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 The Gaussian Markov Random Field (GMRF) is widely acknowledged for its remarkable flexi-
bility, especially in the realm of high-resolution prediction, when compared to conventional 
Kriging methods. Rooted in the fundamental principles of Bayesian estimation, this methodology 
underscores the importance of a meticulous examination of prior and hyperprior distributions, 
along with their corresponding parameter values. Sensitivity analyses are crucial for evaluating 
the potential impact of these distributions and parameter values on prediction results. To deter-
mine the most effective values for hyperprior parameters, an iterative trial-and-error approach is 
commonly employed. In our research, we systematically assessed a variety of parameter values 
through exhaustive cross-validation. Our study is focused on optimizing hyperprior parameter 
values, with a particular emphasis on Penalized Complexity (PC). We applied our method to con-
duct spatiotemporal high-resolution predictions of PM2.5 concentrations in Jakarta province, In-
donesia. Achieving accurate predictive modeling of PM2.5 concentrations in Jakarta is contingent 
upon this optimization. We identified that the optimal values for PC hyperprior parameters, with 
a range of less than 2,000 and a hyperprior standard deviation greater than 1 with a 0.1 probability, 
yield the most accurate predictions. These parameter values result in the minimum mean absolute 
percentage error (MAPE) of 19.35393, along with a deviation information criterion (DIC) of -
154.23. Our findings highlight that the standard deviation parameter significantly influences 
model fit compared to the relatively insignificant impact of the range parameter. When coupled 
with high-resolution mapping, these optimized parameters facilitate a comprehensive understand-
ing of distribution patterns. This process aids in detecting areas particularly susceptible to risks, 
thereby enhancing decision-making efficacy regarding air quality management.  
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1. Introduction 
 
Nowadays, there is a growing demand for spatiotemporal high-resolution modeling and mapping, particularly in the field of 
air pollution analysis (Gladson et al., 2022; Wang et al., 2022). High-resolution mapping provides a comprehensive and de-
tailed perspective on the distribution of air pollution, offering insights into its spatial and temporal variations (Liu et al., 2023). 
This detailed information is invaluable for guiding government policies aimed at reducing pollution concentrations and miti-
gating adverse health impacts (Fitriani & Gede Nyoman Mindra Jaya, 2020; Fund Defense, 2020). The process of modeling 
at high spatiotemporal resolution is intricate and involves numerous factors, leading to substantial computational costs (Jaya 
& Folmer, 2022). Many techniques are used in high resolution mapping; two commonly used techniques are Inverse Distance 
Weighting (IDW) and Kriging (Varentsov et al., 2020). IDW boasts simplicity in modeling and rapid computation (Li et al., 
2014; Lu & Wong, 2008). However, this system also has significant shortcomings, such as being more sensitive to outliers, 
tends to underfit, is unable to handle non-stationarity problems, does not take into account spatiotemporal autocorrelation, 
and is unable to provide information on prediction uncertainty (Lloyd & Atkinson, 2002). To address underfitting concerns, 
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the Kriging method emerges as a robust alternative, particularly in dealing with outliers with variogram analysis (Armstrong 
& Boufassa, 1988; Sun et al., 2019). Kriging considers spatiotemporal autocorrelation and provides predictions with a high 
level of uncertainty (Handcock, 1994). Despite its effectiveness, the commonly used spatiotemporal Kriging approach has 
limitations. Kriging struggles with non-stationarity issues and encounters challenges in defining appropriate theoretical semi-
variograms when data exhibits high heterogeneity (Liang & Kumar, 2013). Additionally, it fails to account for uncertainty in 
constructing the semi-variogram and relies on the assumption of normally distributed estimation errors with constant variance, 
a condition that may not always align with real-world scenarios. The Gaussian Markov Random Field (GMRF) stands out as 
a more flexible alternative approach (Cai et al., 2013). GMRF introduces a random effect component to enhance the precision 
of predictions, particularly in high-resolution spatial modeling (Song et al., 2008). Its notable advantages include the ability 
to address non-stationarity issues, offer flexibility in defining structured spatial dependencies, and account for uncertainty not 
only in predictions but also in model parameters. This comprehensive approach allows for a more natural interpretation of 
prediction outputs. GMRF functions within a Bayesian framework, a context not devoid of challenges as emphasized in the 
literature (Gelman, 2006). One of the key considerations in Bayesian methodology is the specification of prior and hyperprior 
distributions (Adesina et al., 2018). While Bayesian approaches provide a powerful means to incorporate prior knowledge 
and update predictions as new data becomes available, the choice and specification of priors can introduce subjectivity and 
impact model outcomes (Sprenger, 2018). Careful consideration and sensitivity analysis are often necessary to mitigate the 
influence of prior choices on the results. In conclusion, the GMRF approach, rooted in Bayesian principles, furnishes a com-
prehensive grasp of uncertainty and enables increased adaptability in spatial modeling, even when confronted with non-sta-
tionary conditions (Jaya & Folmer, 2022). However, the thoughtful selection and specification of prior and hyperprior distri-
butions remain critical aspects in ensuring the robustness and reliability of the Bayesian modeling framework (Gómez-Rubio, 
2020). There are two general approaches in Bayesian, namely the Markov Chain Monte Carlo (MCMC) and Integrated Nested 
Laplace Approximation (INLA) methods. Due to the stochastic nature of random effects and the inherent properties of hier-
archical models, MCMC convergence is typically both slow and unpredictable. INLA emerged as an alternative method to 
effectively fit Bayesian with random effects components within the latent Gaussian class, in response to this challenge where 
significantly reducing the computational time required (Li et al., 2014; Lu & Wong, 2008). Specifying the prior is no longer 
an issue in the INLA method, as it operates under the assumption that all parameters follow a Gaussian prior distribution. 
Conversely, establishing hyperpriors for hyperparameters represents the principal obstacle. The formulation of priors requires 
careful deliberation, as they play a vital role in Bayesian analysis.  

