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 Stock prices of different companies frequently display similar temporal fluctuations because of 
common influencing factors. Accurate prediction of stock prices is of utmost importance for in-
vestors in determining their investment strategies. Utilizing multivariate forecasting, which in-
volves analyzing multiple time series, has been shown to be highly effective and efficient when 
applied to stocks that exhibit similar temporal patterns. It is possible to model the relationship 
between shares by using a shared temporal model approach. Nevertheless, it is important to note 
that not all stocks selected for prediction demonstrate a strong correlation; certain stocks may 
deviate from expected patterns. Therefore, the direct implementation of a comprehensive shared 
temporal component model is not universally applicable. This study presents a new method called 
the Semi-Shared Temporal Model, which focuses on the correlation structure among variables 
that have similar patterns, while also modeling all stocks simultaneously. This methodology is 
applied to the three leading stocks of 2023: Amazon (AMZN), Alphabet (GOOG), and Mer-
cadoLibre (MELI). Based on monthly data collected from January 2010 to December 2023, the 
study forecasts the stock prices for the months of January to December 2024. The analysis findings 
suggest that the temporal patterns of AMZN and GOOG shares are highly similar, which supports 
the idea of modeling them together with shared temporality.  Three forecasting methods are uti-
lized: univariate models, full shared temporal models, and semi-shared temporal models. The 
analysis determines that the semi-shared temporal model approach produces the most precise fore-
casting outcomes, with a Mean Absolute Percentage Error (MAPE) of 17.97%, surpassing both 
univariate and full shared temporal models.   The forecast for 2024 indicates a favorable trajectory 
for all three stocks. 

© 2024 by the authors; licensee Growing Science, Canada. 
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1. Introduction 
 

Time series data forecasting plays a crucial role across various domains such as health, weather, environment, and economics, 
aiding in the formulation of effective strategies and policies (Wang, Liu, Du, & Dong, 2023). In the realm of economics, a 
significant application is stock price forecasting, which holds paramount importance in economic studies. The accuracy of 
forecasting models hinges on their ability to discern systematic patterns from past data, patterns assumed to be repeated in the 
future. Time series models are broadly categorized into univariate and multivariate models, where the latter utilizes multiple 
input variables to provide a comprehensive understanding of the studied phenomenon (Chatfield, 2001). 



 1948

Numerous multivariate forecasting approaches, including classical methods like Vector-Autoregressive Moving Average 
(VARMA) (Reinsel, 1993), Support Vector Regression (SVR) (Sapankevych & Sankar, 2009), Gaussian Processes (GP) 
(Girard, Rasmussen, Candela, & Murray-S, 2002), and advanced techniques such as Recurrent Neural Networks (RNNs) 
(Salinas, Flunkert, Gasthaus, & Januschow, 2020) and Long Short-Term Memory (LSTM) networks (Hochreiter & 
Schmidhuber, 1997), have been developed. However, these approaches often overlook the explicit consideration of correlation 
structures between input variables, potentially limiting the optimal utilization of such structures for enhanced forecasting 
accuracy. An alternative to traditional multivariate modeling is the shared-temporal model, which not only addresses autocor-
relation structures but also considers dependencies between input variables (Knorr-Held & Best, 2001). Shared component 
models, modelled using a joint likelihood approach, have gained prominence in multivariate modeling due to their efficacy in 
capturing strong correlations or similar temporal patterns across multiple variables. Initially introduced for modeling two 
diseases simultaneously, shared component models have evolved to handle increased complexity involving more input vari-
ables through hierarchical Bayesian approaches (Gomez-Rubio, Palmı-Perales, Lopez-Abente, Ramis-Prieto, & Fernandez-
Navarro, 2019). 

