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 Time series data clusters are being researched thoroughly. The distance metric drives the devel-
opment of the clustering time series. The ARIMA model is one of the models that can be employed 
in model-based clustering, although differing model selection criteria can lead to uncertainty in 
the model. In this investigation, we created a technique for ensemble distance-based time series 
data clustering. To express the distance between two series, five distances based on the five model 
selection criteria are utilized. The average of the five distances reflects the distance of two time 
series data. According to the simulation results, the ensemble distance method could boost clus-
tering accuracy by more than 11%. Based on the pattern of rainfall levels, we applied our methods 
to find clusters of locations in the Province of West Java (Indonesia). The findings indicate that 
the rainfall pattern in the same cluster is similar. The cluster model is effective and feasible for 
representing individual models in a cluster. 
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1. Introduction 
 
Cluster analysis, a technique aimed at grouping similar objects together while keeping dissimilar ones apart (Gan et al., 2007), 
has emerged as a pivotal tool in the realm of data analysis and pattern recognition. In recent years, the application of cluster 
analysis has extended its reach to encompass a diverse range of data types. Notably, the utilization of time series data—a 
category of dynamic data where observations evolve sequentially—has gained prominence in various domains. Time series 
data clustering have the capacity to offer valuable insights into the temporal evolution of phenomena, and their analysis plays 
a pivotal role in a multitude of applications, including but not limited to the detection of data relationships, predictive modeling, 
recommendation systems, and the discovery of intricate data patterns (Aghabozorgi et al., 2015). researchers have applied 
time-series data clustering techniques across an array of fields. Gullo et al. (2012), for example, used the Dynamic Time 
Warping distance metric when combined with k-means to cluster the healthcare data. Meanwhile, Caiado et al. (2006) ex-
plored time series clustering in the economic domain, specifically in the context of industrial production index data. Corduas 
and Piccolo (2008) extended the utility of time series clustering to domains as diverse as economics and medicine.  
 
In the pursuit of refining the art of clustering time series data, several researchers have ventured into this multifaceted domain. 
Studies by Aghabozorgi et al. (2015), Liao (2005), Rani and Sikka (2012), and Ergüner Özkoç (2021) have undertaken com-
prehensive reviews of the existing body of research on time series data clustering. These endeavors have unveiled the remark-
able diversity of approaches and techniques employed in the field. For instance, Javed et al. (2020) undertook a comparative 
analysis of clustering algorithms, categorizing them into three distinct categories—partition, hierarchy, and density-based—
while also evaluating the suitability of various distance measures, including the Euclidean, Dynamic Time Warping (DTW), 
and shape-based measures. The complexity of time series data presents a common challenge that has motivated researchers 
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to seek innovative solutions. Most time series data, due to their unique temporal structure and high dimensionality, defy the 
straightforward application of conventional clustering algorithms. Consequently, researchers in the field have directed their 
efforts towards the development of novel measures of similarity and dissimilarity. This endeavor is necessitated by the intrin-
sic characteristics of time-series data, where temporal dependencies and large dimensions add layers of intricacy (Keogh & 
Kasetty, 2003; Rani & Sikka, 2012). As a result, the search for effective distance metrics and the creation of customized 
similarity measures have become cornerstones of time series clustering research. To address the inherent challenges posed by 
time series data, clustering methods have undergone significant adaptations. Traditional algorithms of clustering have been 
expanded to fit the time-series format, or data from time-series has been turned into a more amenable structure, allowing the 
application of normal clustering techniques (Liao, 2005). The crucial role of similarity and dissimilarity metrics is underscored 
by Keogh and Kasetty (2003), emphasizing that these measures lie at the heart of clustering algorithms, shaping the outcomes 
and patterns that emerge from the data. Moreover, there have been instances where experts in specific domains have crafted 
custom distance metrics, such as Biabiany et al. (2020), who devised an expert distance metric for climate clustering. 
 