Bayesian INLA frequently employs various hyperprior distributions, encompassing log Gamma for log hyperparameter pre-
cision, Half-Normal, Half-Cauchy, Half-t, uniform, and Penalized Compliance for hyperparameter standard deviation 
(Gómez-Rubio, 2020). The last hyperprior distribution is commonly used for reasons to overcome overfitting especially in 
spatiotemporal high-resolution prediction (Sørbye & Rue, 2017). However, the use of a prior PC can also result in an overly 
smooth estimate for selected hyperprior parameter values (Ventrucci & Rue, 2016). In high-resolution mapping using Gauss-
ian Markov Random Fields (GMRF), two pivotal parameters demand careful consideration: the range and standard deviation 
of the Gaussian field. The determination of hyperprior parameter values holds significant importance in ensuring the produc-
tion of precise and accurate high-resolution predictions (Molina et al., 2008). Evaluating the sensitivity of the hyperprior value 
for this parameter is essential to attain accurate prediction results (Sørbye & Rue, 2014). In this context, sensitivity analysis 
typically entails scrutinizing how alterations in input parameters or prior distributions influence the outcomes of Bayesian 
analysis. So in this study, optimizing PC prior parameter values becomes essential to achieve the most optimal results, partic-
ularly in predictive modeling, with the goal of minimizing prediction errors. Various criteria can be employed to assess prior 
sensitivity and identify the most optimal hyperprior parameter values. Two crucial considerations in this evaluation are fit and 
predictability. To gauge the model fit, metrics such as Deviance Information Criteria (DIC) and Watanabe-Akaike Information 
Criteria (WAIC) are utilized. For assessing prediction ability, several measures, including Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and Mean Absolute Prediction Error (MAPE), can be examined. The optimal hyperprior param-
eter values are determined through a surface plot approach, aiming to select values that correspond to the minimum DIC, 
WAIC, RMSE, MAE, and MAPE (Molina et al., 2008). 

Nevertheless, optimization is seldom employed in the estimation of air pollutant concentrations modeling, and there is a lack 
of justification for the selection of hyperprior parameter values. Meanwhile, accurate predictions of air pollution concentra-
tions are imperative, particularly given the utilization of this information for the development of early warning systems and 
the prevention of adverse impacts associated with air pollution (Bai et al., 2018).  The most dangerous pollutants that have 
become a major concern are the particles found in pollution (Manisalidis et al., 2020). One very small particulate matter is 
PM2.5 with a diameter of less than 2.5 mm. With its very small size, PM2.5 can quickly cause irritation of the respiratory tract.  
We will apply our optimization process to the PC prior for modeling and mapping PM2.5 in Jakarta, the capital of Indonesia. 
Jakarta has faced significant air pollution challenges. Jakarta has the worst air quality in the world. areas in Jakarta do not 
have air pollution observation stations due to limited monitoring equipment and expensive costs. The uneven placement of 
observation stations poses limitations in both the measurement and forecasting of PM2.5. (Chen et al., 2023; Nakanishi et al., 
2022). Therefore, the monitoring station which only covers an area of 5 km2 is not representative enough to show air pollution 
in this area measuring 661.5 km2 (Nurfaizah, 2022).  
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The structure of the paper is outlined as follows. Section 2 delineates the Bayesian inference, prediction framework, and 
INLA. Section 3 details the application of this methodology in producing high-resolution predictions of PM2.5 concentrations 
in Jakarta Province. The ensuing Section 4 serves as the discussion section, while Section 5 encapsulates the conclusion. 

