐒, respectively. 
Finally, 𝑎  and 𝑑  are binary variables, while the rest are real positive variables. 

3.1.3. Model formulation 
 

The following is the model presented by Vega-Mejía et al. (2019a). This section only presents the model 
formulation and a brief explanation. For a full detailed explanation of the model and computational 
experiments, the reader is referred to the study by Vega-Mejía et al. (2019a). 

 min 𝑧 = ∑ ∑ ∑ ∑ 𝑇𝑇 𝑑∀ ∈𝐒∀ ∈𝐕∀ ∈𝐊∀ ∈𝐊  (1) 
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 min 𝑧 = ∑ ∑ 𝑓∀ ∈𝐕∀ ∈𝐊  (2) 

min 𝑧 = 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 − 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑 (3) 

 min 𝑧 = ∑ ∑ 𝑑𝑒𝑣𝑐𝑜𝑔∀ ∈𝐒∀ ∈𝐕  (4) 

 ∑ ∑ ∑ 𝑑∀ ∈𝐒∀ ∈𝐕∈𝐊, = 1       𝑘 ∈ 𝐊\{0} (5) 

 ∑ ∑ ∑ 𝑠 ∙ 𝑑∈𝐒\{ }∀ ∈𝐕∀ ∈𝐊 − ∑ ∑ ∑ 𝑠 ∙ 𝑑∀ ∈𝐒∀ ∈𝐕∀ ∈𝐊 = 1       𝑘 ∈ 𝐊\{0} (6) 

 ∑ 𝑑
( )

∀ ∈𝐊 − ∑ 𝑑∀ ∈𝐊 = 0       𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} (7) 

 ∑ ∑ 𝑑∀ ∈𝐒∈𝐊\{ } ≤ 1       ∀𝑣 ∈ 𝐕 (8) 

 ∑ ∑ ∑ ∑ ∑ 𝑎∀ ∈𝐙𝐍𝐏|∀ ∈𝐘|∀ ∈𝐗𝐍𝐏|∀ ∈𝐒∀ ∈𝐕 = 𝐵𝐾  

∀𝑖 ∈ 𝐁, ∀𝑘 ∈ 𝐊, 𝐵𝐾 > 0 
(9) 

 ∑ ∑ ∑ ∑ 𝑎∀ ∈𝐙𝐍𝐏|∀ ∈𝐘|∀ ∈𝐗𝐍𝐏|∀ ∈𝐁| = ∑ ∑ 𝐵𝐾 ∙∈𝐊,∀ ∈𝐁|

𝑑      𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} 
(10) 

 ∑ ∑ ∑ ∑ 𝐵𝐾 ∙∀ ∈𝐒\{ }∈𝐊,∀ ∈𝐊\{ } ∀ ∈𝐁 𝐵𝐿 ∙ 𝐵𝑊 ∙ 𝐵𝐻 ∙ 𝑑 ≤ 𝑉𝐿 ∙ 𝑉𝑊 ∙ 𝑉𝐻       ∀𝑣 ∈ 𝐕 (11) 

∑ ∑ ∑ ∑  ∀ ∈𝐘| ( , )∀ ∈𝐗𝐍𝐏| ( , )∈𝐒\{ }( , )∈𝐁×𝐊|   
 ∑ 𝑎∀ ∈𝐙𝐍𝐏| ( , ) ≤ 1       ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗𝐍𝐏, ∀𝑦 ∈ 𝐘, ∀𝑧 ∈ 𝐙𝐍𝐏 (12) 

 ∑ ∑ ∑ ∑  ∀ ∈𝐘| ( , )∀ ∈𝐗𝐍𝐏| ( , )∈𝐒\{ }( , )∈𝐁×𝐊|  
∑ 𝑎∀ ∈𝐙𝐍𝐏| ( , ) = 𝑏        ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗, ∀𝑦 ∈ 𝐘, ∀𝑧 ∈ 𝐙  (13) 

 𝑧 ∙ 𝑏 ≤ ∑ 𝑏        ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗, ∀𝑦 ∈ 𝐘, ∀𝑧 ∈ 𝐙, 𝑧 ≥ 1 (14) 

∑ ∑ ∑ ∑  ∀ ∈𝐘| ( , )∀ ∈𝐗𝐍𝐏| ( , )∈𝐒\{ }( , )∈𝐁×𝐊|   
∑ 𝑠 ∙ 𝑎∀ ∈𝐙𝐍𝐏| ( , ) = ℎ        ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗, ∀𝑦 ∈ 𝐘, ∀𝑧 ∈ 𝐙  

(15) 

ℎ ≥ ℎ        ∀𝑣 ∈ 𝐕, 𝑥 ∈ 0, … , 𝑉𝐿 − min
∀ ∈𝐁

(𝐵𝐿 ) − 1 , ∀𝑦 ∈ 𝐘, 

 𝑧 ∈ 0, … , 𝑉𝐻 − min
∀ ∈𝐁

(𝐵𝐻 ) − 1 , 𝑥 ∈ 𝑥 + 1, … , 𝑉𝐿 − min
∀ ∈𝐁

(𝐵𝐿 ) , 𝑧 ∈ 𝑧, … , 𝑉𝐻 − min
∀ ∈𝐁

(𝐵𝐻 )  
(16) 

ℎ ≥ ℎ        ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗, ∀𝑦 ∈ 𝐘, 𝑧 ∈ 0, … , 𝑉𝐻 − min
∀ ∈𝐁

(𝐵𝐻 ) − 1 , 

𝑧 ∈ 𝑧 + 1, … , 𝑉𝐻 − min
∀ ∈𝐁

(𝐵𝐻 )  
(17) 

 ∑ ∑ ∑ ∑  ∈𝐘| ,∈𝐗𝐍𝐏| ,∈𝐒\{ }( , )∈𝐁×𝐊|  

 ∑
∙

𝑎∈𝐙𝐍𝐏| ≤ ∑ ∑ ∑  ∈𝐗𝐍𝐏| ( , )∈𝐒\{ }( , )∈𝐁×𝐊|  

∑ ∑
∙

𝑎∈𝐙𝐍𝐏| ( , )∈𝐘| ( , )   

∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗𝐍𝐏, ∀𝑦 ∈ 𝐘, ∀𝑧 ∈ 𝐙𝐍𝐏 

(18) 

 𝑐 ≥ 𝑆𝑊 ∙ ∑ ∑ 𝑑∀ ∈𝐒∀ ∈𝐊,        𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕 (19) 

 𝑐 − 𝑓 ≤ 𝐸𝑊 ∙ ∑ ∑ 𝑑∀ ∈𝐒∀ ∈𝐊,        𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕 (20) 

 𝑔 = ∑ (𝑆𝑊 − 𝑇𝑇 ) ∙ 𝑑∈𝐊\{ }        ∀𝑣 ∈ 𝐕 (21) 

 𝑔 ≥ 𝑐 + 𝑓 + 𝑆𝑇 ∙ ∑ ∑ 𝑑∀ ∈𝐒∀ ∈𝐊,        𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕 (22) 

 𝑐 ≥ 𝑔 + 𝑇𝑇 − 𝑀 ∙ (1 − ∑ 𝑑∀ ∈𝐒 )       (𝑘, 𝑙) ∈ 𝐊, 𝑘 ≠ 𝑙, ∀𝑣 ∈ 𝐕 (23) 

 𝑣𝑙𝑜𝑎𝑑 = ∑ ∑ ∑ ∑ ∑ 𝑎∀ ∈𝐙𝐍𝐏|∀ ∈𝐘|∀ ∈𝐗𝐍𝐏|∈𝐒\{ }( , )∈𝐁×𝐊|        ∀𝑣 ∈ 𝐕 (24) 

𝑣𝑙𝑜𝑎𝑑 ≤ 𝑉𝑀       ∀𝑣 ∈ 𝐕 (25) 

𝑣𝑙𝑜𝑎𝑑 ≤ 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑       ∀𝑣 ∈ 𝐕 (26) 

 𝑣𝑙𝑜𝑎𝑑 ≥ 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑       ∀𝑣 ∈ 𝐕 (27) 

 ∑ ∑ ∑ ∑ ∑ 𝐵𝑀 ∙ 𝑎∀ ∈𝐙𝐍𝐏|∀ ∈𝐘|∀ ∈𝐗𝐍𝐏|( , )∈𝐁×𝐊| = 

𝑣𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑔𝑒       ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} 
(28) 
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 𝑐𝑜𝑔𝑦 ∙ 𝑣𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑔𝑒 = ∑ ∑ ∑  ∀ ∈𝐗𝐍𝐏|( , )∈𝐁×𝐊|  

 ∑ ∑ 𝐵𝑀 ∙ 𝑦 + ∙ 𝑎∀ ∈𝐙𝐍𝐏|∀ ∈𝐘|      ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} 
(29) 

 − 𝑐𝑜𝑔𝑦 ≤ 𝑑𝑒𝑣𝑐𝑜𝑔        ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} (30) 

 𝑐𝑜𝑔𝑦 − ≤ 𝑑𝑒𝑣𝑐𝑜𝑔        ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} (31) 

Particularly, (1) is defined to minimize the total distance traveled, (2) minimizes the total tardiness, in 
(3) the vehicle fleet is balanced by minimizing the difference between the most and the least loaded 
vehicles, and (4) minimizes the total deviation of the Center Of Gravity (COG) of the loaded vehicles 
from the mid-point of the width of the container. These objectives are subject to the following constraints: 
(5) Establish that the items of a client have to be delivered by only one vehicle, (6) and (7) guarantee 
network flow feasibility, (8) forces vehicles to start their travel from the central depot, (9) cover the 
demand of the clients, (10) guarantee that the items of a client will be transported by a single vehicle, 
(11) and (12) refer to the basic packing constraints explained by Wäscher et al. (2007), (13) and (14) 
enforce full vertical support for boxes not placed on the floor of the container of the vehicle, (15)-(17) 
are used for the LIFO loading/unloading of items, (18) controls the weight bearing strength of items, (19) 
and (20) consider the delivery time windows. Constraints (21)-(23) determine each vehicle’s departure 
time from, and arrival time at, the location of a client. Finally, constraints (24) and (25) control the 
maximum weight that can be loaded in each vehicle, (26) and (27) determine the most and least loaded 
vehicles, and (28)-(31) are used to examine weight distribution inside the container of each vehicle. 

