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  During the past few years, there have tremendous efforts on improving the cost of logistics 
using varieties of Vehicle Routing Problem (VRP) models. In fact, the recent rise on fuel prices 
has motivated many to reduce the cost of transportation associated with their business through 
an improved implementation of VRP systems. We study a specific form of VRP where demand 
is supposed to be uncertain with unknown distribution. A Particle Swarm Optimization (PSO) 
is proposed to solve the VRP and the results are compared with other existing methods. The 
proposed approach is also used for real world case study of drug distribution and the 
preliminary results indicate that the method could reduce the unmet demand significantly.  
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1. Introduction 
 

During the first decade of the new millennium, there has been an increasing trend on oil price which result to 
an increase to cost of supply chain and logistics. Therefore, there have been tremendous efforts to develop 
realistic problems in supply chain management and logistics to reduce the associated cost as much as possible 
(Clark and Scarf, 1960; Graves et al., 1993; Garaix et al., 2010; Andersson et al., 2010). One of the primary 
concerns on most of the real world supply chain problems is the complexity of the resulted mathematical 
formulations. In fact, in many real world case studies of supply chain problems, we are normally faced with a 
Mixed Integer Problem where the number of binary variables exceeds to over a few hundred even for small 
case studies. Therefore, we are unable to find the optimal solution in a reasonable amount of time. The 
problem is more crucial when we intent to solve the problem almost in real time. On the other hand, we may 
not be interested in having an exact optimal solution and this could motivate us to look for near optimal 
solutions. There are tremendous efforts to develop some heuristic or meta-heuristic methods to find the near 
optimal solutions. There have been varieties of meta-heuristic methods introduced in the literature such as 
Genetic Algorithm, Ant Colony Optimization, Neural Network, Particle Swarm Optimization (PSO), etc. 
(Kennedy & Eberhart, 1995) are believed the first people who introduce the concept of PSO. PSO is a type of 
swarm intelligence provides insights into social behavior, as well as contributing to engineering applications. 
Ai and Kachitvichyanukul (2009a) develop a PSO for VRP with simultaneous pickup and delivery and they 
compared the performance of their method with other existing meta-heuristic methods using some benchmark 
problems. Ai and Kachitvichyanukul (2009b) use similar PSO for capacitated VRP and report some promising 
results. PSO has been widely implemented for many logistics problems (Ai and Kachitvichyanukul, 2009b; Ai 
and Kachitvichyanukul, 2008; Tao et al., 2008; Chen et al., 2006). Önüt et al. (2008), for instance, use PSO 
algorithm for the multiple-level warehouse layout design problems. Shi et al. (2007) are the first people who 
successfully applied PSO for Traveling Salesman Problem (TSP). Since VRP is an extension of TSP, we may 
also use PSO for a selected form of VRP. Marinakis and Marinaki (2010) use a hybrid PSO for TSP where a 
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new hybrid algorithmic nature inspired approach based on PSO, Greedy Randomized Adaptive Search 
Procedure (GRASP) and Expanding Neighborhood Search Strategy (ENS) is developed. They test the 
performance of their proposed method on numerous benchmark problems from TSPLIB and claim some 
satisfactory results. Many researchers suggest employing a hybrid strategy, which embeds a local optimizer in 
between the iterations of the meta-heuristics (Chen et al., 2006). One of the primary concerns on traditional 
VRP is that all input parameters are assumed to be deterministic (Bertsimas, 1992). Therefore, a small 
perturbation on input data could result some impractical solutions. Jaillet and Odoni (1988) proposed some 
heuristics to solve the probabilistic VRP. Dror (1993) presented SVRP by Markov Decision Process. Golden et 
al. (1979) developed a chance constrained programming model for VRP with stochastic demand. Stewart et al. 
(1983) presented some computational results over the work of Golden and Yee (1979). In this paper, we study 
a special form of VRP where demand is contaminated with perturbation. We assume that the distribution of 
demand is unknown but we consider it in symmetric interval. The resulted model is formulated as mixed 
integer nonlinear problem and there are literally hundreds of binary variables involved making it difficult to 
solve the problem for the optimality. Therefore, we use PSO to determine the near optimal solutions and 
compare the results with other meta-heuristic methods. This paper is organized as follows. In section 2, we 
explain the necessary notations and problem statement, PSO explanation and the result of the implementation 
of our PSO are compared with other existing meta-heuristic. Section 3 is devoted to a real world case study of 
VRP in drug industry. Finally, conclusion remarks are given at the end to summarize the contribution of the 
paper.  