Time series data clustering approaches offer a diverse array of techniques, each specifically designed to address the special 
features of time-series datasets. Typically, these approaches can be categorized into three primary methods: clustering based 
on raw data, feature based, and model based of model (Liao 2005). The selection of the methodology depends on the charac-
teristics of the data and the goals of the analysis. Model-based clustering has gained traction due to its ability to accommodate 
time series with varying observation periods. In the realm of model-based time-series data clustering, one prominent model 
utilized is the Auto Regressive Integrated Moving Average (ARIMA). The application of ARIMA-based clustering has been 
employed by several researchers as an effective means to measure similarity between time series data, including Piccolo 
(1990), Piccolo (2010), Maharaj (2000), Kalpakis et al. (2001), Corduas and Piccolo (2008), and Triacca (2016). 
 
One central challenge in employing ARIMA models for time series clustering is the selection of the most appropriate model 
from the plethora of possibilities. From a given set of time-series data, it is possible to derive multiple ARIMA models, each 
potentially suited to the data but distinct in terms of complexity and representation. The crux of the issue lies in the diverse 
selection criteria employed to identify the optimal model, including well-known measures such as the Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), and various others. The selection of a different model based on varying 
criteria has the potential to yield diverse results, casting a shadow of uncertainty over which model to choose for the analysis. 
This quandary holds profound implications for time series clustering. Specifically, it can lead to markedly different cluster 
results, as the choice of model plays a pivotal role in shaping the clustering outcomes. This issue is at the heart of the problem 
that the present study seeks to address: devising a robust and consistent approach to model-based clustering for rainfall patterns 
in West Java, Indonesia, amidst the inherent variability introduced by model selection criteria. 
 
While existing approaches have explored clustering time-series data using various methods, this research charts a novel path 
with distinct objectives. Notably, Hendrawati et al. (2020) developed a method for clustering time-series data by harnessing 
the ensemble parameters of the ARIMA model. In contrast, the primary aim of this study is to forge a method for time-series 
data clustering employing the concept of ensemble distance. The ensemble distance method leverages the strengths of multiple 
models, each selected through diverse model selection criteria, rather than adhering to a single model choice. This approach 
offers an innovative solution to circumvent the limitations associated with rigid model selection, which can potentially yield 
inaccurate or unreliable clustering results. As we delve deeper into this research, we explore the intricate details of the ensem-
ble distance method, its application to rainfall pattern clustering in West Java, Indonesia, and the invaluable insights it offers 
in unveiling the complex temporal dynamics of this region's meteorological data. 

2. Materials and Method 
 
2.1 ARIMA Model 
 
Rainfall data, which is time series data, can be modeled using ARIMA. Here is the formulation of the model. The Autoregres-
sive Model, denoted as AR (p), is mathematically represented as follows: 

 𝑌 = 𝜙 𝑌 + 𝜙 𝑌 + ⋯+ 𝜙 𝑌 + 𝑒  (1) 

The Autoregressive Moving Average model represented as ARMA (p, q), is formulated as follows: (p, q)) 
 𝑌 = 𝜙 𝑌 + 𝜙 𝑌 + ⋯+ 𝜙 𝑌 + 𝑒 − 𝜃 𝑒 − 𝜃 𝑒 −⋯− 𝜃 𝑒  (2) 

The Autoregressive Integrated Moving Average, abbreviated as ARIMA (p, d, q), is expressed as follows: 
 𝜙(𝐵)(1 − 𝐵) 𝑌 = 𝜃(𝐵)𝑒  (3) 
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Where: 𝜙(𝐵)  = 1 − 𝜙 𝐵 −𝜙 𝐵  −⋯− 𝜙 𝐵 ;   𝜃(𝐵)  = 1 −  𝜃 𝐵 − 𝜃 𝐵  −⋯− 𝜃 𝐵 ;  𝑒 ~ N (0, 𝜎 ); p is order of AR, 
d is differencing, and q is order of MA (Wei 2006; Hendrawati et al. 2020).  
 