2. Methodology 
 
2.1 Spatiotemporal Modeling 
 

Consider 𝑌ሺ𝒔௜ . 𝑡ሻ as a spatiotemporal process observed at geographical location 𝒔௜ (𝑖 = 1, … ,𝑛) and time 𝑡 (𝑡 = 1. … .𝑇). Let 
the realization of the spatiotemporal 𝑦(𝒔௜ . 𝑡) be defined by the following equation (Cressie & Wikle, 2012): 𝑦(𝒔௜ . 𝑡) = 𝜇(𝒔௜ . 𝑡) + 𝜀(𝒔௜ . 𝑡)   (1) 

where 𝑦(𝒔௜ . 𝑡) represents outcomes such as PM2.5 at location 𝒔௜ and time 𝑡, while  𝜇(𝒔௜ . 𝑡) describes the latent Gaussian spati-
otemporal process. The term 𝜀(𝒔௜ . 𝑡) represents a measurement error assumed to follow independent and identically distrib-
uted (i.i.d) Gaussian distribution with a mean of zero mean and a variance of 𝜎ఌଶ  (Lloyd & Atkinson, 2001). 

The latent Gaussian spatiotemporal process 𝜇(𝒔௜ . 𝑡) is conceptualized as an additive function comprising both temporal and 
spatiotemporal interaction components. 𝜇(𝒔௜ . 𝑡) = 𝛽₀ + 𝜁(𝑡) +  𝛷(𝒔௜ . 𝑡)                                             (2) 

where 𝛽₀ is an intercept that states a fixed effect on all domain regions and time periods,  𝜁௧ is a temporally structured random 
effect, Φ(𝒔௜ . 𝑡) is a Gaussian Field (GF) capturing spatiotemporal autocorrelation. A structured temporal random effect  𝜁(𝑡) 
is defined as a random walk process on the first (RW1) or second (RW2) order.  

RW1: 𝜍(𝑡 + 1) − 𝜍(𝑡)|𝜎చଶ~𝑁൫0,𝜎చଶ൯ for every 𝑖 and 𝑡 = 1, . . . ,𝑇 − 1, (3) 

RW2: 𝜍(𝑡) − 2𝜍(𝑡 + 1) + 𝜍(𝑡 + 2)|𝜎చଶ~𝑁൫0,𝜎చଶ൯ for every 𝑖 and 𝑡 = 1, . . . ,𝑇 − 2, (4) 
 

where 𝜎చଶ  represents the variance hyperparameter of the random walk (RW) process, which governs the smoothness of the 
underlying process (Rasmussen & Williams, 2005). In this study, we assume that the Gaussian Field (GF) Φ(𝒔௜ . 𝑡) undergoes 
temporal changes according to a first-order autoregressive process (AR1) with a coefficient 𝜆, where |𝜆|  <  1. The AR1 pro-
cess characterizes variations in the variable's value concerning its previous values, that is: 

 𝛷(𝒔௜ , 𝑡) = 𝜆𝛷(𝒔𝒊, 𝑡 − 1) + 𝛾(𝒔𝒊, 𝑡)  for t =  2, … . , T and i =  1, … , n (5) 
 

with 𝛷(𝒔௜ , 𝑡)~𝑁(0, ఙംమଵିఒమ), characterized by an average of 0 and a variance of ఙംమଵିఒమ, it is evident that at the initial time 𝑡 = 1, 𝛷(𝒔௜ , 1) is a random variable sampled from this normal distribution. The term 𝛾(𝒔௜ , 𝑡) represents a mean-square-differentiable 
process, exhibiting temporal independence or lacking temporal correlation. This process incorporates spatial innovation, 
which is spatially correlated and drawn from a Gaussian distribution with a mean of 0, along with spatial Matérn covariance 
functions outlined as follows: Cov ቀγ(𝐬௜ , 𝑡), γ൫𝐬௝ , 𝑡൯ቁ = ቊ 0, 𝑖𝑓 𝑡 ≠ 𝑡′𝜎ఊଶ𝑅(𝑑),  𝑖𝑓 𝑡 = 𝑡′ (6) 

The parameter 𝜎ఊଶ is a uniform version of γ(𝐬௜ , 𝑡), and 𝑅(𝑑) is a spatial correlation function determined by the distance, Eu-
clidean distance 𝑑 = ฮ𝒔௜ − 𝒔௝ฮ ∈ ℝ, between 𝐬௜ and 𝐬௝.  The spatial correlation function is defined as:  𝑅(𝑑) =  12௩ିଵΓ(𝑣) (𝜅𝑑)௩𝐾௩(𝑑),∀𝑡 (7) 

By combining Eq. (6) and Eq. (7), the Matérn covariance function is given by: ∑(𝑑) =  𝜎ఊଶ2௩ିଵΓ(𝑣) (𝜅𝑑)௩𝐾௩(𝑑),∀𝑡 (8) 