The Bayesian shared component model has found diverse applications, including forecasting COVID-19 cases (Jaya, Folmer, 
& Lundberg, 2022), predicting TB and HIV instances (Jaya et al., 2023a, 2023b), and estimating juvenile delinquency and 
violent crime simultaneously (Law & Abdullah, 2022). Despite the effectiveness of shared component models, fully imple-
menting them may not always yield optimal results, as not all input variables exhibit similar patterns. Hence, a semi-shared 
temporal model is proposed, considering the unique patterns of each input variable without explicitly relying on correlation 
structures with other inputs. While shared component models are prevalent in disease modeling with both temporal and spatial 
dimensions, their application in economic studies, particularly in stock price forecasting, is relatively limited. Parameter esti-
mation for shared model components typically involves a hierarchical Bayesian approach, with Integrated Nested Laplace 
Approximation (INLA) being a widely favored method due to its computational efficiency (Blangiardo & Cameletti, 2015). 

This research endeavors to predict the performance of three major global stocks in 2023—Amazon (AMZN), Alphabet 
(GOOG), and MercadoLibre (MELI)—utilizing a semi-shared temporal model approach with Bayesian INLA estimation. 
Stock forecasting is a highly intricate process that necessitates the use of an appropriate model.  

The remainder of this manuscript is structured as follows. In Section 2, we introduce the Bayesian semi-shared temporal 
model for time series modeling and forecasting. Section 3 details the application of this methodology in forecasting the stock 
prices of the top three companies: AMZN, GOOG, and MELI. Lastly, Section 4 comprises the discussion and conclusion of 
the study. 

2. Bayesian Multivariate Semi-Shared Temporal Model  

2.1 Model specification 

This section discusses the multivariate time series model with a Bayesian approach for forecasting the three top global stocks: 
AMZN, GOOG, and MELI. Assume the input variables at time 𝒕, for 𝒕 = 𝟏, … ,𝑻 are 𝒚𝟏𝒕,𝒚𝟐𝒕,𝐚𝐧𝐝 𝒚𝟑𝒕 each follow a normal 
univariate distribution with means 𝝁𝟏,𝝁𝟐, 𝐚𝐧𝐝 𝝁𝟑 and variances 𝝈𝟏𝟐,𝝈𝟐𝟐, 𝐚𝐧𝐝 𝝈𝟑𝟐 which can be modeled as follows: 𝒚𝒔𝒕|𝝁𝒔,𝝈𝒔𝟐~𝑵 𝝁𝒔,𝝈𝒔𝟐  𝐟𝐨𝐫 𝐬 = 𝟏,𝟐,𝟑,𝐚𝐧𝐝 𝐭 = 𝟏, … ,𝐓 (1) 𝒚𝒔𝒕 = 𝝁𝒔 + 𝜺𝒔𝒕;  𝜺𝒔𝒕~𝑵 𝟎,𝝈𝒔𝟐  (2) 𝝁𝒔 = 𝜶𝒔 + 𝒗𝒔𝒕 + 𝜻𝒔𝒕 + 𝜸𝒔𝒕  (3) 

where 𝜶𝒔 signifies the intercept for the s-th input series, 𝒗𝒔𝒕 denotes the temporally structured event component, 𝜻𝒔𝒕 represents 
the temporally unstructured component, and the final component 𝜸𝒔𝒕 accounts for seasonal effects. To facilitate Bayesian 
inference, we make the assumption that 𝜶𝟏,𝜶𝟐, 𝐚𝐧𝐝 𝜶𝟑 follow a Gaussian prior with a zero mean and 𝝈𝜶𝟐 , variance, i.e. 𝜶𝟏,𝜶𝟐,𝜶𝟑 ~𝑵 𝟎,𝝈𝜶𝟐 . The temporally structured effect 𝒗𝒔𝒕 follows a random walk of order one (RW1): 𝒗𝒔,𝒕 𝟏 − 𝒗𝒔𝒕|𝝈𝒗𝟐~𝑵 𝟎,𝝈𝒗𝟐 , ∀𝒔 𝐚𝐧𝐝 𝒕 = 𝟏, . . . ,𝑻 − 𝟏, (4) 
with variance hyperparameter 𝜎 . The temporally unstructured effects are modeled through exchangeable prior:  