4. The hybrid heuristic 
 

As previously mentioned, the hybrid heuristic expands on the one proposed in the work by Vega-Mejía 
and Montoya-Torres (2017). The hybrid heuristic presented in this section is based on a “pack first – 
route second” approach was selected. The rationale behind this decision was the combination of the 
practical loading and routing constraints of the problem, and the techniques used in previous studies to 
address them. For instance, Eley (2002) dealt with weight distribution by grouping items in order to build 
blocks and then swapping these blocks with others to obtain a better COG of the loaded container. García-
Cáceres, Vega-Mejía and Caballero-Villalobos (2011) divided the loaded container into walls, which 
were swapped with one another and then reflected relative to their mid-point to minimize the distance of 
the COG to the geometrical center of the container. By constructing a packing arrangement for the items 
of each client prior to the construction of any vehicle routes, the process of rearranging the blocks, that 
do not interlock with others, to improve the COG of the container of a vehicle is simplified. This approach 
is based on the one presented by Lim, Ma, Qiu and Zhu (2013), in which the blocks are prevented from 
interlocking in order to facilitate the process of improving the weight distribution inside the packed 
container. 

Another reason for using the “pack first – route second” approach has to do with the considerations of 
some of the loading constraints. Since split deliveries are not allowed (i.e. items of a client must be 
delivered by a single vehicle), the reliability and duration of the distribution process could be improved 
if items of the same client are placed close to each other inside the container of the vehicle. Building a 
cargo pattern for each client, that groups all their items into a single block before the delivery route is 
planned, guarantees this. This block arrangement could also guarantee that an item being unloaded in 
stage 𝑠 of a route, would not be blocked by another item that has to be delivered at a later stage 𝑠 (𝑠 >
𝑠). Hence, the total time taken to accomplish all the deliveries could be reduced as rearrangement of 
items is prevented after each stop. Furthermore, balancing the carried load of the vehicles involves 
moving items from one vehicle to another. Since there are no split deliveries, the complete set of items 
for that client should be moved from one vehicle to another. A predefined packing pattern for each client 
would greatly simplify this analysis and would avoid a complete reconstruction of the loading 
arrangement of a vehicle.  
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To consider what has been stated until this point, the proposed hybrid heuristic consists of three stages 
(see Fig. 1). Stage 1 generates the blocks for each client. Considering that the blocks impact the number 
of required vehicles, these should be formed to use the space inside the container efficiently. In this sense, 
the building of a block is reduced to solving a 3D Strip Packing Problem (3D SPP), in which the objective 
is to minimize the surface area in which all the items are packed together (i.e. strip). For this task a 
GRASP metaheuristic is employed. Stage 2 defines the routing for each vehicle and packs the generated 
blocks into the vehicles. For the routing task a CWS algorithm is used to solve a VRP with Time 
Windows (VRPTW). For the packing of the blocks into the vehicles and to facilitate the exchange of 
blocks between vehicles, no weight will be placed on top of the blocks. This reduces the packing of the 
vehicle to a 2D PP. This problem is solved using the GRASP metaheuristic from the first stage. Stage 3 
consists of balancing the vehicle fleet by employing a simple local search procedure that swaps blocks 
between vehicles, while at the same time reducing the factors of traveled distance and total tardiness. 
Finally, the distribution of the weight inside the container of each vehicle is also addressed. 

 
Fig. 1. Basic process of the hybrid heuristic – Adapted from Vega-Mejía and Montoya-Torres (2017) 

The following sections explain in more detail each of the procedural stages of the hybrid heuristic. 

4.1. Stage 1: A GRASP approach to solve a 3D SPP 
 

GRASP is an iterative process consisting of two phases: constructive and local search (Resende & 
Ribeiro, 2010). The following paragraphs explain how the construction phase and the local search phase 
of GRASP are applied to build the loading arrangements for each client by solving a 3D SPP, while 
considering sufficient support for those items not placed on the floor of the container and the weight 
bearing strength of the items.  

4.1.1. Constructive phase 
 

The construction phase oversees the generation of a feasible solution for the problem. Previous solution 
approaches for PPs are based on sorting the items according to some of their attributes, for instance their 
area, volume or weight (e.g. Egeblad et al., 2010; Eley, 2002), and then using a placing strategy (e.g. best 
fit, left bottom fit, first fit) to assign an item to a position or corner inside the transporting container. 
However, sorting the items according to such basic attributes may result in an improper load when the 
weight distribution inside the container is considered (Lim et al., 2013). With this in mind, Lim et al. 
(2013) defined a constructive phase for GRASP that identifies the available free spaces in a container 
after an item is stored. The construction phase for the proposed GRASP is based on this notion and on 
the identification of insertion points described in the work by Zachariadis et al. (2013). 

There are two vital components in this phase of GRASP. A utility function which evaluates each of the 
elements that may become part of the feasible solution, and a Restricted Candidates List (RCL) which 
stores those elements with a utility function whose value lies in the interval [𝐿, 𝐿 + (𝑈 − 𝐿)𝛼] (García-
Cáceres et al., 2011), where 𝐿 and 𝑈 are the lower and upper values of the utility function for all the 
elements, and 𝛼 is a random number between 0 and 1.  

The utility function for solving the 3D SPP for the first stage of the hybrid heuristic, which was first 
presented in the work by Vega-Mejía and Montoya-Torres (2017), is as follows: 

𝑐(𝑖) =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑓𝑡𝑒𝑟 𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑖𝑡𝑒𝑚 𝑖

𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖
 

Use GRASP to solve a 3D 
SPP for each client, 

considering sufficient 
support for items and their 

weight bearing stregth 

Use CWS & 
GRASP to solve a 
VRPTW + 2D PP 

with container 
weight limit

Use a local search to 
improve the balance 
of the vehicle fleet. 

Afterwards, improve 
weight distribution
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Where 𝑐(𝑖) is the utility function associated with item 𝑖. To better understand this expression, consider 
the situation depicted in Fig. 2(a). A box of type A (A1) has already been placed in the bottom left corner 
of the container. Notice that the figure also shows the possible insertion points generated by the box 
already stored inside the container. The constructive phase will have to select the next item to place inside 
the container, and for this there are two possible items to select: One of type A (A2) and one of type B.  

A1

A2 B

Insertion 
points

A1 A1 A

A2

A2

A2

(A2-a)

A1 A1 A

B

B

B

(B-b)

(a)

(A2-b) (A2-c)

(B-a) (B-c)  
Fig. 2. Packing situation 

The average number of valid insertion points for the two items is determined by placing each item on 
each available insertion point, and then counting the number of feasible insertion points that are generated 
after placing the item. Positioning the item is done by placing its bottom left corner on the insertion point. 
Finally, the average is computed by dividing the total number of insertion points by the number of stable 
loading arrangements, without yet considering the weight bearing constraints. In Fig. 2, elements (A2-
a,b,c) and (B-a,b,c) show the insertion points generated by placing items A2 and B, respectively. Notice 
that in element (B-a) no insertion points were generated. This is because item B would not have sufficient 
support if it were placed on top of item A1. 

Assuming that the items of type A have a greater weight bearing strength than those of type B 
(𝐵𝑆𝑀 > 𝐵𝑆𝑀 ), the respective values of the utility function for each item would be as follows: 

𝑐(𝐴 ) =
𝐵𝑆𝑀

=
8

3𝐵𝑆𝑀
             𝑐(𝐵) =

𝐵𝑆𝑀
=

5

𝐵𝑆𝑀
 

It would follow then that 𝑐(𝐴 ) < 𝑐(𝐵), and hence the RCL would be populated with the items whose 

utility function is within the interval , + − 𝛼 . If 𝛼 < 1, item A2 would be 

included in the RCL and would be selected to become part of the solution. This would ultimately mean 
that the utility function would have guided the selection of the item that produces a more homogenous 
cargo pattern. This is in the same vein as the idea proposed by Eley (2002), that items of the same type 
should be placed together to build cargo patterns with a reduced number of empty spaces. Moreover, the 
utility function also aids to populate the RCL with the items that offer more weight bearing resistance, 
so that other items can be placed on top of them. 