 

The Matérn covariance function is characterized by three hyperparameters that govern different aspects of the process. The 
hyperparameter σఊଶ   governs the marginal variance of the Gaussian Field (GF) process. The hyperparameter κ controls the 

spatial correlation distance, defined as 𝑟 =  √଼௩ச . For a given value of 𝑟, the correlation function will approach 0.13, and the 
hyperparameter 𝑣 influences the smoothness of the process. Higher values of 𝑣 lead to a smoother process. To simplify the 
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computational process, we introduce the temporal vector GF (Green's Function) denoted as 𝚽୲ = (Φ(𝒔ଵ, 𝑡), … ,Φ(𝒔௡, 𝑡))′, 
which can now be formally defined as: 𝜱௧ = 𝜆𝜱௧ିଵ + 𝜸௧  with 𝛾௧~𝑁(𝟎,𝚺) for 𝑡 =  2, … . ,𝑇 (9) 
 

Continuously Indexed Gaussian Field (GF) typically entails a dense covariance matrix 𝚺, posing intricate and time-consuming 
numerical estimating problems that are sometimes referred to as the 'big n problem' (Sidén, 2020). The 'big n' problem emerges 
when dealing with a substantial number of locations or observation points in spatial studies. To overcome this challenge, 
Lindgren proposed a solution by substituting the continuously indexed Gaussian Field with a sparse and discretely indexed 
Gaussian Markov Random Field (GMRF) utilizing Stochastic Partial Differential Equation (SPDE) and Finite Element 
Method (FEM) approaches (Lindgren et al., 2011; Marhamah & Jaya, 2020). The second-order stationary and isotropic Matérn 
covariance function's spatially continuous distribution is estimated throughout the research region using a Delaunay triangu-
lation (MESH) in FEM. The fundamental function of the provided triangulation, represented as 𝜸௧ is determined by the for-
mula that follows: 

𝜸௧ ≈  ෍𝜓௟𝛾෤௧௟௅
௟ୀଵ ∀𝑡  

(10) 

In Eq. (10), where 𝐿 is the Delaunay triangulation's total number of vertices.,  ሼ𝜓௟ሽ௟ୀଵ௅  consists of basic functions, and 𝛾෤௧௟ 
represents the relative weights of all the Gaussian basis functions.  𝛾෤௧௟ is a Gaussian distributed variate with mean 0 and sparse 
precision matrix Q.   

2.2 Penalize Complexity Hyperprior 

In Bayesian statistical approach, MCMC is a popular computational tool used to solve various research problems (Jaya et al., 
2018). Bayesian methods are flexible and allow researchers to build increasingly complex models. However, as models be-
come more complex, determining the prior distributions or priors becomes more challenging. There are several commonly 
used options such as prior information, informative priors, or non-subjective priors (Gelman et al., 2013). R-INLA device 
developers can either force users to specify all prior shared priors explicitly or provide default priors (Rue et al., 2009; Martins 
et al., 2013). Informative PC priors follow four basic principles and offer flexibility in changing those principles as needed. 
These PC priors can help build better and more transparent priors. 
Prior Penalized Complexity (PC) is a practical method to construct the prior in Bayesian statistics. Prior PCs impose penalties 
against deviations from the base model and encourage simplicity until there is enough evidence for more complex models 
(Fuglstad et al., 2019). It is based on Occam's razor principle, which prioritizes simpler explanations until there is support for 
more complex explanations. This helps prevent overfitting and improves the model's ability to generalize and predict (Simpson 
et al., 2017). The PC prior, in addition to its application of constant rate penalization, embraces the concept of penalizing 
deviations from the base model at a uniform rate. Furthermore, the PC prior offers the flexibility for users to customize scaling, 
enabling them to regulate the degree of flexibility granted to the model. This scaling parameter can be adjusted based on weak 
information or other subjective criteria, empowering users to tailor the model to their specific needs (Simpson et al., 2017). 
Prior PCs provide flexibility in determining prior on parameters that are difficult to determine directly from expert knowledge. 
They can be vague, weakly informative, or strongly informative according to the tuning parameters chosen by the researcher 
(Evans & Jang, 2011; Gelman et al., 2013). 
The PC prior concerning the precision parameter 𝜏 in the context of a Gaussian random effect is established through an eval-
uation of the natural base model, where 𝜏 is set to ∞. The PC prior introduces a penalty that quantifies the increase in com-
plexity compared to the base model when utilizing a more flexible model (Bhattacharya et al., 2014). This penalty decreases 
gradually as the complexity increases, ensuring that simpler models are preferred unless there is substantial evidence in favour 
of a more intricate one (Lindgren & Rue, 2015).  The PC prior for the precision of a Gaussian random effect proves to be a 
valuable tool in modeling hierarchical structures, as it effectively captures relationships and unobserved variations. It accom-
modates the incorporation of random effects that enhance model flexibility while preserving a preference for simplicity, strik-
ing a balance between adaptability and parsimony (Simpson et al., 2017). 