The seasonal component, 𝛾 , with periodicity 𝑞 is defined as:  

𝜸𝒔𝒕 + 𝜸𝒔𝒕 𝟏 + ⋯+ 𝜸𝒔,𝒕 𝒒 𝟏|𝝈𝜸𝟐~𝑵 𝟎,𝝈𝜸𝟐 ,   ∀𝒔 𝐚𝐧𝐝 𝒕 = 𝟏, . . . ,𝑻 − 𝒒 + 𝟏, (5) 
 

where 𝜎  is the variance hyperparameter of 𝛾  for 𝑠 = 1,2,3  
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While the model outlined above involves multiple input variables, it is categorized as a univariate approach since the mod-
eling is conducted independently, neglecting the relationships or correlation structure between the input variables during the 
forecasting process. To address the correlation among input variables, we adopt a shared-temporal component model by 
introducing weights for one or more random components. This involves if each random component, such as temporally 
structured and unstructured effects, and seasonal effects, shares the same prior distribution. For instance, assuming a common 
temporal trend for the three-input series, model (1) can be reformulated as follows: 

𝝁𝒔 = 𝜶𝒔 + 𝜷𝒔𝒗𝒕 + 𝜻𝒔𝒕 + 𝜸𝒔𝒕  (6) 
 

Here, 𝜷𝒔 signifies the weight of the shared-temporal component, assumed to adhere to a normal distribution with a mean of 
zero and a variance of 𝜎𝜷 . We refer to the model as a full shared-temporal model. However, employing the full-shared 
component model may not always be suitable, particularly when there are one or several input variables that do not exhibit 
the same temporal pattern. Therefore, we advocate for the utilization of a semi-shared temporal model approach. For instance, 
considering one stock, namely MELI, it demonstrates a pattern that is not entirely identical to other stocks. Consequently, 
the temporal trend of MELI cannot be assumed to be identical to that of AMZN and GOOG. The semi-shared temporal 
model can be expressed as follows: 𝝁𝒔 = 𝜶𝒔 + 𝜷𝒔𝒗𝒕 + 𝜻𝒔𝒕 + 𝜸𝒔𝒕 𝐟𝐨𝐫 𝐬 = 𝟏,𝟐 and 𝝁𝒔 = 𝜶𝒔 + 𝒗𝒔𝒕 + 𝜻𝒔𝒕 + 𝜸𝒔𝒕 𝐟𝐨𝐫 𝐬 = 𝟑 

(7) 

2.2 Bayesian inference using INLA 

The parameters and hyperparameters estimation for the shared-temporal model described in equation (7) was performed using 
Integrated Nested Laplace Approximation (INLA). Let Φ represent the set 𝚽 =𝛼 ,𝛼 ,𝛼 ,𝛽 ,𝛽 ,𝛽 ,𝑣 , … , 𝑣 , 𝜁 , … , 𝜁 ,𝛾 , … , 𝛾 , which corresponds to the latent Gaussian field, and ψ is a hyperpa-
rameter vector denoted as 𝛙 = 𝜎 ,𝜎 ,𝜎 ,𝜎 ,𝜎 . The posterior marginal of the parameters is given as: 

𝒑 𝚽𝒍|𝐲 ≈ 𝒑 𝚽𝒍|𝛙(𝒋), 𝐲 𝒑 𝛙(𝒋)|𝐲 𝚫𝒋𝒋  (8) 

A wide range of numerical methodologies can be utilized to tackle Eq. (8), encompassing approaches such as central com-
posite design and grid search. 