Once an item is randomly selected from the RCL, it is assigned to a proper insertion point or corner. For 
instance, Zhang et al. (2015) sorted the available corners or spaces according to their coordinates 
(𝑍, 𝑌, 𝑋), while Gendreau et al. (2006) preferred a (𝑋, 𝑍, 𝑌) sorting. The first approach guides the filling 
of the container from the ground up. However, due to the objective of packing as many items in a reduced 
space while utilizing the whole of the container in the best way possible, a (𝑋, 𝑍, 𝑌) sorting might be 
more appropriate. In essence, this approach is similar to a wall building approach (see Pisinger, 2002). 
This selection process is repeated until all the items have been placed inside the container. However, the 
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weight-bearing and sufficient vertical support constraints introduce additional complexities to the 
problem, and unfeasible solutions are possible. In this sense, if at a particular moment in the constructive 
phase an item cannot be placed, a rotation of the item in the plane 𝑋 − 𝑌 is allowed. If this does not work, 
the constructive phase can relax the vertical support and weight bearing constraints. After all items have 
been placed, the constructive phase ends by determining the surface area of the generated block as shown 
in Fig. 3. 

 
Fig. 3. Generated block 

Finally, Fig. 4 shows the pseudo-code for this phase, which is based on that presented by García-Cáceres 
et al. (2011). 

1 PROCEDURE Constructive Phase  
2 PARAMETERS 
3 𝛼: Numeric value between 0 and 1 
4 𝐸: Client items 
5 𝑐(∙): Utility function 
6 VARIABLES 
7 𝑥: Initial solution 
6 𝑅𝐶𝐿: Restricted candidates list 
8 BEGIN PROCEDURE 
9 𝑥 ← ∅ 
10 Evaluate utility function 𝑐(𝑒), ∀𝑒 ∈ 𝐸 
11 WHILE 𝐸 ≠ ∅ 
12  𝑐∗ ← min{𝑐(𝑒)|𝑒 ∈ 𝐸} 
13  𝑐∗ ← max{𝑐(𝑒)|𝑒 ∈ 𝐸} 
14  𝑅𝐶𝐿 ← {𝑒 ∈ 𝐸 | 𝑐(𝑒) ≤ 𝑐∗ + 𝛼(𝑐∗ − 𝑐∗)} 
15  Choose an element 𝑠 at random from the 𝑅𝐶𝐿 
16  IF 𝑥 ∪ {𝑠} is not feasible THEN 
17   Rotate 𝑠 
18   IF 𝑥 ∪ {𝑠} is not feasible THEN 
19    Relax weight bearing and sufficient support 
20    IF 𝑥 ∪ {𝑠} is not feasible THEN 
21     RETURN unable to find feasible solution 
22    END IF 
23   END IF 
24  END IF 
25  𝑥 ← 𝑥 ∪ {𝑠} 
26  Remove element 𝑠 from 𝐸 
27  Evaluate utility function 𝑐(𝑒), ∀𝑒 ∈ 𝐸 
28 END WHILE 
29 Determine block size of 𝑥 
30 RETURN 𝑥 
31 END PROCEDURE 

Fig. 4. GRASP Constructive Phase for 3D SPP 

4.1.2. Local search phase 
 

The second phase of the GRASP method consists of a local search that tries to improve the size of the 
block generated by the constructive phase. The improvement is done by a series of simple relocation 
moves of the items within the block, with the objective of reducing the total surface area, thus benefiting 
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the later stages of the hybrid heuristic by providing the possibility of storing more blocks inside the 
container of the vehicle. Basically, the procedure finds the item placed furthest from the geometrical 
origin of the container, with no other items placed on top of it. The item is then relocated to other available 
insertion points, while checking the stability and weight bearing constraints. Fig. 5 presents this situation 
where item C is considered for relocation. 

 
Fig. 5. Relocation of item 

The item is relocated once a suitable insertion point is found, and the surface area of the block is 
recalculated, as shown in Fig. 5. If there is an improvement, the cargo pattern is updated by the new 
block, and the relocated item is blocked from being selected again for relocation. The process is repeated 
until no more relocation moves can be performed. When no more items can be relocated, the local search 
procedure calculates the center of mass of the block. This measure will ultimately be used in the final 
stage of the hybrid heuristic to determine the weight distribution of the loaded vehicle container. Because 
it is assumed that the center of mass of each item corresponds to its geometrical center, the calculation is 

reduced to 𝐶𝑂𝐺𝑌 = ∑ 𝑀 𝑌 +∀ ∑ 𝑀∀ , where 𝐵𝑊  represents the width of item 𝑖, as stated 

previously, and 𝑀  and 𝑌  represent the weight and placement on the 𝑌-axis of item 𝑖, respectively. Fig. 
6 shows the pseudo-code for this phase. 

1  PROCEDURE Local Search Phase  
2  PARAMETERS 
3 𝑥 : Current solution 
4 𝐼𝑃: Insertion points 
5 𝑓(∙): Calculates surface area of a solution 
6  VARIABLES 
7 𝑥: Temporal solution 
8 𝐶𝑂𝐺𝑌: Center of mass of the block along 𝑌-axis 
9 𝑇𝐿: Tabu list that stores items that have been moved 
10 BEGIN PROCEDURE 
11 𝑇𝐿 ← ∅ 
12 IF 𝑥  is feasible AND not relaxed THEN 
13  DO 
14   Find the item 𝑖 furthest from (0,0,0) and supporting no weight 
15   FOR EACH 𝑝IN 𝐼𝑃 
16    IF 𝑖 can be relocated to 𝑝 in 𝑥  THEN 
17     𝑥 ← 𝑥  
18     Relocate 𝑖 on 𝑝 within 𝑥 
19     Update 𝐼𝑃 
20     𝑇𝐿 ← 𝑇𝐿 ∪ {𝑖} 
21     IF 𝑓(𝑥) < 𝑓(𝑥 ) THEN 
22      𝑥 ← 𝑥 
23     END IF 
24    END IF 
25   NEXT 𝑝 
26  WHILE 𝑖 ≠ ∅ AND 𝑖 ∉ 𝑇𝐿 
27 END IF 
28 𝐶𝑂𝐺𝑌 = Calculate center of mass of 𝑥  
29 RETURN 𝑥 , 𝐶𝑂𝐺𝑌 
30 END PROCEDURE 

Fig. 6. GRASP Local Search Phase for 3D SPP 
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4.2.Stage 2: A Clarke and Wright based approach to solve a two-dimensional VRP with loading 
constraints 

 

The CWS algorithm has been used in previous studies to solve VRPs and VRPLCs (e.g. Tricoire et al., 
2011). It is a simple procedure that creates independent routes for every node in the network, and then 
tries to merge the routes to minimize the required number of routes. Since each route could be assigned 
to one vehicle, it is implicit that the reduction of the number of routes reduces the number of required 
vehicles as well. In this stage, a CWS algorithm is employed to solve a 2D VRPLC, using the blocks 
resulting from Stage 1. 

4.2.1. Route merging 
 

The process of merging two routes in the CWS algorithm is aimed at forming a single route with a better 
objective value. Considering a symmetric cost (or distance or time) matrix, in a basic VRP the savings 
from this fusion are calculated as 𝑆 = 2𝑐 + 2𝑐 − 𝑐 + 𝑐 + 𝑐 = 𝑐 + 𝑐 − 𝑐  (Mehrjerdi, 
2014). Although this is useful when considering the minimization of costs (or distance or time) alone, 
the merging has to be modified to consider additional routing characteristics, such as time windows. In 
the case of this study, computation of the savings is also impacted by the available loading space and 
maximum weight capacity of the container of the vehicle.  

For the proposed VRPLC, the merging of routes will depend on the possibility of producing a feasible 
loading pattern. If the blocks of the nodes belonging to the routes that are being merged cannot be 
accommodated inside the container of the vehicle, there is no reason for calculating other metrics such 
as compliance with time windows, or distance traveled, among others. Improvements for these metrics 
will be addressed in the last stage of the proposed heuristic, when the balancing of the vehicle fleet is 
performed. Nevertheless, the time windows conditions are not completely disregarded in this stage. These 
constraints are used to determine the order in which the blocks will be loaded into the container of the 
vehicle, in order to satisfy the LIFO constraints. Following the NLMIP model from Section 3, the time 
windows constraints are softened. This results in the consideration of tardiness, but can also ease the 
generation of valid cargo arrangements (Kramer et al., 2015). 