2.2 Model Selection Criteria 
 
There are several criteria for selecting the best model: Akaike’s Information Criterion (AIC); Bayesian Information Criterion 
(BIC); Akaike’s Information Criterion Bias Corected (AICc); Mean Absolute Percentage Error(MAPE); and Root Mean 
Squared Error(RMSE).  
 𝐴𝐼𝐶 = −2log (𝜎 ) + 2𝑘 (4) 𝐵𝐼𝐶 = −2log (𝜎 ) + 𝑘log(𝑛) (5) 𝐴𝐼𝐶𝑐 =   𝐴𝐼𝐶 +  2(𝑘 + 1)(𝑘 + 2) 𝑛 − 𝑘 − 2  

 
(6) 

MAPE = ∑ x100𝑛  
 

(7) 

RMSE = ∑ (𝑦 − 𝑦 )𝑛 /
 

 
(8) 

where 𝜎  denotes the estimator for the variance of error; k denotes the number of parameters; 𝑛 denotes the number of obser-
vations; 𝑦  denotes the observation’s value at time t; and 𝑦  denotes the fit observation’s value at time t (Cryer & Chan, 2008; 
Montgomery et al., 2008). 
 
2.3 Clustering Method 

 

2.3.1 Ward Method  
 
The Ward Method aims to join objects into groups where the variance within groups is minimized. The pairings of objects 
with the least increase in the Error Sum of Squares (ESS) are combined at each phase of Ward methods. ESS =  (𝒙 − 𝒙) (𝒙 − 𝒙) 

 
(9) 

where 𝒙  represents a j-th object and 𝒙 represents an average of objects (Eszergár-Kiss & Caesar, 2017; Jain & Dubes, 1988; 
Everitt et al., 2011; Kaufman & Rousseeuw, 1990; Murtagh & Legendre, 2014; Murtagh & Legendre, 2014). 
 
2.3.2 Optimization of clusters number 
 
To ascertain optimal number of clusters, we employ average of silhouette coefficient (SC). The SC represents averaging of 
distance between a data point and the others within its designated cluster, as well as all data points belonging to the nearest 
neighboring cluster. 
 𝑆(𝑖) =   ( )   ( ) {  ( ) ; ( ) }   (10)  

𝑥(𝑖) denotes the distance between i-th object to its own cluster;  𝑦 (𝑖) denotes the distance between i-th object to its nearest 
neighbor cluster (Everitt et al. 2011; Jain & Dubes 1988; Kaufman & Rousseeuw 1990). 
 
2.4 Cluster Model 
 
Each cluster is represented by a time series data. In this instance, the prototype—a time series data set—is derived from the 
cluster's average value of data. 
 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 =  average 𝑥 , ,  𝑥 , , … , 𝑥 ,    ∀  c ∈  C  (11)  

where 𝑖 =  1, 2, . . . ,𝑛 (Aghabozorgi et. al., 2015; Hendrawati, 2020). 
 
The assessment of the cluster method's accuracy occurs following the formation of clusters. Each cluster created is subse-
quently compared to the reference or ground-truth data. Clusters that originate from the same underlying data will be 
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consolidated into the same group. In cases where data points from the same underlying group are assigned to different clusters, 
this indicates an error in the clustering process, referred to as a misclassification error. The accuracy is computed using the 
following formula:  
 Accuracy =  𝑛 − 𝑛𝑛  × 100%  (12) 

where 𝑛  represent the number of object and 𝑛  represent the number of objects that misclassified.  
 