2.3 Multivariate forecasting 
 

To derive the multivariate forecast values for the stock prices of the top three global companies, namely AMZN, GOOG, and 
MELI, we employ their posterior predictive distribution in a multivariate context, defined as follows (Jaya, et al., 2023): 

𝒑 𝒚(𝑻 𝒉) |𝐲,𝛙 = 𝒑 𝒚(𝑻 𝒉) |𝚽,𝛙 𝐩(𝚽|𝐲,𝛙)𝐝𝚽 (9) 

where, 𝒚( ) = 𝒚 ( ),𝒚 ( ),𝒚 ( )   represents the vector of forecasted values for AMZN, GOOG, and MELI at time 𝑇 +  ℎ. In the Integrated Nested Laplace Approximation (INLA) method, forecasting is executed by inputting 'Not Available 
(NA)' for the 𝑇 +  ℎ period, where the forecasts are generated.  
 

2.4 Model selection criteria 
 

To forecast the prices of the three global stocks AMZN, GOOG, and MELI, we explored three models: the univariate model, 
full shared-temporal model, and semi-shared temporal model, as outlined below: 

Univariate    M1: 𝜂 = 𝛼 + 𝑣 + 𝜁 + 𝛾  ; 𝑠 = 1,2,3 

Full-shared temporal   M2: 𝜂 = 𝛼 + 𝜷𝒔𝑣 + 𝜁 + 𝛾 + 𝛿 𝜔 ; 𝑠 = 1,2,3 

Semi-shared temporal         M3: 𝜂 = 𝛼 + 𝜷𝒔𝑣 + 𝜁 + 𝛾 ; 𝑠 = 1,2 𝜂 = 𝛼 + 𝑣 + 𝜁 + 𝛾 ; 𝑠 = 3 
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To assess the accuracy of the forecasting models for the three global stocks AMZN, GOOG, and MELI, we examine the 
disparities between the actual and predicted values using metrics such as mean absolute error (MAE), root mean square error 
(MSE), mean absolute prediction error (MALE). Additionally, we gauge the suitability of the temporal pattern between actual 
and predicted data by calculating the Pearson correlation coefficient, as detailed below:   

Mean absolute error (MAE) 

𝑀𝐴𝐸 = ∑ |𝑦 − 𝑦 |𝑇 ; 𝑠 = 1,2,3 
(10) 

where notation |.| represents the absolute function. 

Root means square error (RMSE) 

𝑅𝑀𝑆𝐸 = ∑ (𝑦 − 𝑦 )𝑇 ; 𝑠 = 1,2,3 
(11) 

Mean absolute prediction error (𝑀𝐴𝑃𝐸) 

𝑀𝐴𝑃𝐸 = 1𝑇 𝑦 − 𝑦𝑦 × 100%; 𝑠 = 1,2,3 
(12) 

Pearson’s correlation coefficient (𝑟) 

𝑟 = ∑ (𝑦 − 𝑦 ) 𝑦 − 𝑦∑ (𝑦 − 𝑦 ) ∑ 𝑦 − 𝑦 ; 𝑠 = 1,2,3 
(13) 

where, 𝑦  and  𝑦  represent the averages of the number of incidences and the predicted number of cases, respectively. A model 
exhibiting lower MAE, RMSE, and MAPE values, coupled with a higher r value, signifies superior forecasting prowess.  

3. Semi-Shared Temporal Model for modeling and forecasting of the closing stock prices of the three leading global 
stocks: Amazon (AMZN), Alphabet (GOOG), and MercadoLibre (MELI) 
 

3.1 Exploratory Descriptive Analysis 
 

Our primary objective in implementing the semi-shared temporal model is to predict the monthly closing stock prices of three 
prominent companies (Guberti, 2023): Amazon (AMZN), Alphabet (GOOG), and MercadoLibre (MELI) from January to 
December 2024. The dataset covers the period from January 2010 to December 2023 and was obtained from the website 
www.finance.yahoo.com. Table 1 provides a thorough and detailed descriptive analysis of these three stocks.  
 