To explain how two routes are merged, consider Fig. 7.  Here, the container of the vehicle has an available 
space like the one shown in Fig. 7(a), the items of nodes 𝑖 and 𝑗 have been grouped into the blocks shown 
in Fig. 7(b) and Fig. 7(c), respectively. If the opening time window of node 𝑖 is greater than that of node 𝑗, 
then the items of client 𝑖 should be packed first, as node 𝑖 could be visited later along the route. However, 
this implies that loading the block corresponding to node 𝑗 would not be possible, unless this block were 
rotated. Because the rotation of the block of node 𝑗 produces a feasible cargo pattern (see Fig. 7(d)) the 
two routes can be merged. 

 
Fig. 7. Merge guaranteeing feasible loading 

The packing of the blocks into the vehicle is performed by the GRASP procedure used in Stage 1. To 
guarantee that the constructive phase always packs the block whose associated client (node) has the 
highest time window first, the utility function is defined simply as the opening of the time window and 
𝛼 = 0. Setting this value of 𝛼 turns the GRASP procedure into a purely greedy heuristic that will select 
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the best element (i.e. the block with the highest opening time window) at every step of the constructive 
phase. The result is a cargo pattern that avoids repeated loading/unloading operations since every item 
for a client is contained within an individual block and no block will become an obstacle when another 
one needs to be unloaded. Furthermore, loading the block of the client with the highest opening time 
window first, is aimed at reducing late deliveries. Fig. 8 shows the pseudo-code for merging the routes. 

1  PROCEDURE Merge 
2  PARAMETERS 
3 𝑅: Set of routes 
4 𝑖, 𝑗: Routes to merge 
5 VARIABLES 
6 𝑥: Cargo pattern 
7 𝑟: Merged route 
8 𝑏: Blocks from route 
9 𝐼: Number of iterations for GRASP 
10 𝛼: Alpha value for GRASP 
11 𝑐(∙): Utility function for GRASP 
12 𝑓(∙): Objective function for GRASP 
13 BEGIN PROCEDURE 
14 𝑟 ← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠(𝑖) ∪ 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠(𝑗) 
15 𝑏 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑖) ∪ 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑗) 
16 𝐼 = 1 ∧  𝛼 = 0 
17 𝑐(∙) = opening time window of node 
18 𝑓(∙) = minimize wasted space inside the container of the vehicle 
19 𝑥 ← 𝐺𝑅𝐴𝑆𝑃(𝐼, 𝛼, 𝑏, 𝑐, 𝑓) 
20 IF 𝑥 is feasible THEN 
21  Determine distance, earliness and tardiness of 𝑟 
22  Set the cargo pattern of 𝑟 as 𝑥 
23  Remove routes 𝑖, 𝑗 from 𝑅 
24  𝑅 ← 𝑅 ∪ 𝑟 
25 END IF 
26 RETURN 𝑅 
27 END PROCEDURE 

Fig. 8. Merge routes in CWS for solving a 2D VRPTWLC 

4.3. Improving the solution and addressing additional operational attributes 
 

After completing Stages 1 and 2, a partial solution is available, which integrates most of the routing and 
packing decisions of the discussed 3D VRPLC. The objectives of Stage 3 are to incorporate the remaining 
operational characteristics considered for the 3D VRPLC. The following subsections explain the 
processes to, first, balance the transport fleet by seeking to ensure that all the vehicles carry 
approximately the same payload and, second, to improve the weight distribution inside the vehicles.   

4.3.1. Balancing the vehicle fleet 
 

The first part of the Stage 3 is a simple procedure that takes the heaviest and lightest loaded vehicles and 
swaps blocks between them in an attempt to reduce the difference in their payloads, as represented by 𝑧  
in the NLMIP model. For this case, the swapping moves follow a first-improve or first descent strategy. 
Naturally, whenever a swap is performed, the GRASP procedure must guarantee that the interchange 
will result in a feasible cargo pattern for both vehicles, otherwise the move is discarded. After all the 
block swaps between the vehicles have been examined, the procedure checks if the most and least loaded 
vehicles are the same. If they are not, the new heaviest and lightest loaded vehicles are selected, and the 
process is repeated until no more swaps are possible. Apart from addressing the balance of the vehicle 
fleet, the moves are aimed at minimizing the distance traveled, and the total tardiness of the system. If a 
swap does not improve these objectives, the move is discarded as well. The pseudo-code of the balancing 
procedure is shown in Fig. 9. 
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1  PROCEDURE Balance Vehicle Fleet 
2  PARAMETERS 
3 𝑅: Set of routes 
4 𝐶𝑊: Width of the container 
5 VARIABLES 
6 𝑟𝑚𝑎𝑥, 𝑟𝑚𝑖𝑛: Vehicle with most and least loaded weights 
7 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑖𝑛: Set for blocks of vehicles with most and least loaded weights 
8 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛: Cargo pattern for vehicles with most and least loaded weights 
9 ∆: Weight difference between vehicles with most and least loaded weights 
10 𝐼: Number of iterations for GRASP 
11 𝛼: Alpha value for GRASP 
12 𝑐(∙): Utility function for GRASP 
13 𝑓(∙): Objective function for GRASP 
14 BEGIN PROCEDURE 
15 𝐼 = 𝛼 = 1 
16 𝑐(∙) = opening time window of node 
17 𝑓(∙) = minimize wasted space inside the container of the vehicle 
18 DO 
19  𝑟𝑚𝑎𝑥 ← 𝐺𝑒𝑡𝑀𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅) 
20  𝑟𝑚𝑖𝑛 ← 𝐺𝑒𝑡𝐿𝑒𝑎𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅) 
21  𝑁𝑚𝑎𝑥 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑟𝑚𝑎𝑥) 
22  𝑁𝑚𝑖𝑛 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑟𝑚𝑖𝑛) 
23  ∆ = 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑎𝑥) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑖𝑛) 
24  FOR EACH (𝑖, 𝑗) ∈ 𝑁𝑚𝑎𝑥 × 𝑁𝑚𝑖𝑛 
25   𝑁𝑚𝑎𝑥 ← 𝑁𝑚𝑎𝑥 ∪ {𝑗} 
26   𝑁𝑚𝑖𝑛 ← 𝑁𝑚𝑖𝑛 ∪ {𝑖} 
27   Remove 𝑖 from 𝑁𝑚𝑎𝑥 and 𝑗 from 𝑁𝑚𝑖𝑛 
28   IF 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑎𝑥) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑖𝑛) < ∆ THEN 
29    𝑥𝑚𝑎𝑥 ← 𝐺𝑅𝐴𝑆𝑃(𝐼, 𝛼, 𝑁𝑚𝑎𝑥, 𝑐, 𝑓) 
30    𝑥𝑚𝑖𝑛 ← 𝐺𝑅𝐴𝑆𝑃(𝐼, 𝛼, 𝑁𝑚𝑖𝑛, 𝑐, 𝑓) 
31    IF (𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛) are feasible THEN 
32     IF Distance, earliness and tardiness are reduced THEN 
33      Update 𝑟𝑚𝑎𝑥 with 𝑁𝑚𝑎𝑥 
34      Update 𝑟𝑚𝑖𝑛 with 𝑁𝑚𝑖𝑛 
35      Improve COG (𝑅, 𝐶𝑊) 
36      EXIT FOR EACH 
37     END IF 
38    END IF 
39   END IF 
40  NEXT (𝑖, 𝑗) 
41 WHILE 𝑟𝑚𝑎𝑥 ≠ 𝐺𝑒𝑡𝑀𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅)OR 𝑟𝑚𝑖𝑛 ≠ 𝐺𝑒𝑡𝐿𝑒𝑎𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅) 
42 RETURN 𝑅 
43 END PROCEDURE 

Fig. 9. Balance the transported weight of the vehicle fleet 

4.3.2. Weight distribution inside the container 
 

Studies that have addressed this constraint have used techniques such as repositioning the blocks inside 
the container or swapping walls of items to reduce the distance between the COG of the loaded container 
and its geometrical center (see Eley, 2002; García-Cáceres et al., 2011). However, these approaches did 
not consider a scenario with multiple stops, which is present in VRPLCs, and brings forth a higher level 
of complexity, as the COG is not just calculated once, but at every stop the vehicle makes. Clearly, it 
would be impractical to adjust the COG of the vehicle after stopping at each delivery location, as this 
could result in the re-accommodation of items inside the container.  

  
Fig. 10. Reflection of a block as presented by 
Vega-Mejía and Montoya-Torres (2017) 

Fig. 11. Reflection of blocks inside a vehicle 
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Taking this into account, it is logical to argue that each vehicle must leave the central depot loaded in 
such a way that its COG would not vary greatly after each stop. This means that each block would have 
to be loaded with its center of mass as close as possible to the geometrical center of the container. In 
order to do this, the weight distribution proposed here considers the idea presented by García-Cáceres et 
al. (2011) of reflecting a wall (a block in this particular case) upon its middle point. The basic concept is 
shown in Fig. 10 considering the example from Fig. 5. This transformation could then be extended to all 
blocks assigned to a vehicle. Using Fig. 7(d), a possible improvement of the COG of a vehicle would be 
similar to what is shown in Fig. 11, where the center of mass of each block is represented by the dotted 
lines. It is expected that, before reflecting block 𝑖, the COG of the vehicle will stay to the left of the 
midpoint of the width of the container after each stop along the route. After reflecting block 𝑖, its center 
of mass would match the midpoint of the container’s width after delivering the items forming block 𝑗, 
hence producing a better weight distribution inside the vehicle throughout the delivery route. The process 
for improving the COG is applied to each of the generated routes, after all the other operational 
considerations have been resolved (see Fig. 12). If there is an improvement, then the 𝑦-positions of every 
item in the reflected block are reflected as well. 