 

2. Problem statement 
 

VRP is normally a combinatorial optimization problem seeking to serve a number of customers with a fleet of 
vehicles. Proposed by Dantzig and Ramser (1959), VRP is an important problem in the fields of transportation, 
distribution and logistics. In a typical VRP we have a central depot where different vehicles are responsible to 
deliver goods for various customers and the primary objective is to minimize the total transportation cost. 
Since VRP is an NP-Hard problem (Lenstra & Rinnooy, 1981), there have been tremendous efforts to use 
meta-heuristic methods such as PSO to find a near optimal solution. PSO itself cannot solve a VRP directly 
because it needs a decoding procedure. Ai and Kachitvichyanukul (2009a) introduces different decoding 
algorithms and Ai and Kachitvichyanukul (2009b) determine SR_2 as the best one to solve CVRP among the 
other methods In the following we present the algorithm and related decoding methods. 

α         iteration index, T,,3,2,1 K=α  

         particle index,  

s          dimension index, Ss .,3,2,1 K=  

u          uniform random number in the interval [0, 1] 

)(αw     inertia weight in the α th iteration 

)(αν ks  velocity of the k th particle at the s th dimension in the α th iteration 

)(αθks  position of the k th particle at the s th dimension in the α th iteration 

ksη        personal best solution (pbest) of the k th  particle at the s th dimension 

gsη        global best solution (gbest) at the sth dimension 

K
ksη        local best solution (kbest) of the k th particle at the k th dimension 

N
ksη        near neighbor best solution (nbest) of the k th particle at the s th dimension 

k K321k ,,,, K=
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pC       personal best solution acceleration constant 

gC        global best solution acceleration constant 

kC        local best solution acceleration constant 

nC        near neighbor best solution acceleration constant 

 maxθ     maximum position value 

minθ      minimum position value 

kΘ       vector position of the k th particle 

kΩ       vector velocity of the k th particle, ],...,[ 21 kSkk ωωω  

kη        vector personal best solution of the k th particle. 

gη        vector global best solution 

K
kη        vector local best solution of the k th particle, 

kR         the k th set of vehicle route 

)( kZ Θ  fitness value of kΘ  

FDR     fitness distance ratio 

2.1 Algorithm 
 

1. Initialize K particles as a swarm, generate the kth particle with random position kΘ  in the range of [ minθ ,
maxθ ], velocity kΩ = 0 and personal best kη  = kΘ  for k = 1 . . . K, Set iteration .1=α  

2. For k = 1 . . . K, decode )(αkΘ  to a set of vehicle route kR . 

3. For k = 1 . . . K, compute the performance measurement of kR , and set this as the fitness value of kΘ , 
represented by )( kZ Θ . 

4. Update pbest: For k = 1 . . . K, update kη  = kΘ , if )()( kk ZZ η<Θ . 

5. Update gbest: For k = 1 . . . K, update gη = kη , if )()( gk ZZ ηη < . 

6. Update lbest: For k = 1 . . . K, among all pbest from J neighbors of the kth particle, set the personal best 
which obtains the least fitness value to be K

kη . 

7. Generate nbest: For k = 1 . . . K, and s = 1 . . . S, set os
N
ks ηη =  and maximize fitness-distance-ratio (FDR) for 

o = 1 . . . S. where 

FDR is defined as (Veeramachaneni et al, 2003): 

okwhereZZFDR
osks

ok ≠
−
−Θ

=
ηθ

η )()(  (1) 

8. Update the velocity and the position of each kth particle: 
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9. If the stopping criterion is met, i.e. T=α , stop. Otherwise, 1+=αα and return to step 2. 

2.2 Solution representation 
 

As we already explained, the PSO provides a vector iX  and the final optimal solution cannot be derived 
directly. Therefore we need a decoding approach to allocate the vehicles for each rout and in this paper SR-2 
(Ai and Kachitvichyanukul, 2009b) is used to decode PSO final solution to determine the vehicle routs. The 
solution representation SR-2 consists of 3m dimensional particle where each particle dimension is encoded as a 
real number. All dimensions are related to vehicles, each vehicle is represented by three dimensions: two 
dimensions for the reference point and one dimension for the vehicle coverage radius. In the GLNPSO 
algorithm, the fitness function calculates the sum of distances among all routes. However, it cannot create a 
good balance among various routes. Table 1 summarizes the information of balanced and unbalanced routes of 
a simple VRP example where the balanced VRP has slightly higher cost but demands are not highly deviated.  