Table 1 
Statistics descriptive Three Top Stock Prices AMZN, GOOG, and MELI 

 Min Q1 Me Mean Q3 Max R SD CV 
AMZN 5.900 14.375 40.800 63.289 98.525 180.800 174.900 54.798 86.584 
GOOG 11.800 21.800 39.900 53.976 73.825 147.400 135.600 39.558 73.289 
MELI 37.800 93.225 178.850 466.899 735.400 1853.700 1815.900 506.673 108.519 

Note: Min=Minimum; Q1=Quartile one; Me=Median; Q3=Quartile three; R=Pearson’s correlation; SD=Standard deviation; CV=Coefficient variation 

Table 1 shows that MELI's share price is the most elevated in comparison to other share prices. This is highly apparent from 
the mean or median value. Nevertheless, it exhibits the most significant degree of variability as indicated by its coefficient of 
variation (CV). GOOG shares exhibit a comparatively lower degree of volatility. Between 2010 and 2013, the prices of the 
three stocks experienced significant increases (see Fig. 1), reaching their highest point in 2020 during the COVID-19 pan-
demic. The worldwide health emergency necessitated individuals to remain indoors, resulting in a heightened reliance on 
online platforms for their shopping needs (Gupta, 2021). Fig. 1 illustrates the temporal patterns of three stocks from January 
2010 to December 2023. While the stocks exhibit relatively similar patterns, the most pronounced temporal similarities emerge 
between GOOG and AMZN. However, MELI shares show discernible differences across various time periods. In Figure 2, 
the scatter plot highlights the stock relationships. Notably, in 2010, AMZN and GOOG shares display a strong positive cor-
relation, while MELI and GOOG exhibit a weaker correlation. In 2011, MELI appears to have a low correlation with AMZN 
and GOOGL. Subsequently, MELI demonstrates a negative correlation with AMZN and GOOG shares. These trends are 
explicitly presented in Table 2 (indicated by red letters) 
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Fig. 1. Temporal Trends in the Stock Prices of Top 3 Companies: AMZN, GOOG, and MELI, January 2010 - December 2023 

  

   

(A) AMZN vs. GOOG (B) AMZN vs. MELI (C) GOOG vs. MELI 
 

Fig. 2. Scatter plot (A) AMZN vs. GOOG, (B) AMZN vs. GOOG, and (C) GOOG vs. MELI 

Table 2  
Annual Pearson's Correlation of the Three Stock Prices: AMZN, GOOG, MELI (2010–2023) 