1  PROCEDURE Improve COG 
2  PARAMETERS 
3 𝑅: Set of routes 
4 𝐶𝑊: Width of the container 
5 VARIABLES 
6 𝑁: Set for blocks 
7 𝐵: Set for items of blocks 
8 BEGIN PROCEDURE 
9 FOR EACH 𝑟 IN 𝑅 
10  𝑁 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑟) 
11  FOR EACH 𝑛 IN 𝑁 

12   IF − (𝐶𝑜𝑜𝑟𝑑𝑌(𝑛) + 𝐶𝑂𝐺𝑌 ) > − (𝐶𝑜𝑜𝑟𝑑𝑌(𝑛) + 𝑊𝑖𝑑𝑡ℎ(𝑛) − 𝐶𝑂𝐺𝑌 )  THEN 

13    𝐶𝑂𝐺𝑌 = 𝑊𝑖𝑑𝑡ℎ(𝑛) − 𝐶𝑂𝐺𝑌  
14    𝐵 ← 𝐺𝑒𝑡𝐼𝑡𝑒𝑚𝑠(𝑛) 
15    FOR EACH 𝑏 IN 𝐵 
16     𝐶𝑜𝑜𝑟𝑑𝑌(𝑏) = 𝐶𝑊 − 𝐶𝑜𝑜𝑟𝑑𝑌(𝑏) − 𝑊𝑖𝑑𝑡ℎ(𝑏) 
17    NEXT 𝑏 
18   END IF 
19  NEXT 𝑛 
20 NEXT 𝑟 
21 RETURN 𝑅 
22 END PROCEDURE 

Fig. 12. Improvement of weight distribution 

5. Computational experiments 
 

The proposed hybrid heuristic was coded in C# (C-Sharp) and tested on a laptop running Windows 8 
operating system, using an Intel Core-i7 processor and 8GB of RAM. For all tests, the value of the α 
parameter for GRASP in the first phase of the proposed hybrid, was originally set at 0.1 for each client, 
and increased by 0.1 every time the procedure was unable to construct a block for the items of a client. 
If parameter α reaches the value of 𝛼 = 1 without being able to find a feasible loading plan, the hybrid 
heuristic would halt the process and indicate that it was unable to generate a feasible solution for the 
problem. The following sections describe the problem instances used to perform the computational 
experiments and present the solution values generated by the heuristic algorithm. 

5.1. Used problem instances 
 

The heuristic was tested with the four classes of problems described in the work by Bortfeldt and 
Homberger (2013), namely GI_I 1, GI_I2, GII_I1 and GII_I2, grouping a total of 46 problem instances 
each employing containers of size (𝐶𝐿: 1360, 𝐶𝑊: 245, 𝐶𝐻: 300). These instances were originally used 
in the study by Moura and Oliveira (2009) and are available under the name “CLP and VRPTW 
integration”, at web.fe.up.pt/~esicup/datasets. However, some of the parameters included in the proposed 
VRPLC are not present in the instances (i.e. the weight and the weight bearing strength of each item, and 
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the weight capacity of the container). To account for this, the weight of each item was simply defined as 
its volume, as was done by Junqueira et al. (2013). In a similar way, the weight limit of each vehicle 
container is set as its volume, as well. In the case of the weight bearing strength, the computational 
experiments considered five different scenarios to analyze the impact of the constraints related to this 
factor. Each scenario is associated with an integer value (i.e. 2, 4, 6, 8 or 10), which is multiplied with 
the weight of the item. For example, for the scenario where the multiplier is 2, it means that each box 
will have a weight bearing strength of double its weight. We will refer to this value as the Weight Bearing 
Strength Multiplier (WBSM) from this point forward. The last consideration for these experiments is 
related to the packing strategy employed in the building of the blocks. As stated in Section 4.1.1 some 
studies suggest using a (𝑍, 𝑌, 𝑋) scheme; others, a (𝑋, 𝑍, 𝑌) scheme. We compare these two schemes in 
the computational experiments. 

5.2. Results and analysis 
 

To the best of our knowledge, no other heuristic procedure has included the set of operational constraints 
(loading and routing) considered simultaneously in this study, in the context of a VRPLC. However, for 
the purpose of comparison we striped the heuristic procedure from some of the additional operational 
objectives and constraints. This first comparison was performed by disregarding the balancing of the 
vehicle fleet and the improvement of weight distribution. The results of the proposed hybrid heuristic are 
compared with those of the study by Bortfeldt and Homberger (2013), which includes the prior results 
from Moura and Oliveira (2009). A second comparison is done by using the results of the proposed 
heuristic for Stages 1 and 2 (which represent a partial feasible solution for the problem), with the results 
obtained after adding the operational conditions considered in Stage 3. In addition, this comparison also 
shows how the solution obtained from Stages 1 and 2 is improved. 

5.2.1. Comparison with previous heuristic approaches 
 

The results of the proposed hybrid heuristic are compared with those obtained from the GRASP based 
heuristic presented by Moura and Oliveira (2009), and the TS + Evolutionary Algorithm hybrid proposed 
by Bortfeldt and Homberger (2013). Tables 1 to 4 show this comparison in terms of the required vehicles 
and total distance traveled for all four instance classes. Each entry in the table is expressed as a pair 
(𝑣; 𝑑), where 𝑣 is the required number of vehicles and 𝑑 is the total traveled distance. The values for the 
columns 3 and 4 were taken from the work by Bortfeldt and Homberger (2013). In this regard, the values 
for the study by Bortfeldt and Homberger (2013) reflect the better result of their P1R2 heuristic with 3 
or 4 phases. This is represented as (𝑣; 𝑑)  or (𝑣; 𝑑)  to indicate which configuration reported a better 
result. In case there is no subscript, it means that the results of both configurations were the same. The 
remaining columns show the results of the proposed heuristic, considering the different combinations of 
the WBSM and packing strategies (𝑋, 𝑍, 𝑌) and (𝑍, 𝑌, 𝑋). Clearly, the results from the P1R2 heuristic 
proposed by Bortfeldt and Homberger (2013) outperform the other results. It is also clear that, for the 
proposed heuristic, the packing strategy (𝑋, 𝑍, 𝑌) provides better results than using the other packing 
strategy. When compared with the results from Moura and Oliveira (2009), the proposed heuristic 
provides competitive results, in terms of the total distance, as the WBSM increases. Given that the study 
by Moura and Oliveira (2009) did not consider the weight bearing strength of the boxes, that would 
explain the difference in the number of required vehicles with low WBSM values. However, it can be 
observed that the number of vehicles in the proposed heuristic gets closer to the value obtained by Moura 
and Oliveira (2009), and at times outperforms it, as the WBSM increases. Another reason for the 
difference in the results could be attributed to the way the items’ blocks are built, as these are constructed 
with the aim of facilitating the operational constraints related to the balance of the vehicle fleet and the 
distribution of weight inside the container. All in all, the proposed heuristic is capable of obtaining 
competitive results for the tested instances.
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Table 1  
Results for instance class GI_I1 

Instance 
Moura & 
Oliveira 

Bortfeldt 
& 

Homberger 

Proposed hybrid heuristic 
Corner sort XYZ Corner sort ZYX 

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 
GI_I1_01 (9;762.59) (8;625.03) (9; 764.48) (7; 783.96) (7; 766.01) (7; 815.42) (6; 843.62) (21; 1090.53) (20; 1181.86) (21; 1167.54) (21; 1167.54) (21; 1102.71) 
GI_I1_02 (8;675.24) (7;575.09) (9; 903.33) (7; 794.9) (7; 793.52) (7; 951.96) (6; 822.33) (21; 1117.1) (20; 1158.31) (21; 1112.97) (21; 1112.97) (21; 1154.94) 
GI_I1_03 (6;1250.86) (5;501.73) (9; 849.85) (7; 794.71) (7; 783.42) (7; 794.88) (6; 844.2) (21; 1119.57) (20; 1175.6) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_04 (6;605.72) (4;557.5) (10; 794.67) (7; 794.16) (7; 908.84) (7; 917.62) (6; 801.97) (21; 1118.23) (20; 1128.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_05 (9;1398.47) (6;550.83) (9; 763.04) (7; 740.87) (7; 752.55) (7; 684.67) (6; 843.62) (21; 1119.57) (20; 1192.39) (21; 1146.47) (21; 1146.47) (21; 1102.71) 
GI_I1_06 (7;757.08) (5;549.13) (9; 728.52) (7; 825.28) (7; 817.07) (7; 742.29) (6; 859.36) (21; 1118.23) (20; 1141.13) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_07 (6;1108.67) (5;474.8) (9; 766.25) (7; 793.22) (7; 786.11) (7; 722.15) (6; 865.09) (21; 1118.23) (20; 1155.51) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_08 (5;397.19) 4(4;576.52) (10; 844.27) (7; 802.06) (7; 862.07) (7; 825.18) (6; 801.97) (21; 1118.23) (20; 1128.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_09 (6;1050.7) (5;517.29) (9; 689.13) (7; 819.3) (7; 797.12) (7; 782.41) (6; 795.59) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_10 (6;578.36) (5;505.46) (10; 835.67) (7; 731.64) (7; 716.54) (7; 796.93) (6; 736.59) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_11 (6;1128.55) (5;500.33) (9; 874.75) (7; 722.17) (7; 924.73) (7; 808.23) (7; 753.84) (21; 1095.91) (20; 1141.13) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I1_12 (5;980.97) (4;557.9) (9; 820.71) (7; 788.8) (7; 754.88) (7; 771.33) (6; 763.36) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 