Table 1 
Data of a conceptual example 

costumer No. depot(1) 2 3 4 5 6 7 8 

Longitude 82 82 99 70 80 58 93 62 

Latitude 50 90 51 85 20 60 60 45 

Demand 0 46 46 44 32 10 34 45 

Capacity of vehicle: 100 

 

It is clear that the best solution in Fig. 1, is not robust against the perturbation. In fact, a small change in 
demand for the route one may exceed the total capacity. In Fig. 2, although the cost increases 2%, all the routes 
can resist against the demand uncertainty as long as the perturbation is less than 16%. This simple example 
with 8 nodes and 3 routes is built to demonstrate the consequences of having an unbalanced demand. In real 
world problem, we may face more sever incidents which could cost us significantly. The following explains 
the details of the balancing procedure. Let id

~  be the demand customer with ( iiii ddddd εε +≤≤_ ) where ε  
indicates the perturbation percentage. Therefore we have, 

u
i

il DdD ∑ ≤≤
~  (7) 
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where lD  and uD are the lower bound and the upper bounds for the sum of the real perturbed demands, 
respectively. Also we have: 

},,max{

,
,))(( 1

n

dD

n

VAR

iuv ∑∑ −Δ
=

−Δ=
= −

ν

νν

ν

ρ
φ

φρλ
λψ

 
 

(8) 

 

whereψ represents the changes of unused capacity for route ν  which includes (i,j) and νρΔ is unused capacity 
for each rout. 

 

 

 

 

 

 

 

Fig. 1.The best solution                                                             Fig. 2.The robust solution 

 

The purpose of equations (8) is to make sure that the limit for the remaining capacity of each vehicle does not 
exceed its upper bound. Equation (3) is normally used to adjust the velocity in PSO. In this paper, we propose 
a new one for the robust VRP as follows: 

).))((()))((()))((()))((()()()1( Nks
N
ksnKks

K
kskgksgsgpkspspksks ucucucucw ψαθηψαθηψαθηψαθηανααν −+−+−+−+=+  

             (9) 

Table 2 summarizes the results for the implementation of our PSO method and it compares the results with 
exact robust VRP. It is clear that the optimal solutions for large scale problems are not available due to the 
complexity of the mathematical model. Therefore, we need to use some techniques to measure the performance 
of our proposed method when demands are contaminated with perturbation. Let UDZ  and URZ  be unmet 
demand for deterministic and robust, respectively. In order to find UDZ , a nominal problem is solved with 
known demand first and the demands are perturbed with ( iiii dddd εε +,_ ). Now, the sum of unmet demand is 
calculated and stored in UDZ . URZ  is also calculated using similar procedure with the proposed PSO. When 

UDZ  is compared with URZ  we may easily find out how effective a robust PSO could perform against the 
standard PSO when we confront noise in our data. Table 3 summarizes the results of our implementation. As 
we can observe, when %1.=ε there is no unmet demand for some cases. As ε increases there is a big gap 
between the unmet demands for robust and deterministic solutions although the cost of transportation could be 
a bit worsen. 
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Route 1: 2, 4, 6   ; Demand sum: 100         

Route 2: 3, 7       ; Demand sum: 80  

Route 3: 5, 8       ; Demand sum: 77 

Total Cost: 230 

Route 1: 2, 4       ; Demand sum: 90       

Route 2: 3, 7       ; Demand sum: 80 

Route 3: 5, 8, 6   ; Demand sum: 87 

Total Cost: 235 
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3. A Distribution Case Study 
 

Behpakhsh Company, as a large wholesaler and distributing agency, produces hygienic products and it is 
located in Tehran/Iran and some other Iranian cities. This company is presently covering 5700 customers in a 
vicinity of 90,000 acres (900 km2). As a VRP case study, we have concentrated on only one region of 
Behpakhsh territory. This region includes 82 customers which Behpakhsh serves them one product type with 
100 vehicles. We attempt to find a robust solution to satisfy the demand for Behpakhsh in this region. 
 