Year Stock AMZN GOOG Year Stock AMZN GOOG 

2010 GOOG 0.68  
2017 GOOG 0.97  

MELI 0.61 -0.10 MELI 0.86 0.89 

2011 GOOG -0.38  
2018 GOOG 0.65  

MELI -0.31 0.02 MELI -0.35 0.05 

2012 GOOG 0.72  
2019 GOOG 0.15  

MELI -0.59 0.05 MELI 0.83 0.34 

2013 GOOG 0.93  
2020 GOOG 0.76  

MELI 0.39 0.53 MELI 0.89 0.93 

2014 GOOG 0.67  
2021 GOOG 0.71  

MELI -0.26 -0.31 MELI -0.15 -0.31 

2015 GOOG 0.97  
2022 GOOG 0.94  

MELI -0.49 -0.59 MELI 0.73 0.64 

2016 GOOG 0.75  
2023 GOOG 0.96  

MELI 0.96 0.84 MELI 0.75 0.69 
 

3.2 Models’ comparison 
 

Forecasting stock prices entails navigating a highly complex landscape, characterized by the influence of numerous factors 
and heightened volatility. Achieving accurate predictions requires the deployment of appropriate models. In this section, we 
introduce three models: M1, an univariate model; M2, a fully shared temporal model; and M3, a semi-shared temporal model.  
In the M1 model, we conduct univariate modeling three times, corresponding to the number of stock types. For M2, we 
perform multivariate modeling, assuming all stocks share the same temporal pattern. Conversely, in the M3 model, we carry 
out modeling by presuming that only AMZN and GOOG shares share a similar temporal pattern, as detailed in Section 3.1. 
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To identify the most suitable model, we employ an in-and-out sample prediction approach. Data is initially divided into train-
ing and testing sets, with the former used for model construction and the latter for performance evaluation. We utilize data 
spanning from January 2010 to December 2021 as our training dataset, while data from January 2022 to December 2023 
serves as the testing dataset. We assess model performance using metrics such as Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and Mean Absolute Prediction Error (MAPE) to gauge the disparities between actual and predicted 
values. Additionally, we calculate the Pearson correlation coefficient to evaluate the suitability of the temporal patterns in the 
forecast results. Comprehensive results of these statistical measures are presented in Fig. 3 and Table 2. Fig. 3 illustrates that 
Model M3 yields prediction results for the period January 2022 to December 2023 that closely align with the training data, 
surpassing the performance of models M1 and M2. The M1 model exhibits superior predictions for AMZN and MELI shares 
compared to M2, while M2 performs better in predicting MELI shares. A comprehensive overview of the models' goodness 
criteria is presented in Table 2. Generally, Model M3 attains the smallest Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), Mean Absolute Prediction Error (MAPE), and the largest R values. This pattern holds true for each stock, 
except for the RMSE and MAPE criteria, where the M2 model outperforms M3. Conversely, the M1 model demonstrates the 
least favorable overall performance. These findings suggest that leveraging the temporal patterns of AMZN and GOOG can 
enhance MELI predictions. However, incorporating MELI into a shared temporal component diminishes the accuracy of 
AMZN and GOOG predictions. 

 

(A) Univariate model (M1) 

 

(B) Full shared temporal model (M2) 
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(C) Semi-shared temporal model (M3) 
 

Fig. 3. Evaluation of Training and Testing for (A) Univariate Model (M1), (B) Full Shared-Temporal Model (M2), and (C) 
Semi-Shared Temporal Model (M3). 

Table 2  
Models model comparison criteria  Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Predic-
tion Error (MAPE), and Pearson’s correlation (R) 

Stock Price Model MAE RMSE MAPE R 
AMZN M1 33.501 36.213 29.505 0.093 

 M2 38.849 43.108 34.469 0.402 
 M3 13.948 17.567 12.832 0.762 

GOOG M1 14.677 18.808 14.007 0.407 
 M2 57.679 59.448 51.068 0.540 
 M3 26.521 28.285 23.911 0.785 

MELI M1 435.431 480.330 41.797 0.680 
 M2 172.964 195.592 15.544 0.740 
 M3 166.422 199.669 17.175 0.677 

 

After evaluating the model comparison results, we have opted for the M3 model as the most favorable choice among the three. 
This model will be employed to predict the prices of the three stocks—AMZN, GOOG, and MELI—during the period from 
January to December 2024. 

3.3 Forecasted Results for Three Stock Companies: AMZN, GOOG, and MELI, From January to December 2024 
 

The semi-shared temporal model is employed for forecasting the performance of three stock companies: AMZN, GOOG, and 
MELI, spanning from January to December 2024. To mitigate the impact of data abnormalities and outliers, we apply a log 
transformation to the stock price response variable. The parameter estimation results for the log-linear model are presented in 
both Table 3 and Table 4. 

Table 3  
Posterior Mean of Fixed Effect Components with Their 95% Credible Intervals 

Parameter Mean SD q(0.025) q(0.5) q(0.975) 
Intercept AMZN 3.086 0.031 3.028 3.085 3.150 
Intercept GOOG 3.146 0.028 3.094 3.144 3.204 
Intercept MELI 4.991 0.032 4.931 4.990 5.057 
Slope Time 6.16E-05 2.85E-06 5.57E-05 6.17E-05 6.69E-05 

 



 1954

Table 3 presents the estimations of fixed effect parameters, encompassing the intercept (overall mean) of AMZN, GOOG, 
and MELI shares, along with the impact of time on share price variations. Given that the model employs a log transformation, 
interpretation of the model parameters involves exponentiating the parameter values. The baseline average values for AMZN, 
GOOG, and MELI stock prices, without the influence of the time component and random effect, are exp(3.086) = 21.883 
USD, exp(3,146) = 23.232 USD, and exp(4.991) = 147.137 USD, respectively. Notably, MELI shares exhibit the highest 
average. Moreover, the temporal component contributes to the growth in share values, generally yielding an exponentiated 
factor of exp(6.16 × 10 ) = 1.000061, equivalent to approximately 0.0061%.  