In this study, To complete this model, we need to define hyperprior distributions for several parameters, such as range (𝑟), 
spatial autoregression parameter (𝜌), temporal autocorrelation parameter (𝜆), and standard deviation (𝜎) for various compo-
nents such as 𝛽଴, 𝜁,Φ, 𝛾 and  𝜀. Typically, we give a large value, for example 𝜎(ఉబ) = 10଺, for the standard deviation of the 
hyperparameter 𝜎(ఉబ). This allows the intercept to have a large range of potential values, increasing the flexibility of the model. 
For the other parameters, we use hyperprior complexity dialysis (PC) (Simpson et al., 2017). Hyperprior is commonly used 
to prevent overfitting problems. 𝑃𝑟𝑜𝑏(𝜎 > 𝜇ఙ) = 𝛼ఙ  is used to define a hyperprior PC for standard deviation, where 0 <𝛼ఙ < 1 is the probability value and 𝜇ఙ > 0 is a hyperprior quantile. For all 𝜎఍ ,𝜎஍, 𝜎ఒ,𝜎ఘ, and 𝜎ఌ.  
2.3   Sensitivity 

To assess the sensitivity analysis and ascertain the most effective values for the PC hyperprior parameters, six combinations 
of parameter ranges (𝑟)  and standard deviations (𝜎ఊ) were investigated. We use two different criteria to evaluate the 
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sensitivity and find the optimal prior. The primary criteria include assessing the model fit using the Deviance Information 
Criterion (DIC) and the Watanabe-Akaike Information Criterion (WAIC) (Blangiardo, 2015; Fassò et al., 2007). DIC is de-
fined as: DIC = 2Dഥ − D(𝛉ഥ) (11)  

where Dഥ = E஘|୷൫D(𝛉)൯  is the posterior mean of the deviance value D(𝛉)  and is the deviance value D(𝛉) =−2 log൫p(𝐲|𝛉)൯D(𝛉ഥ)  of the posterior mean of the parameter. WAIC can be formulated as: WAIC = −2(D − p୛୅୍େ) (12) 

where  D denotes the deviance measuring the model fit, i.e. D = ∑ ∑ log𝐸஘|୷ሾ𝑝(𝑦௜௧|𝛉)ሿ௧்ୀଵ௡௜ୀଵ  and p୛୅୍େ denotes the effective 
number of parameters, i.e., p୛୅୍େ = ∑ ∑ Var୮୭ୱ୲ୣ୰୧୭୰ሾlog𝑝(𝑦௜௧|𝛉)ሿ௧்ୀଵ௡ᇱ௜ୀଵ . The smaller DIC and WAIC value indicate a better 
fit. Additionally, a secondary set of criteria focuses on evaluating the model's predictive capabilities, which comprises the 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Prediction Error (MAPE). The three 
criteria for model predictive performance were calculated using the following formulas: 

𝑀𝐴𝐸 =  ∑ ∑ ห𝑦௢௕௦,௜ − 𝑦௣௥௘,௜ห௧்ୀଵ௡ᇱ௜ୀଵ 𝑛′𝑇  
(13) 

𝑅𝑀𝑆𝐸 =  ∑ ∑ ൫𝑦௢௕௦,௜ − 𝑦௣௥௘,௜൯ଶ௧்ୀଵ௡ᇱ௜ୀଵ 𝑛′𝑇  
(14) 

𝑀𝐴𝑃𝐸 = ∑ ∑ ฬ௬೚್ೞ,೔ି௬೛ೝ೐,೔௬೛ೝ೐,೔ ฬ௧்ୀଵ௡ᇱ௜ୀଵ 𝑛′𝑇  × 100 

(15) 

In Equations (13-15), 𝑦௢௕௦,௜  and 𝑦௩௔௟,௜ represents the testing observation 𝑖 and the testing prediction 𝑖 with 𝑛′ denotes the number of 
testing units. The smaller MAE, RMSE, and MAPE value indicate a better predictive performance. We will select the hyperprior 
parameter values based on a surface plot that offers the optimal combination of both fit and predictive performance. 
 
3. Application: High-resolution prediction on PM2.5 in Jakarta Province, Indonesia  

3.1 Exploratory Analysis of PM2.5 Observation 

We performed a descriptive analysis of PM2.5 concentration at 8 observation stations in Jakarta province and the finding are detailed 
in Table 1. The results indicate that the minimum concentration of PM2.5, recorded at 21.48 μg/m3, was observed in February 2022, 
while the maximum concentration, reaching 68,589 μg/m3, occurred in September 2022. On average, the concentration of PM2.5 
throughout 2022 was approximately 36.96 μg/m3. Furthermore, we analyzed fluctuations in PM2.5 concentrations by examining the 
standard deviation values. It is evident that during June, July, and August, the standard deviation values are notably higher compared 
to other months. This observation indicates substantial fluctuations in PM2.5 concentrations during this three-month period. 
 