Table 2  
Proposed PSO qualification against uncertainty 

 

Row 

 

N 

 

Zd 

%1.0=ε   %1=ε  %10=ε  

Zr UDZ  URZ   Zr UDZ  URZ   Zr UDZ  URZ  

1 32 784 788 0.51% 0.04 788 0.51 0.09  789 0.64% 0.13 
2 33 661 678 2.57% 0 690 4.39

%
0.03  691 4.54% 0.03 

3 33 742 745 0.40% 0.06 747 0.67
%

0.06  749 0.94% 0.09 
4 34 778 781 0.39% 0 782 0.51

%
0.03  784 0.77% 0.04 

5 36 799 800 0.13% 0.08 800 0.13
%

0.08  800 0.13% 0.11 
6 37 669 671 0.30% 0.03 672 0.45

%
0.08  672 0.45% 0.08 

7 37 949 951 0.21% 0 952 0.32
%

0  953 0.42% 0.05 
8 38 730 733 0.41% 0.08 733 0.41

%
0.08  735 0.68% 0.11 

9 39 822 830 0.97% 0.03 833 1.34
%

0.03  837 1.82% 0.05 
10 39 831 839 0.96% 0.06 844 1.56

%
0.1  847 1.93% 0.13 

11 44 937 939 0.21% 0.05 939 0.21
%

0.07  940 0.32% 0.09 
12 45 944 947 0.32% 0 948 0.42

%
0.02  951 0.74% 0.07 

13 45 1146 1155 0.79% 0.04 1157 0.96
%

0.09  1158 1.05% 0.11 
14 46 914 918 0.44% 0.02 920 0.66

%
0.07  922 0.88% 0.11 

15 48 1073 1088 1.40% 0.06 1095 2.05
%

0.08  1107 3.17% 0.1 
16 53 1010 1018 0.79% 0.04 1022 1.19

%
0.08  1025 1.49% 0.16 

17 54 1167 1176 0.77% 0.02 1176 0.77
%

0.06  1181 1.20% 0.07 
18 55 1073 1082 0.84% 0.02 1086 1.21

%
0.04  1092 1.77% 0.04 

19 61 1035 1042 0.68% 0.02 1047 1.16
%

0.03  1053 1.74% 0.07 
20 62 1290 1307 1.32% 0.03 1315 1.94

%
0.05  1319 2.25% 0.06 

21 63 1315 1325 0.76% 0.06 1331 1.22
%

0.1  1336 1.60% 0.14 
22 63 1634 1650 0.98% 0.05 1655 1.29

%
0.06  1667 2.02% 0.08 

23 64 1402 1415 0.93% 0.06 1415 0.93
%

0.06  1421 1.36% 0.08 
24 65 1177 1185 0.68% 0.08 1186 0.76

%
0.08  1188 0.93% 0.09 

25 69 1168 1179 0.94% 0.07 1187 1.63
%

0.09  1189 1.80% 0.1 
26 80 1764 1781 0.96% 0 1787 1.30

%
0.04  1799 1.98% 0.05 

 
3.1 Data gathering 
The following summarizes the data set and the information needed to solve the robust and the deterministic 
models. 

Demand perturbation: The percentage deviation in customers' demands 

Customers' locations: This data is used to specify access paths, which eventually turns out to estimate time 
distance between each two individual nodes. 

Customers' demands: This data varies in different periods of time. They are gathered from marketing 
department. 
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Time distance between the nodes of the network: These data show the length distance between each two nodes. 

Since the company only has the time distances between the customers based on the existing paths situations, 
potential cost coefficients remain uncovered. Moreover, Time and Motion Study of the network would be too 
costly; therefore, time distance between each two nodes of the fully connected network is calculated. After 
determining the possible paths, the distance times between each two nodes are calculated based on Table 3. 

 
Table 3  
Average speeds on the paths according to V/C, where V is the average number of vehicles in the path and C is the capacity 
of the path 

Speed(km/h)  V/C  Categorization Paths 

90  0.35  A  

75  0.55  B 

60  0.7 C  

45  0.8  D  

10 1  E  

 

We have performed a survey on the actual information of the orders and demands. Our experiment indicates 
that when a particular customer is served, he/she may ask more or less than his/her orders. Table 4 summarizes 
the percentage deviation between the actual purchase and the orders (perturbation percentage). The table also 
shows the frequency of customers engaged with each perturbation category (customer frequency percentage). 