 

Table 2  
Results for instance class GI_I2 

Instance 
Moura & 
Oliveira 

Bortfeldt 
& 

Homberger 

Proposed hybrid heuristic 
Corner sort XYZ Corner sort ZYX 

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 
GI_I2_01 (5;2668.55) 4(4;765.83) (9; 732.19) (7; 748.89) (7; 728.59) (7; 717.87) (6; 709.55) (21; 1118.23) (20; 1094.99) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_02 (5;2555.26) 4(4;561.11) (9; 720.19) (7; 743.93) (7; 725) (7; 725) (6; 743) (21; 1118.23) (20; 1130.71) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_03 (5;2526.11) (4;508.65) (9; 764.68) (7; 713.6) (7; 713.6) (7; 713.6) (6; 742.48) (21; 1118.23) (20; 1130.71) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_04 (5;1953.67) 4(4;471.17) (10; 778.72) (7; 758.22) (7; 733.04) (7; 743.03) (6; 729) (21; 1118.23) (20; 1094.99) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_05 (5;635.96) 4(4;529.95) (10; 758.78) (7; 739.51) (7; 738.93) (7; 699.09) (6; 693.9) (21; 1118.23) (20; 1101.23) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_06 (5;2394.25) 4(4;542.6) (9; 738.19) (7; 745.4) (7; 725) (7; 725) (6; 772.95) (21; 1118.23) (20; 1101.23) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_07 (5;2187.27) 4(4;470.82) (9; 762.71) (7; 713.6) (7; 713.6) (7; 713.6) (6; 742.48) (21; 1118.23) (20; 1130.71) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_08 (4;472.35) 4(4;465.13) (10; 778.72) (7; 742.73) (7; 694.25) (7; 743.03) (6; 734.5) (21; 1118.23) (20; 1094.99) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_09 (5;674.01) 4(4;442.3) (10; 831.93) (7; 759.8) (7; 731.04) (7; 759.51) (6; 721.76) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_10 (5;753.04) (4;578.13) (9; 731.11) (7; 762.66) (7; 724.66) (7; 724.22) (7; 711.7) (21; 1118.23) (20; 1101.23) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
GI_I2_11 (5;2049.39) 4(4;477.16) (9; 724.44) (7; 740.85) (7; 740.85) (7; 707.09) (6; 713.68) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71) 
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Table 3 
Results for instance class GII_I1 

Instance 
Moura & 

Oliveira 
Bortfeldt & 

Homberger 

Proposed hybrid heuristic 
Corner sort XYZ Corner sort ZYX 

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 
GII_I1_01 (9;823.04) (8;654.62) (13; 929.63) (10; 788.58) (9; 832.36) (8; 760.52) (8; 801.56) (20; 1124.85) (22; 1163.84) (22; 1178.23) (22; 1178.23) (22; 1189) 
GII_I1_02 (9;1622.59) (7;592.14) (13; 873.72) (10; 917.68) (9; 818.46) (8; 834.78) (8; 823.75) (20; 1109.01) (22; 1147.68) (22; 1179.08) (22; 1179.08) (22; 1174.97) 
GII_I1_03 (7;1451.39) (6;548.49) (13; 886.06) (10; 777.19) (9; 794.06) (9; 929.34) (9; 929.82) (20; 1098.68) (22; 1153.19) (22; 1178.23) (22; 1178.23) (22; 1158.23) 
GII_I1_04 (7;1221.44) 4(6;540.43) (13; 825.63) (10; 842.38) (9; 836.99) (8; 821.4) (8; 781.01) (20; 1098.68) (22; 1153.19) (22; 1178.23) (22; 1178.23) (22; 1158.23) 
GII_I1_05 (10;1532.44) (6;693.22) (13; 848.93) (10; 881.23) (9; 846.97) (8; 834.52) (8; 860.51) (20; 1101.43) (22; 1153.19) (22; 1144.82) (22; 1144.82) (22; 1178.23) 
GII_I1_06 (8;1576.1) (6;627.53) (13; 848.93) (10; 812.22) (9; 853.15) (8; 907.47) (8; 721.15) (20; 1085.76) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I1_07 (7;1378.36) (6;622.5) (13; 829.37) (10; 850.61) (9; 802.41) (9; 800.42) (9; 781.31) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I1_08 (7;1187.52) 4(6;549.18) (13; 849.66) (10; 808.96) (9; 822.43) (8; 817.49) (8; 845.03) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I1_09 (6;625.91) (6;709.61) (13; 879.01) (10; 780.24) (9; 805.66) (8; 772.11) (8; 743.05) (20; 1082.34) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I1_10 (7;1235.62) 4(6;570.38) (13; 885.34) (10; 851.28) (9; 781.77) (8; 797.34) (8; 819.43) (20; 1092.27) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I1_11 (7;1293.95) (6;540.03) (13; 839.22) (10; 813.76) (9; 828.78) (8; 900.8) (8; 900.8) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I1_12 (7;1069.11) 4(6;539.84) (13; 901.42) (10; 817.49) (9; 829.67) (8; 719.46) (8; 719.46) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 

 

Table 4  
Results for instance class GII_I2 

Instance 
Moura & 

Oliveira 
Bortfeldt & 

Homberger 

Proposed hybrid heuristic 
Corner sort XYZ Corner sort ZYX 

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 
GII_I2_01 (7;3740.55) (6;591.35) (13; 849.47) (10; 735.79) (10; 770.04) (8; 780.09) (8; 770.3) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_02 (7;3496.39) (6;560.88) (13; 869.48) (10; 823.92) (9; 809.06) (8; 751.4) (8; 754.98) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_03 (7;3134.62) 4(6;525.99) (13; 849.47) (10; 798.56) (9; 770.31) (9; 774.97) (9; 770.05) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_04 (6;3814.29) (6;516.35) (13; 875.67) (10; 774.56) (9; 817.85) (8; 778.87) (8; 778.87) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_05 (7;627.66) 4(6;649.8) (13; 849.47) (10; 735.79) (10; 770.04) (8; 769) (8; 769) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_06 (7;3115.18) 4(6;560.64) (13; 872.97) (10; 790.09) (9; 804.45) (8; 719.4) (8; 782.36) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_07 (7;2740.03) 4(6;506.16) (13; 829.37) (10; 798.56) (9; 770.31) (9; 774.97) (9; 770.05) (20; 1079.11) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_08 (7;2212.02) 4(6;534.97) (13; 875.67) (10; 774.56) (9; 817.85) (8; 778.87) (8; 778.87) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_09 (7;2962.35) 4(6;544.63) (13; 885.34) (10; 773.29) (9; 796.12) (8; 703.37) (8; 776.51) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_10 (7;3512.25) (6;599.93) (13; 869.48) (10; 778.22) (9; 780.92) (8; 748.59) (8; 748.59) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
GII_I2_11 (6;2631.39) 4(6;501.26) (13; 849.47) (10; 765.05) (9; 758.21) (8; 784.72) (8; 784.72) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23) 
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5.2.2. Analysis of the impact of weight distribution and fleet balancing 
 

Tables 5 to 8 provide the computational results produced by the hybrid heuristic. The configuration of 
each test is as follows. The column ‘BWSM’ shows the values used to test the impact of considering the 
weight bearing strength of the items to be delivered. The column ‘Constraints’ uses four values that 
represent the possible combinations by including or not including the conditions to balance the vehicle 
fleet (BF and NBF), and by including or not the weight distribution inside the container of the vehicle 
(WD and NWD). The values in the column ‘Corner Sorting’ assist to differentiate between the two 
strategies for sorting insertion corners in the packing stage of the hybrid heuristic. 

In addition, the remaining columns in the tables present the computational time required to solve the 
corresponding instance problem (Time) and the number of vehicles (Routes) used to deliver all the items 
defined in the problem. The remaining columns present the values for the objective functions. Given the 
number of different instances and space limitations, this section provides the results for one problem 
from each class. For the purpose of replicating the experiments, the remaining results are available upon 
request. 