Table 1  
Statistical characteristics of the PM2.5  concentration observations (μg/m3) 

Time Mean Median SD Min Max 
January 30.813 31.939 4.316 24.854 34.932 
February 28.994 29.937 4.042 21.486 32.502 
March 31.600 31.957 4.486 25.376 36.505 
April 36.276 38.519 5.861 26.177 42.766 
May 36.771 38.316 6.050 23.735 43.322 
June 52.421 53.687 10.382 32.800 67.463 
July 47.212 49.190 11.437 27.259 64.458 

August 48.142 48.023 10.454 34.236 68.590 
September 44.864 45.761 7.626 32.814 54.621 

October 31.485 31.990 4.866 24.714 39.397 
November 27.723 26.333 5.743 21.978 39.270 
December 27.222 25.993 2.747 24.121 32.434 

Note: SD represents the standard deviation, Min indicates to the minimum values, and Max indicates the maximum values of PM2.5 concentrations. 

To identify potential anomalies in the data, we have included a boxplot in Fig. 1. Fig. 1(a) illustrates the distribution of PM2.5 
concentrations in the temporal domain, while Fig. 1(b) focuses on the spatial domain. Fig. 1(a) shows several outliers, indi-
cating extreme values that suggest unusual events influencing PM2.5 concentrations in specific months (i.e., August). The 
boxplot also shows a skewed distribution, signifying a specific pattern in the temporal variation. This suggests a tendency for 
higher concentrations of PM2.5 in certain months. Fig. 1(b) shows there is no outlier. However, all stations exhibit skewness 
in the spatial variation of PM2.5 concentrations. This indicates a distinct pattern in the spatial distribution of PM2.5 
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concentrations across the monitoring stations, even in the absence of outliers. This condition has the potential to impact the 
accuracy of prediction results significantly. Hence, in this study, log transformations were applied to the data. The aim of this 
transformation is to maintain the stability of data variance, make the data distribution more symmetrical, and reduce the impact 
of outliers. Through log transformations, extreme values are expected to exert less impact, addressing distribution irregulari-
ties and enhancing the performance of predictive analytics. 

 

 

(a) Temporal Domain (b) Spatial Domain 
Fig. 1. Boxplot data of PM2.5 concentrations 

Analysis of Fig. 1 reveals distinctive spatial patterns in PM2.5 concentrations across the 8 observation stations from January 
to December 2022. Significant variations are observed, particularly with higher concentrations around the AHP and Angkasa 
Kemayoran observation stations situated in Central Jakarta, known as an industrial hub. This industrial activity is identified 
as a likely primary contributor to the elevated PM2.5 levels in this area. In contrast, the US Embassy observation station 
recorded the lowest PM2.5 concentration. This area experiences comparatively lower pollution levels due to factors like limited 
industrial activities, reduced vehicular traffic, and fewer human activities. The embassy area is not a commonly traversed 
public route, emphasizing the role of gas emissions from motor vehicles as a major pollution contributor. Furthermore, the 
embassy area benefits from a strong system for monitoring air quality, allowing for early detection and effective control of 
air pollution, thereby ensuring that emission levels are well-regulated. 
 
3.2   Spatiotemporal Modeling and Estimations of the PM2.5 Concentrations 
 
3.2.1   Parameter Construction 
 
In the modeling process, we performed cross-validation by randomly selecting 3 out of the 8 monitoring stations (37.5%) as 
validation data. To assess the sensitivity of the parameters to the estimated results, we tested six combinations of parameter 
ranges (in km) r = {2, 4, 6, 10, 13, 20} and standard deviations σγ = {0.01, 0.05, 0.1, 0.5, 1, 1.5}. Following a systematic 
exploration of various values, we evaluated the model's goodness using DIC to assess the prediction model's suitability and 
accuracy. Model accuracy was measured through MAPE instead of RMSE and MAE due to their negligible differences. The 
results indicated optimal parameters with a range parameter value of 2 km and a standard deviation set to 1 (MAPE = 
19.35393, DIC = -154.23). Full results can be found in Table 2. Table 2 displays an average spatial range of the field at 2,792 
km, suggesting that the spatial dependence is estimated to extend up to 2,792 km. Additionally, a rho parameter of 0.862 
indicates significant temporal variation in the estimated PM2.5 concentrations. 
 