Table 4  
Posterior Mean of Random Effect Components with Their 95% Credible Intervals 

Hyperparameter Mean SD q(0.025) q(0.5) q(0.975) Fraction Var (%) 
SD for Gaussian error AMZN 0.007 0.003 0.003 0.007 0.015 0.02 
SD for Gaussian error GOOG 0.008 0.004 0.003 0.008 0.017 0.02 
SD for Gaussian error MELI 0.008 0.004 0.003 0.007 0.017 0.02 
SD for shared temporal AMZN- GOOG 0.164 0.016 0.135 0.163 0.196 9.41 
SD for random walk MELI 0.482 0.034 0.419 0.481 0.554 81.73 
SD for heterogeneity AMZN 0.007 0.004 0.002 0.007 0.018 0.02 
SD for heterogeneity GOOG 0.110 0.007 0.097 0.110 0.124 4.25 
SD for heterogeneity MELI 0.009 0.005 0.002 0.008 0.021 0.03 
SD for seasonal 0.113 0.022 0.077 0.111 0.162 4.49 
Beta 2.242 0.095 2.057 2.241 2.431  

 

Table 4 shows the posterior mean for the random effect component which includes standard deviation Gaussian error for 
AMZN, GOOG shares, standard deviation shared temporal component for AMZN and GOOG, random effect temporal trend 
random walk for MELI, standard deviation heterogeneity for AMZN, GOOG, MELI and the standard deviation for the sea-
sonal component. The final row represents the weights of the shared components. The results of the faction variance calcula-
tion found that the variability of the four components that were most dominant in explaining the semi-shared temporal model 
were sequentially the MELI temporal trend, AMZN-GOOG shared component, GOOG heterogeneity, and seasonal compo-
nent. The shared components' weights, where 𝛽 = 2.242, suggest that the stock price of AMZN is twice that of GOOG's stock 
price. The impact of the shared temporal component for AMZN-GOOG, random walk for MELI, spatial heterogeneity for 
AMZN, GOOG, and MELI, as well as the seasonal effects on the logarithmic scale, is illustrated in Fig. 5. 
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(E) Heterogeneity AMZN (F) Heterogeneity GOOG 

 

 

(G) Heterogeneity MELI  

Fig. 4. The impact of the shared temporal component for AMZN-GOOG, random walk for MELI, spatial heterogeneity for 
AMZN, GOOG, and MELI, as well as the seasonal effects on the logarithmic scale 
 

In alignment with the insights discussed in Table 4, Fig. 4 provides a visual elucidation of the impact of each random compo-
nent in explaining the temporal trends in AMZN, GOOG, and MELI stock prices. Graphs exhibiting a consistent pattern 
display an effect close to zero. In contrast, graphs displaying discernible patterns manifest effects greater than zero, particu-
larly when observed on a logarithmic scale. Utilizing both fixed and random effect components, we conducted a forecast of 
AMZN, GOOG, and MELI stock prices from January to December 2024. The forecasted outcomes are detailed in Table 5 
and visually presented in Figure 5. Overall, the forecast results reveal a positive trend in the stock prices of all three companies. 
 