Table 5  
Results of the proposed heuristic for GI_I1_01 using additional constraints 

WBSM Constraints 
Corner sorting XZY Corner sorting ZYX 

Time 
(secs) 

Routes z1 z2 z3 z4 
Time 
(secs) 

Routes z1 z2 z3 z4 

2 

NBF&NWD 24.14 9 764.48 12.03 78920 230.47 51.4 21 1090.53 0 57360 961.07 
BF&NWD 8.32 11 1001.03 0 49520 237.79 33.53 21 1188.71 0 52680 874.88 
NBF&WD 8.54 9 899.59 2.83 57440 85.93 36.17 21 1183.36 0 53880 609.4 
BF&WD 8.7 11 997.8 0 49520 60.86 30.42 21 1188.71 0 52680 539.71 

4 

NBF&NWD 20.92 7 783.96 165.91 65600 240.83 48.83 20 1181.86 0 52680 759.82 
BF&NWD 8.45 8 884.97 0 49520 260.06 26.79 21 1192.02 0 53760 730.2 
NBF&WD 6.24 7 866.53 158.08 66680 95.03 28.06 20 1189.44 0 53400 584.63 
BF&WD 8.5 8 884.97 0 49520 114.91 28.02 21 1192.02 0 53760 508.28 

6 

NBF&NWD 23.74 7 766.01 12.03 78920 312.46 48.79 21 1167.54 0 53880 811.08 
BF&NWD 10.28 8 930.27 30.4 52400 306.98 27.79 21 1201.19 0 52680 725.12 
NBF&WD 7.89 7 852.67 2.83 57440 176.2 28.66 21 1197.02 0 53880 607.8 
BF&WD 11.96 8 902.86 30.4 52400 178.11 29.05 21 1201.19 0 52680 491.95 

8 

NBF&NWD 19.56 7 815.42 0 62000 371.91 48.31 21 1167.54 0 53880 829.44 
BF&NWD 9.34 8 890.7 0 49520 307.33 27.77 21 1201.19 0 52680 725.12 
NBF&WD 7.28 7 850.41 26.06 66680 198.65 28.41 21 1197.02 0 53880 599.46 
BF&WD 8.96 8 922.64 21.26 54320 220.6 29.07 21 1201.19 0 52680 502.78 

10 

NBF&NWD 19.69 6 843.62 12.03 78920 558.79 48.12 21 1102.71 0 55560 855.87 
BF&NWD 6.66 7 934.91 377.52 59000 401.42 28 21 1215.92 0 52680 771.4 
NBF&WD 5.62 6 833.45 146.27 69800 270.89 28.95 21 1197.02 0 53880 593.37 
BF&WD 7.16 7 934.91 377.52 59000 207.46 29.24 21 1215.92 0 52680 535.26 

 

Table 6  
Results of the proposed heuristic for GI_I2_01 using additional constraints 

WBSM Constraints 
XZY ZYX 

Time 
(secs) 

Routes z1 z2 z3 z4 
Time 
(secs) 

Routes z1 z2 z3 z4 

2 

NBF&NWD 32.1 9 732.19 0 78920 254.5 58.24 21 1118.23 0 57360 990.17 
BF&NWD 8.36 11 1014.01 0 49520 225.87 34.98 21 1188.71 0 52680 869.34 
NBF&WD 8.32 9 899.59 0 57440 85.18 35.61 21 1183.36 0 53880 591.89 
BF&WD 8.67 11 1014.01 0 49520 70.76 29.73 21 1188.71 0 52680 557.28 

4 

NBF&NWD 36.85 7 748.89 0 65360 271.85 48.09 20 1094.99 0 55560 852.4 
BF&NWD 7.5 8 931.25 0 49520 285.63 28.02 21 1192.02 0 53760 754.05 
NBF&WD 6.12 7 886.8 0 64160 119.76 27.68 20 1183.27 0 53400 544.81 
BF&WD 8.58 8 895.09 0 52040 93.62 27.03 21 1192.02 0 53760 508.44 

6 

NBF&NWD 36.19 7 728.59 0 71120 314.87 51.41 21 1102.71 0 55560 922.3 
BF&NWD 9.16 8 891.25 0 49520 280 29.04 21 1201.19 0 52680 728.65 
NBF&WD 7.76 7 855.45 0 57440 168.27 28.87 21 1197.02 0 53880 583.8 
BF&WD 9.8 8 908.86 0 53840 222.24 28.41 21 1201.19 0 52680 502.78 

8 

NBF&NWD 23.68 7 717.87 0 58040 340.8 51.15 21 1102.71 0 55560 898.3 
BF&NWD 9.05 8 938.31 0 54320 357.4 29.06 21 1201.19 0 52680 749.12 
NBF&WD 7.17 7 853.18 0 66680 142.67 28.56 21 1197.02 0 53880 601.33 
BF&WD 13.23 8 918.21 0 53600 237.85 28.13 21 1201.19 0 52680 514.07 

10 

NBF&NWD 35.92 6 709.55 0 78920 433.91 50.28 21 1102.71 0 55560 879.87 
BF&NWD 6.5 7 913.43 0 59000 389.22 29.45 21 1191.93 0 52680 747.4 
NBF&WD 5.65 6 843.93 0 69800 234.22 29.09 21 1197.02 0 53880 562.01 
BF&WD 7.85 7 913.43 0 59000 209.56 28.53 21 1191.93 0 52680 515.23 
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Table 7  
Results of the proposed heuristic for GII_I1_01 using additional constraints 

WBSM Constraints 
XZY ZYX 
Time 
(secs) 

Routes z1 z2 z3 z4 
Time 
(secs) 

Routes z1 z2 z3 z4 

2 

NBF&NWD 34.19 13 929.63 0 74000 172.86 58.55 20 1124.85 0 77400 860.42 
BF&NWD 8.17 14 1049.79 0 74000 181.72 29.94 20 1175.16 0 74000 685.47 
NBF&WD 8.15 13 1049.16 0 74000 51.41 29.99 20 1168.86 0 76080 665.89 
BF&WD 7.95 14 1049.79 0 74000 47.44 30.3 20 1175.16 0 74000 556.91 

4 

NBF&NWD 27.3 10 788.58 0 77600 247.72 70.2 22 1163.84 0 79680 839.74 
BF&NWD 8.46 11 955.72 0 74000 273.1 30.66 23 1242.81 0 78960 754.72 
NBF&WD 6.93 10 933.26 0 77600 110.65 29.31 22 1185.67 0 77400 465 
BF&WD 7.93 11 939.11 0 74000 96.95 30.01 23 1242.81 0 78960 497.76 

6 

NBF&NWD 23.41 9 832.36 0 77600 178.94 56.19 22 1178.23 0 77400 793.54 
BF&NWD 9.11 9 947.37 0 74000 206.87 25.93 23 1242.81 0 78960 800.31 
NBF&WD 8.27 9 918.38 0 77600 87.92 25.58 22 1185.67 0 77400 521.51 
BF&WD 8.7 9 947.37 0 74000 115.3 25.49 23 1242.81 0 78960 562.78 

8 

NBF&NWD 28.41 8 760.52 0 77600 180.19 56.3 22 1178.23 0 77400 816.61 
BF&NWD 9.66 8 944.38 0 74000 233.08 25.85 23 1242.81 0 78960 834.83 
NBF&WD 8.98 8 894.72 0 77600 101.61 25.67 22 1185.67 0 77400 554.05 
BF&WD 9.48 8 886.65 0 74000 70.05 26.08 23 1242.81 0 78960 514.78 

10 

NBF&NWD 22.33 8 801.56 0 77600 362.77 55.62 22 1189 0 77400 770.23 
BF&NWD 7.07 9 926.02 0 74000 366.81 26.46 23 1242.81 0 78960 813.59 
NBF&WD 7.2 8 894.72 0 77600 188.72 26.38 22 1178.23 0 77400 491.71 
BF&WD 7.34 9 926.02 0 74000 163.35 26.57 23 1242.81 0 78960 509.25 

 

Table 8  
Results of the proposed heuristic for GII_I2_01 using additional constraints 

WBSM Constraints 
XZY ZYX 

Time 
(secs) 

Routes z1 z2 z3 z4 
Time 
(secs) 

Routes z1 z2 z3 z4 

2 

NBF&NWD 36.47 13 849.47 0 74000 169.04 44.07 15 860.34 0 74000 838.93 
BF&NWD 8.2 14 1049.79 0 74000 170.98 19.13 15 1043.74 0 74000 953.04 
NBF&WD 8.25 13 1049.16 0 74000 50.21 18.84 15 1113.37 0 74000 685.07 
BF&WD 8.36 14 1049.79 0 74000 45.88 19.16 16 1086.21 0 74000 754.59 

4 

NBF&NWD 34.85 10 735.79 0 77600 244.26 44.56 12 834.24 0 74000 713.86 
BF&NWD 8.72 11 915.18 0 74000 280.95 20.56 15 1070.52 0 74000 648.28 
NBF&WD 6.93 10 937.87 0 77600 95.69 21.16 12 1037.85 0 74000 1040.65 
BF&WD 8.21 11 939.11 0 74000 110.57 20.86 14 1113.24 0 74000 747.31 