2.5 Distances for Time-series Data 
 
In 1990, Piccolo introduced a method for quantifying the similarity between two time-series data using a distance formula, as 
presented in Eq. (13). A collection of time-series data can be represented through various ARIMA models, with the model 
selection based on specific criteria. Choosing a model, for instance, based on the smallest AIC or BIC. The Piccolo method 
employs the ARIMA model approach to compute the similarity between two time-series datasets. Based on the invertible 
ARIMA process, 𝑋  and 𝑌  can be expressed by the Autoregressive model (AR (∞)). The distance between ARIMA processes 𝑋  and 𝑌   is distance between the coefficients 𝜋 in AR (∞) using the equation:  
 𝑑(𝑋  ,𝑌 ) = ∑   𝜋 , −  𝜋 ,    

(13) 

which 𝜋 ,   and 𝜋 ,  represent coefficient of AR model for time-series data 𝑋  and 𝑌 . Distance 𝑑(𝑋  ,𝑌 ) serves as a metric 
for quantifying the structural similarity between two ARIMA processes  (Corduas & Piccolo, 2008; Piccolo, 1990, 2010).  
 
2.6 Proposed Method 
 
Debates exist regarding the most suitable criteria for choosing a model. According to some academics, choosing the best 
model should not solely rely on specific information criteria but should also consider alternative approaches (Anderson & 
Burnham, 2002; Brewer et al., 2016; Burnham & Anderson, 2004). On the other hand, Claeskens (2016) argued that if multiple 
estimators of model parameters are derived from the same population, combining these estimators may yield a superior model 
parameter estimator. Several researchers advocate for the use of multiple models (multimodels) rather than exclusively relying 
on a single model, considering it as an alternative to becoming constrained by a potentially incorrect model (Burnham and 
Anderson 2004). An approach for selecting a model from a collection of models is the averaging method (Claeskens, 2016).  
 
In this research, the chosen methodology is the ensemble distance, specifically the average distance. Applying different model 
selection criteria, notably AIC, BIC, AICc, RMSE, and MAPE, five different distances are determined. For instance, Model 
A is selected based on the AIC criterion, while Models B, C, D, and E are determined using the BIC, AICc, RMSE, and 
MAPE criteria, respectively. The distance associated with each model measures the dissimilarity between two time series, 
aligning with the corresponding model selection criterion. 
 
Subsequently, to represent these five distances collectively, an average distance is employed, as illustrated in the following 
equation: 
 �̅� , = 15 ( 𝑑 + 𝑑 + 𝑑 + 𝑑 + 𝑑 ) (14) 

 
where 𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑  are distance associate to Eq. (13) which based on model selection with criteria of AIC, BIC, AICc, 
RMSE, and MAPE respectively. 
 
2.7 Simulation 
 
The simulation involves the generation of data from three distinct clusters, each of which adheres to an Autoregressive (AR 
(2)) model. The parameter values for model A, model B and Model C are (0.2 , 0.1), ( 0.4 , 0.5 ), and ( 0.6 , 0.2 ), respectively. 
Each cluster generates a total of 10 series, resulting in 30 series of generated data. The observation period (𝑡) for the generated 
data varies across six different values: 50, 75, 100, 150, 200, and 300 (Kumar dan Patel 2008; Hendrawati et al. 2020). 
 
The generated data were first organized into clusters using the Piccolo distance method (Hendrawati et al. 2020) and the 
ensemble distance approach. Subsequently, the data were modeled using the Autoregressive (AR (𝑝)) method, with 𝑝 ranging 
from 1 to 15. Model selection was based on the minimization of the AIC criterion. The distances between time-series were 
computed using the distance formula, as defined in Equation (1). This process was repeated; the least BIC, AICc, RMSE, and 
MAPE were the new model selection criteria used in this process (Cryer & Chan, 2008; Montgomery DC, Jennings CL, 2008). 
The average of the five distances obtained from the previous steps was then calculated using a formula like Eq. (2). 