Table 5  
Forecasted Results for Three Stock Companies: AMZN, GOOG, and MELI, From January to December 2024 

Month AMZN GOOG MELI 
q(0.025) Mean q(0.975) q(0.025) Mean q(0.975) q(0.025) Mean q(0.975) 

January 115.825 172.842 262.440 120.934 184.391 284.139 1215.287 1844.200 2847.125 
February 105.973 160.671 244.807 111.610 171.409 263.300 1095.361 1714.330 2696.891 

March 112.513 175.252 274.258 120.686 186.964 289.479 1148.272 1869.896 3059.051 
April 102.787 164.062 263.071 112.119 175.025 272.903 1037.167 1750.485 2967.218 
May 98.930 161.477 264.835 109.605 172.267 270.326 987.832 1722.895 3017.426 
June 105.422 175.711 294.157 118.555 187.453 295.789 1042.953 1874.773 3384.643 
July 108.966 185.233 316.130 124.297 197.612 313.416 1068.818 1976.369 3671.391 

August 111.247 192.444 334.895 128.554 205.304 327.366 1080.301 2053.278 3916.026 
September 111.052 195.463 346.211 130.000 208.525 334.031 1069.543 2085.482 4079.732 

October 101.853 182.236 328.233 120.740 194.413 312.733 973.207 1944.343 3896.434 
November 106.908 194.171 355.692 128.242 207.145 334.708 1012.401 2071.656 4246.509 
December 98.408 181.323 336.966 119.511 193.439 313.381 925.237 1934.577 4051.846 
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Fig. 5.  Forecasted Results for Three Stock Companies: AMZN, GOOG, and MELI, From January to December 2024 

4. Discussion and Conclusion 

The utilization of multivariate analysis demonstrates superior efficiency in specific instances when compared to univariate 
analysis. The efficiency of a multivariate context is derived from the inherent interrelatedness of variables, which is influenced 
by various factors. When modeling, it is important to take into account the relationships between variables. Considering the 
covariance matrix for correlated variables is more efficient in estimating parameters than solely focusing on variance values 
and assuming mutual independence. Nevertheless, it is imperative to recognize that not all observed variables are inevitably 
correlated. The modeling process should possess sufficient flexibility to accommodate scenarios where certain variables ex-
hibit correlation, while others do not. This flexibility does not suggest the act of modeling in a state of being separate or 
detached. Similarly, when conducting regression analysis with multiple groups, a simultaneous approach can be used by 
employing a dummy variable approach. This study focuses specifically on the modeling and forecasting of the closing stock 
prices of the three leading global stocks: Amazon (AMZN), Alphabet (GOOG), and MercadoLibre (MELI). The data explo-
ration findings reveal that the thermal patterns of the three models are quite similar, especially between AMZN and GOOG. 
Nevertheless, MELI demonstrates a marginally distinct trend in recent years when compared to AMZN and GOOG. A joint 
likelihood model is used to simultaneously model these three stocks. Significantly, both AMZN and GOOG include a common 
temporal element, whereas MELI is represented without taking this element into account. The study utilizes a univariate 
methodology and a comprehensive shared component model to determine the most precise forecasting outcomes. Various 
accuracy measures, such as mean absolute error (MAE), root mean square error (RMSE), mean absolute prediction error 
(MAPE), and Pearson's correlation, are employed for the purpose of comparison. The forecast for January to December 2024 
is based on monthly data spanning from January 2010 to December 2023. Based on the model comparison, it is evident that 
the semi-shared component model outperforms the other two models in terms of forecasting accuracy, while the univariate 
model performs the worst. The forecast results, based on the semi-shared component model, suggest a favourable upward 
trend for the three stocks (AMZN, GOOG, and MELI) in 2024. Nevertheless, it is crucial to acknowledge that this forecast is 
a technical analysis derived from statistical research, necessitating meticulous interpretation owing to the multitude of factors 
that impact stock price fluctuations. 

To summarize, the research indicates that when there are multiple responses and strong correlations among the variables being 
studied, it is advisable to use multivariate modeling, specifically employing a full shared component model approach, rather 
than relying on univariate models. However, in cases where not all variables exhibit a strong correlation, it is more suitable 
to employ a semi-shared component model approach.  
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