6 

NBF&NWD 29.18 10 770.04 0 80600 231.71 50.79 12 842.32 0 74000 842.12 
BF&NWD 8.77 9 984.75 0 74000 178.26 21.26 14 1059.79 0 74000 764.76 
NBF&WD 8.4 10 937.87 0 77600 84.1 21.44 12 971.51 0 74000 933.62 
BF&WD 8.99 9 984.75 0 74000 57.82 21.56 13 1063.93 0 74000 695.87 

8 

NBF&NWD 29.65 8 780.09 0 77600 196.31 50.2 12 822.96 0 74000 777.01 
BF&NWD 11.48 9 936.13 0 74000 178.44 21.41 12 998.49 0 74000 761.19 
NBF&WD 9.01 8 904.51 0 77600 100.39 22.12 12 1003.7 0 74000 985.76 
BF&WD 9.6 8 929.3 0 74000 71.24 21.54 12 998.49 0 74000 731.1 

10 

NBF&NWD 28.31 8 770.3 0 77600 348.9 53 12 851.37 0 74000 762 
BF&NWD 7.9 9 897.04 0 74000 374.55 21.7 13 986.19 0 74000 693.69 
NBF&WD 7.07 8 904.51 0 77600 161.68 22.04 12 1013.82 0 74000 738.77 
BF&WD 7.64 9 897.04 0 74000 173.79 21.99 13 986.19 0 74000 683.69 

 

In terms of the required computational time, the hybrid heuristic was able to solve most cases in less than 
30 seconds when using packing strategy (𝑋, 𝑍, 𝑌). It is interesting to see, that breaching the 30 seconds 
mark occurs when sorting the insertion corners under a (𝑍, 𝑌, 𝑋) strategy. The increments in the 
processing time may be because this strategy produces blocks with larger surface areas and, as the 
procedure for loading the vehicles of the hybrid heuristic avoids placing weight on top of the generated 
blocks, this results in a considerable increment in the number of routes and, hence, in a larger 
computational effort in the local search procedure of Stage 3. As opposed to privileging the insertion 
corners located in the lower positions first, the (𝑋, 𝑍, 𝑌) sorting tries to stack items early on during the 
block construction process, which results in fewer routes to deliver all the items to all the clients, and in 
better use of the container’s available storage space. Another aspect that influences the total number of 
routes is of course the weight bearing constraints. Once again, the number of routes decreases as the 
WBSM increases. 
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Finally, an analysis of variance (ANOVA) with a significance of 5%, was carried out for each one of the 
four response variables (𝑧 , 𝑧 , 𝑧 , 𝑧 ), to better understand the impact of the consideration of the 
additional constraints in Stage 3 of the proposed hybrid heuristic, on the objective values after Stages 1 
and 2. Five factors were considered: (i) if whether balancing the vehicle fleet was considered, or not (i.e. 
BF or NBF); (ii) if whether weight distribution was improved, or not (i.e. WD or NWD); (iii) the value 
of the WBSM (i.e. 2, 4, 6, 8 and 10); (iv) the packing strategy (i.e. (𝑋, 𝑍, 𝑌) or (𝑍, 𝑌, 𝑋)); and (v) the 
instance type (i.e. GI or GII). As such, there were a total of 80 treatments and 80 x 23 observations for 
each ANOVA, and all factors report a significant effect in the four response variables.  

Fig. 13 presents the main effects plots for the considered factors in the ANOVAs. In this figure, graphs 
with the label “Tmp” (which are always on the left) refer to the results obtained after Stages 1 and 2; 
“ML -ml”, to 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 − 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑 for the third objective function; and “COG-Y”, to the total 
deviation of the COG inside the container along the width of the container. Note that for all cases, the 
results from Stages 1 and 2 are improved in Stage 3. Furthermore, this graphical analysis shows that the 
weight bearing strength constraints and the packing strategy have a significant impact on the value of the 
objective functions, indicating that a high WBSM and the packing strategy (𝑋, 𝑍, 𝑌) provide better 
results. However, the opposite happens with the tardiness as a low value of WBSM and the use of the 
(𝑍, 𝑌, 𝑋) strategy provides a lower tardiness. This is not surprising, as these configurations generate more 
delivery routes. Thus, only a few vehicles would have to visit several clients, which in turn would reduce 
the possibility of late deliveries and any penalties. However, in a real-life scenario this could result in 
overhead costs due to the maintenance of a large vehicle fleet and the low use of container space. Lastly, 
depending on the type of instance, different values for the objective functions are obtained as well. Values 
for 𝑧  and 𝑧  were better in instances of type GI, while values for 𝑧  and 𝑧  were better in instances of 
type GII. 
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Fig. 13. Impact of additional constraints with different testing configurations 

6. Conclusions and future work 
 

The VRPLC is related to real life transportation situations and has received increased attention in recent 
years. In this regard, a hybrid heuristic solution method based on the “pack first – route second” approach 
proposed by Bortfeldt and Homberger (2013), has been proposed to solve a version of the VRPLC which 
considers several practical loading and routing constraints. Among such constraints are the vertical 
stability of cargo, the load bearing strength of items, the weight limit of the container, the unloading 
sequence, the weight’s distribution, delivery time windows and a balanced vehicle fleet. Consequently, 
these constraints add to the complexity of the VRPLC, which motivated the development of a hybrid 
heuristic procedure than can be easily implemented by operational researchers and distribution managers. 
The proposed hybrid solution is also capable of integrating simultaneously a set of complex operational 
aspects and of generating feasible solutions in a short amount of time. With these considerations, the 
method may serve as a useful tool in both academic research and real-life applications in distribution 
logistics. 

The proposed hybrid heuristic which consists of three stages, expands the procedure presented by Vega-
Mejía and Montoya-Torres (2017). The first stage consists of a GRASP metaheuristic that finds a suitable 
packing arrangement for each client. The second stage combines a CWS algorithm and the GRASP 
metaheuristic to determine the delivery routes and cargo pattern of each vehicle. The final stage performs 
a local search to balance the vehicle fleet and to improve the weight distribution inside each vehicle. To 
test the method’s performance, computational experiments were performed under different 
configurations. The numeric results show that sorting the insertion corners by their (𝑋, 𝑍, 𝑌) coordinates 
during the packing stage, outperforms results that employ the (𝑍, 𝑌, 𝑋) approach. Additional comparisons 
were carried out to analyze the impact of different operational constraints. On one hand, both the 
inclusion of the weight’s distribution and balancing the vehicle fleet show improvements when compared 
to the cases that did not consider these aspects. On the other hand, the results obtained when including a 
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low weight bearing strength for the carried items are outperformed as the load bearing index (i.e. fragility) 
increases.  

It is arguable then that, even though finding a smaller number of vehicles can be achieved without 
considering the fragility of the cargo, the impact of overlooking this factor may carry with it the 
generation of solutions that might not be feasible in real applications. This is consistent with the argument 
presented by Bischoff and Ratcliff (1995), that not considering additional constraints may result in 
impractical solutions. However, rather than a limitation, this creates an interesting opportunity to extend 
future research into the development of solution methods for more complex VRPLCs. For instance, and 
with regard to the constraints designed to address the weight resistance of either the items or the 
container, these constraints could be softened as suggested by Zachariadis et al. (2016) to allow a greater 
variety of solutions from other heuristic procedures and to analyze their performance. 

There are other directions that we consider interesting, and which could further improve future heuristic 
applications, for example the inclusion of other operational constraints (e.g. pick up & delivery, partial 
deliveries). In addition, given that multiple operational constraints may result in multiple objectives, often 
conflicting with one another, methods should be designed to handle these multiple objectives from the 
perspective of non-dominated solutions, as suggested by Montoya-Torres et al. (2015). Since the use of 
the ‘air-space’ inside each vehicle container is critical, enhancement of the placement strategies during 
the packing procedures still deserves attention. Moreover, the number of required vehicles could be 
improved by considering the generation of blocks that can interlock with others. This would represent an 
interesting technical challenge, as the consideration of swapping blocks between vehicles to balance the 
vehicle fleet and the reflection or rotation of blocks to improve the COG could result in the destruction 
of cargo patterns and increase computational time. Regarding computation of the COG of the loaded 
vehicle, the proposed heuristic could be improved by considering metrics from vehicle dynamics, such 
as the Lateral Transfer Ratio to drive the distribution of weight inside containers towards more realistic 
scenarios (see Ramos, Silva, & Oliveira, 2018). Another way to reduce the number of required vehicles 
could be by using vehicles with multiple stacking levels, as employed by Iori and Riera-Ledesma (2015). 
These stacking levels would provide efficient vertical support at different heights inside the container. 
Some difficulties may arise, such as the generation of several blocks for a single client and the additional 
constraints that consider the height of the stacks. Finally, other directions for further research worth 
exploring could be the realignment of loading and routing operations to a triple-bottom-line approach 
(i.e. economic, environmental and societal factors), as expressed by Montoya-Torres et al. (2015) and 
Vega-Mejía et al. (2019b), for sustainable transportation. 
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