Table 2  
Hyperparameter Result 

 Mean SD q0.025 q0.5 q0.975 
Precision for the Gaussian observations 497.287 600.821 47.224 316.579 2054.712 
Precision for Time      34.215 16.439 11.965 31.002 75.077 
Range (𝑟)  for spatial field 2792.003 1763.017 765.775 2358.299 7394.089 
SD (𝜎ఊ) for spatial field                  0.161 0.049 0.087 0.154 0.278 
Group Rho for spatial field               0.862 0.191 0.286 0.932 0.996 

Note: SD is Standard Deviation, q0.025 and q0.975 represent the credible interval, q0.025 is the lower quantile or the 2.5th quantile, 
q0.5 is the median value of the range distribution, and q0.975 is the upper quantile or the 97.5th quantile. 
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3.2.2  Result Verification 

Utilizing parameter estimation, PM2.5 estimation modeling through Gaussian Markov Random Fields (GMRF) was conducted on a 
34 × 34 km grid. The intention was to identify the parameter with a range of 2 km, considering 5 different standard deviation 
parameter values, as the optimal choice based on the smallest Deviance Information Criterion (DIC) and Mean Absolute Percentage 
Error (MAPE), thus ensuring the consistency of the model. 
 
Table 3 
Five Smallest MAPE and DIC 

Range (km)(𝒓) 𝝈𝜸 DIC WAIC R RMSE MAPE 
2 1 -154.23 -130.70 0.693 2.001 19.354 
2 1.5 -152.64 -129.93 0.693 2.006 19.369 
2 0.5 -147.91 -129.00 0.692 1.954 19.391 
2 0.1 -121.44 -115.36 0.685 1.924 19.555 
2  0.05 -114.56 -110.67 0.683 1.890 19.577 

Note: 𝜎ఊ is standard deviation parameter, R is correlation. 

We generated a 3D surface plot to visually assess different combinations of range and standard deviation values. This plot 
allowed us to examine the relationship between the response variable and two predictor variables in a three-dimensional space, 
providing insights into preferred response values and operational scenarios. Peaks and valleys on the plot correspond to com-
binations of x and y generating local maxima or minima. In Fig. 2, the contour plot illustrates the connection between various 
scenarios of parameter range values and standard deviation parameter values used for predicting PM2.5 concentrations and 
evaluating the performance metrics of the resulting model (DIC and MAPE). A narrower range with a higher standard devia-
tion parameter is associated with smaller prediction errors. The optimal result, indicated by the deep valley in the plot, aligns 
with the best model evaluation, achieved with a range parameter set to 2 km and a standard deviation parameter set to 1. 

 
Fig. 2. 3D surface plot of predictions PM2.5 Concentration based on evaluation metric DIC and MAPE 

In Table 3, it is evident that the correlation is 0.693 for the parameter range set to 2 km and the standard deviation of the 
parameter set to 1. This signifies a robust relationship between the predicted and observed results, with a value closer to 1 
indicating a stronger association between the two variables. The substantial correlation suggests that the predictions effec-
tively explain variations in PM2.5 concentrations, implying that the model utilized in the analysis possesses reliable predictive 
capabilities. Besides the correlation value, we evaluate the model's performance using scatter plots that compare observed 
results with predicted results at three validation monitoring locations.  

 
 

Fig. 3. Scatterplots of observed PM2.5 concentrations and cross-validation 
predictions 

Fig. 4.  Variability in spatiotemporal of the predicted PM2.5 concentrations  
in DKI Jakarta 
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The results presented in Fig. 3 reveal that most data points closely align with the reference line, indicating strong performance 
in estimating overall PM2.5 concentrations. The results presented in Fig. 4 reveal an interesting phenomenon. The highest 
concentrations of PM2.5 are observed in June, July, and August, as depicted by the color map. The red dots in the central and 
northern Jakarta areas signify significantly higher concentrations of PM2.5. This occurrence is likely due to these three months 
being part of the dry season in the region. During the dry season, low rainfall and dry weather conditions allow dust and small 
particles, such as PM2.5 concentrations, to remain unaffected by rain and more easily transported by wind. The model shows 
increased sensitivity to higher PM2.5 concentrations, accurately reflecting their distribution in heavily polluted areas. PM2.5 
concentrations range from 23.758 μg/m³ as the minimum value to 59.830 μg/m³ as the maximum value. 