Table 4  
Percentage deviation in customers' demands 

Customer frequency (%) Range Index Perturbation (%) Category  

0.04 7.5  5-10 1  

0.06  12.5  10-15  2  

0.08  17.5  15-20  3  

0.06  22.5  20-25  4  

0.05  27.5  25-30  5  

0.11  32.5  30-35  6  

0.19  37.5  35-40  7  

0.19  42.5  40-45  8  

0.12  47.5  45-50  9  

0.12  52.5  50-55  10  

0.07  57.5  55-60  11  

0.03  62.5  60-65  12  
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3.2 Robust and deterministic solutions 
 

In order to have a better understanding of the behavior of the robust model versus the deterministic one, we 
have solved the case study under both deterministic and robust conditions. Table 5 illustrates the details of the 
implementations. In this table RZ  represents the transportation cost of the robust solution, DZ  denotes the 
transportation cost for the deterministic solution, and UDZ shows unsatisfied demand for the solutions based on 
deterministic demand, whereas the actual demands are contaminated by perturbation. As it can be observed, an 
increase in perturbation will result to an increase in UDZ , that is, UDZ  is sensitive to perturbation percentage. 
 

 
Table 5  
Robust and deterministic solutions for Behpakhsh case study 

UDz Rz  Dz %Perturbation  NO  UDz Rz  Dz %Perturbation  No  

8.4 136.8  134 37.5  7   0.4 134.5  134 7.5  1  

10.2 137.6  134 42.5  8   1.5 134.9  134 12.5  2  

12.8 138.4  134 47.5  9   2.8 135.2  134 17.5  3  

15 139  134 52.5  10   4 135.4  134 22.5  4  

18.3 139.5  134 57.5  11   5.3 135.55  134 27.5  5  

23.1 139.95  134 62.5  12   6.7 135.7  134 32.5  6  

 

3.3 Cost Analysis 
 

In Behpakhsh case study, we assume the lost profit of each unsatisfied order product unit is A2 , and the cost of 
each vehicle transportation per hour is 5A, where A is a classified monitory unit. Table 6 summarizes the costs 
for the robust and the deterministic solutions. DCost  and RCost  are deterministic and robust solution costs, 
respectively. 

Table 6  
Cost analysis for Behpakhsh case study 

D RCost  DCost %Perturbation   No.  D RCost  DCost %Perturbation   No  

2.8 14 16.8 37.5  7   -1.7 2.5 0.8 7.5  1 

2.4 18 20.4 42.5  8   -1.5 4.5 3 12.5  2  

3.6 22 25.6 47.5  9   -0.4 6 5.6 17.5  3  

5 25 30  52.5  10   1 7 8 22.5  4  

9.1 27.5 36.6 57.5  11   2.85 7.75 10.6 27.5  5  

16.45 29.75 46.2 62.5  12   4.9 8.5 13.4 32.5  6  

 

For instance, in the first row, DCost is reached by )(5 ur ZZA − , and RCost  is calculated by UDAZ2 . 

Eventually, D= DCost - RCost  represents the net profit of the robust solution. The experimental results of this 
work shows that the net profit is synchronized with the perturbation percentage. Therefore, we would gain 
more benefit with robust solution as the perturbation increases. In this case study, if we use the expected value 
of the profit, based on Table 10, we get 24.15 which is12.6 percent of the Company's related income. Note that 
a ten percent increase in total net profit of publicly traded company can significantly influence the stock 
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share’s price. The results of the implementation of our proposed method have been used by the company and 
they have implemented some action plans on their own traditional routes. In a three months period, the 
transportation cost increased only 2.6% but the delivery volume of goods was also improved by 11%. Overall, 
the results significantly made changes on profitability and created a motivation for the management of the 
company to use this method. Note that the recent increase on energy prices could increase the motivation to 
use efficient transportation planning. 

4. Conclusions 
 

We have presented a PSO method for a robust VRP with uncertain demand. A response surface methodology 
has been used to tune the PSO parameters. The proposed method of this paper has been implemented on some 
existing data used in the literature. The preliminary results of this study have shown that an efficient and robust 
routing planning may increase the cost of transportation but it would significantly reduce the unmade demand 
which could help us penetrate into a wider market. As we have shown for the implementation of our proposed 
method for a real world case study, a robust VRP plan increases the total transportation expenditure but, at the 
same time, it can increase the unmade demand notably.     
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