T. hendrawati et al.   / International Journal of Data and Network Science 8 (2024) 1191

Subsequently, clusters were determined using the Ward method (Eszergár-Kiss & Caesar, 2017; Everitt et al. , 2011; Jain & 
Dubes, 1988; Murtagh & Legendre, 2014; Kaufman & Rousseeuw, 1990). The quality of the clustering results was evaluated 
by calculating the percentage of correct cluster membership across 100 replications (Hendrawati et al., 2020). 
The simulation procedure is outlined as follows: 
 
1. Generate a time series dataset consisting of three clusters according to the specified rules. 
2. Modelling the generation time series data using the AR (𝑝) model approach, where 𝑝 =  1,  2, …, 15. The optimal model 

is selected based on the minimization of Akaike's Information Criterion (AIC). 
3. Compute the distances between time series using the distance formula provided in Eq. (13). 
4. Repeat steps two and three, but this time utilize distinct standards for selecting models, including the smallest BIC ,  

AICc , RMSE , and MAPE . 
5. Calculate the average of the five distances obtained from the previous steps, using a formula in Equation (14). 
6. Determine the clustering of the time series data using Ward's method. 
7. Evaluate the accuracy of the clustering results by employing a formula, often detailed in Equation (12). 
8. Repeat steps one to seven a total of 100 times. 

3. Results  
 
3.1 Results 
 
Table 1 displays the percentage of correct cluster membership using the ensemble distance and Piccolo method. In the Piccolo 
distance method, various criteria were applied, including AIC, BIC, AICc, RMSE, and MAPE. When the observation period 
length (𝑡) was set to 50, the lowest correct cluster membership percentage, at 72.47%, was observed in the Piccolo method 
when using the RMSE criterion. Conversely, for 𝑡 = 75, 100, 150, 200, and 300, the Piccolo method with the MAPE criterion 
consistently exhibited the lowest correct cluster membership percentage among the different criteria. However, as illustrated 
in Fig. 1, it is evident that the ensemble distance method consistently yielded higher correct cluster membership percentages 
when compared to the Piccolo method. 
 
Table 1   
Percentage of correct cluster membership using the ensemble distance and Piccolo method 

 The length  of  ob-
servation period 

The Piccolo method 
The ensemble 

distance  
method   AIC    BIC    AICc    RMSE    MAPE   

 50  78,03%   83,8%  79,53%  72,47%   74,27%   87,63%   
75 82,67% 86,4% 83% 79,97% 78,23%  90,77%  
100 90,27% 88,1% 90,67% 89,13% 81,43%  93,77%  
150 94,77% 93,33% 94,93% 94,5% 85,3%  96,93%  
200 96,5% 97,03% 96,33% 96,8% 86,27%  97,73%  
300 98,87% 98,93% 99% 98,57% 87,8%  99,43%  

 
The ensemble distance method compared to Piccolo with the RMSE criterion for the length of the observation period (𝑡) = 
50, significantly increased the correct cluster membership, resulting in an increase of 15.16%. Furthermore, for 𝑡 = 75, 100, 
150, 200, and 300, the ensemble distance method achieved substantial enhancements in correct cluster membership. Specifi-
cally, it raised the correct cluster membership by 12.54%, 12.34%, 11.63%, 11.46%, and 11.63%, respectively, in comparison 
to the Piccolo method with the MAPE criterion. 
 
3.2  Application for Rainfall Data  
 
In this study, secondary data was employed, specifically monthly rainfall data (in millimeters), sourced from 26 rainfall mon-
itoring stations located in West Java. The data spanned the years 2000 to 2009 and were acquired from the meteorology, 
climatology, and geophysics agency (BMKG) in Indonesia. 