Simpson et al. (2017) introduced the concept of the Penalized Complexity (PC) hyperprior, which has demonstrated effec-
tiveness of spatiotemporal predictions using GMRF modeling. The PC prior is computed based on specific principles that 
evaluate the complexity of model components by assessing their deviation from simple base model formulations. This ap-
proach has found widespread application in high-resolution spatiotemporal predictions, particularly where GMRF modeling 
is prevalent. As emphasized by Simpson et al. (2017), the PC prior plays a pivotal role in mitigating the risk of overfitting in 
prediction models. However, it's crucial to acknowledge that the hyperprior PC exhibits high sensitivity in determining pa-
rameter values. In GMRF modeling, precise parameter values are paramount for accurate spatiotemporal predictions, partic-
ularly in high-risk scenarios. Two such parameters requiring careful prior definition are the range parameter and the standard 
deviation. In practice, identifying optimal values for these parameters can be challenging, often necessitating an iterative trial-
and-error approach. In our study focused on predicting PM2.5 concentrations in Jakarta, we aimed to identify the most suitable 
parameter values by systematically testing various values and conducting cross-validation. We considered the suitability of 
the prediction model based on DIC values and the accuracy of the model in providing predictions, measured through MAE, 
RMSE, and MAPE. For cross-validation, we divided the data into training and testing datasets, allocating five data points to 
the former and three data points to the latter. To pinpoint the most optimal parameter values, we constructed a 3D surface 
plot, allowing us to visualize and evaluate different combinations of range and standard deviation values. Our findings re-
vealed that, for our specific case, the most optimal parameter values were a range of 2 km and a standard deviation of 1. 
Notably, we observed that for prediction purposes, a higher range value was associated with a smaller standard deviation 
value, and vice versa, to yield the most accurate predictions. On the other hand, concerning the model fit, it became evident 
that the range parameter had a relatively minor impact, with the standard deviation parameter being the most dominant and 
influential factor. 

4. Conclusion 
 

This study utilized GMRF spatiotemporal modeling, with a focus on selecting appropriate hyperprior parameter values for 
hyperparameters in Bayesian setting to achieve accurate prediction. Specifically, the study employed the Penalized Complex-
ity (PC) hyperprior that is usually used to handle the overfitting issues in complex models. The optimization of the PC hyper-
prior parameter values were a crucial aspect of this research, aiming to obtain the most optimal results tailored to the require-
ments, especially for predictive purposes, with the goal of minimizing prediction errors. The optimization of PC hyperpriors 
parameter values will be applied for spatiotemporal high-resolution modeling and mapping PM2.5 in Jakarta. This strategic 
approach aims to fine-tune the model to meet specific requirements and enhance its predictive accuracy, contributing valuable 
insights to air quality management and decision-making processes. 
This analytical technique aimed to assess how variations in hyperprior parameters, particularly within the Penalized Com-
plexity (PC) framework, impacted the Spatiotemporal GMRF modeling's performance in estimating PM2.5 concentrations. 
Two critical parameters, the range parameter (r) and standard deviation (𝜎௬) were identified as pivotal contributors to the 
model's effectiveness. The study explored a range of scenarios, varying the range parameter (in km) r = {2, 4, 6, 10, 13, 20} 
and adjusting the standard deviation σγ = {0.01, 0.05, 0.1, 0.5, 1, 1.5}. This comprehensive approach facilitated an in-depth 
understanding of the model's behavior under different parameter configurations. To refine the optimization process, the study 
delved into simplified optimization approaches and compared various cross-validation techniques. The assessment, based on 
MAPE and DIC criteria, pinpointed the optimal parameters for PM2.5 concentration estimation using GMRF, determining a 
distance of 2 km and a standard deviation of 1 as the most effective combination. 
Innovative visualization methods, extending beyond traditional 3D surface plots, were employed to unravel intricate parameter 
interactions. These advanced techniques provided nuanced insights into the spatial-temporal dynamics of PM2.5 distribution 
in Jakarta. The study's results not only delivered accurate high-resolution predictions but also furnished valuable tools for 
mapping visualization, aiding in the comprehension of PM2.5 distribution patterns. 
Based on the discussion and conclusion, the following recommendations are suggested for future studies, firstly, it would be 
beneficial to fine-tune the Penalized Complexity (PC) hyperprior. Adjusting its details could enhance its effectiveness, espe-
cially in situations where accurate predictions in high-risk scenarios are crucial. Furthermore, we propose a thorough explo-
ration of potential modifications to the PC hyperprior. This involves examining different adjustments to strengthen its adapt-
ability and robustness in dealing with a variety of predictive challenges. Adapting the hyperprior to specific scenarios can 
optimize its usefulness across a range of conditions. 
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In addition, we emphasize the importance of a detailed sensitivity analysis of the hyperprior's parameters, focusing particularly 
on the range and standard deviation. This careful examination is expected to provide valuable insights into how these param-
eters dynamically interact and influence the model's results. 
On the other hand, this study helps management take corrective actions to pay more attention to areas estimated to have high 
levels of PM2.5 concentrations. Second, in certain months which are dry seasons with high concentrations of PM2.5, people can 
take preventive measures such as avoiding outdoor activities or using air masks. Third, these predictions enable faster deci-
sion-making in sectors such as transportation, energy, and industry. 
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