 
The rainfall data was processed using the R programming and clustered using the ensemble distance method. Initially, the 
rainfall data was segregated into two categories: training data and testing data. The testing data was employed for model 
evaluation, whereas the training data was utilized for clustering and modeling purposes. Specifically, there were 24 data points 
designated for testing and 96 data points allocated for training. 
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Table 2  
Monthly rainfall characteristics and Geographical location of the rainfall monitoring stations in West Java 

No  Rainfall station Minimum 
(mm)  

Maximum 
(mm)  

Average (mm)  Longitude  Latitude  

1  Bekasi   0  637  137.0339  106.98  -6.28  
2  Bojong picung   0  618  195.025  107.27  -6.85  
3  Bondan   0  551  142.6122  108.3  -6.61  
4  Ciawi   0  976  318.4274  106.85  -6.66  
5  Cibeureum   0  706  171.7083  107.49  -7.04  
6  Cibukamana   0  836  242.0403  107.51  -6.55  
7  Cisalak   0  789  209.2955  106.66  -6.84  
8  Cisondari   0  502  144.5958  107.48  -7.09  
9  Dempet   0  828  117.0044  108.25  -6.35  
10  Depok   0  1344  233.7902  106.76  -6.41  
11  Darmaga   8  839  321.1146  106.74  -6.56  
12  Emp Agra   0  1544  202.3611  106.99  -7.41  
13  Empang  14  810  335.0964  106.8  -6.61  
14  Gunung Mas   0  1038  236.7527  106.97  -6.71  
15  Indramayu   0  979  139.9946  108.32  -6.34  
16  Juntinyuat   0  710  128.0509  108.44  -6.43  
17  Kebun raya   0  859  322.2708  106.8  -6.59  
18  Krangkeng   0  556  115.8148  108.48  -6.5  
19  Leles   0  735  176.9861  107.9  -7.19  
20  Losarang  0  700  119.4113  108.15  -6.41  
21  Pacet  0  1040  279.0672  107.01  -6.71  
22  Pegaden  0  846  166.0507  107.81  -6.55  
23  Rajamandala  0  824  201.8718  107.35  -6.84  
24  Stageof cemara  0  610  178.3452  107.62  -6.81  
25  Sukadana  0  526  135.0625  108.32  -6.55  
26  Wanayasa  0  1436  362.0538  107.55  -6.68  

 

 
Fig. 1. The dendrogram’s cluster of precipitation data based on ensemble distance 

 
The dendrogram that illustrates the clustering process is shown in Fig. 1. The silhouette index approach used to find the 
optimal number of clusters (Kaufman & Rousseeuw, 1990), was found to be three. The outcomes of the clusters and their 
respective members are detailed in Table 3. This table illustrates the formation of three distinct clusters, denoted as Cluster 
A, B, and C. Cluster A consists of 16 member stations, Cluster B comprises five members, and Cluster C includes five mem-
bers as well. Each cluster is characterized by a prototype, represented by its average value. A visual representation of the 
regional clustering can be observed in Fig. 2. 
 
 
 
 



T. hendrawati et al.   / International Journal of Data and Network Science 8 (2024) 1193

Table 3 
Clusters and the names of their member rainfall stations 

 Cluster   Rainfall stations    
A Dramaga, Emp agra, Empang, Gunung mas, Indramayu, Juntinyuat, Kebun Raya, Krangkeng, Leles, 

Losarang, Pacet, Pegaden, Rajamandala, Stageof Cemara, Sukadana, and Wanayasa 
B Bekasi, Bojong picung, Bondan, Ciawi, and Cibukamana 

C Cibeureum, Cisalak, Cisondari, Dempet, and Depok 

 
 

 
Fig. 2. Plot the region based on clusters. 

 
Fig. 3 presents the prototype plot along with the members of each cluster. Within each cluster, there is a noticeable similarity 
in the pattern of rainfall. Specifically: 
 

• In Cluster A, frequent rainfall events are observed, characterized by very high intensity (> 500 mm), high intensity (300-
500 mm), medium intensity (100-300 mm), and low intensity (0-100 mm). This cluster experiences a wide range of 
rainfall intensities. 

• Cluster B exhibits regular rainfall patterns with occurrences of high, medium, and low-intensity rainfall. However, rain-
fall events with very high intensity are relatively rare in this cluster. 

• Cluster C often experiences rainfall events with low, medium, and high intensity, but very high-intensity rainfall is 
infrequent in this cluster. 

 
These findings suggest that the clusters are defined by their distinctive rainfall patterns, with varying levels of intensity and 
frequency. 

 
(a) 
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(b) 

(c) 
Fig. 3. Prototype plots and clusters of rainfall data in West Java using the ensemble distance method: cluster A (a), cluster B 

(b), and cluster C (c) 
 
The cluster models are represented by their respective prototype ARIMA models, as outlined in Table 4. The ARIMA model 
for cluster A ( 0, 0, 0 ) ( 1, 1, 0 ) ; cluster B has an ARIMA model ( 1, 0, 2 ) ( 1, 1, 0 ) ; and cluster C has an ARIMA model 
( 1, 0, 0 ) ( 1, 1, 0 ). These ARIMA models provide a statistical framework for understanding and forecasting the rainfall 
patterns within each cluster. 

 
Table 4 
Cluster models and parameters 

Cluster  Model Structure of Model  
A ARIMA (0,0,0) (1,1,0)  (1 + 0.5908 𝐵 )(1− 𝐵 ) 𝑌 = 𝑒  
B ARIMA (1,0,2) (1,1,0)  

 
 (1 − 0.7778   𝐵)(1 + 0.5089 𝐵 )  (1 − 𝐵 ) 𝑌 =  (1 + 0.9940𝐵 −  0.3814 𝐵 )𝑒   

C ARIMA (1,0,0) (1,1,0)  (1 − 0.3992  𝐵)(1 + 0.623 𝐵 ) (1 − 𝐵 ) 𝑌 = 𝑒    
 
By contrasting the RMSE values for models with and without clustering, the clustering results were evaluated. To conduct 
this comparison, a mean difference test was employed at a significance level (𝛼) of 0.05. The RMSE values were derived 
from both the model predictions using the training data and the forecasting RMSE calculated from the model predictions using 
the testing data. The results of this analysis indicate that the p-value for the predicted RMSE is 0.525, and the p-value for the 
forecasting RMSE is 0.464. All these p-values exceed the significant level of 0.05. Therefore, there is insufficient evidence 
to reject the null hypothesis (H0). Stated differently, the model with and without clustering do not differ statistically signifi-
cantly. This implies that individual models inside a cluster can be accurately represented by the cluster model. 

4. Discussion 
 
In this paper, to determine which ARIMA model is the best, several model selection criteria are applied. Table 1 shows the 
time series data clustering using the Piccolo method with different model selection criteria. The performance evaluation of 
clustering with different model selection criteria is done by simulation. The simulation results show that the accuracy of 
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findings obtained from clustering using the AIC, BIC, AICc, RMSE, and MAPE criteria varies. Clustering with BIC or AICc 
criteria shows better results compared to AIC, RMSE, and MAPE. Clustering with the MAPE criterion shows the lowest 
accuracy results. The longer the observation period (t), the AIC, BIC, AICc, and RMSE criteria show similar clustering accu-
racy results, but MAPE shows different results from the others. Based on the simulation, it can be concluded that the accuracy 
of clustering results using the Piccolo method (Piccolo, 1990; Piccolo, 2010) is influenced by the model selection criteria and 
the length of the observation period (t). The results are in line with Rahkmawati et al. (2019) where the AIC, BIC, and AICC 
criteria have similar accuracy patterns. RMSE has a pattern that is quite similar to AIC, BIC, and AICC while MAPE does 
not have a similar pattern with other criteria.  
 
A parameter ensemble method was created by Hendrawati et al., (2020), and in comparison to the Piccolo(Piccolo, 1990; 
Piccolo, 2010), this method was able to increase the percentage of clustering accuracy by more than 10%. In this research 
develops the Piccolo method by using the average distance. This method is called the ensemble distance method. Based on 
the simulation results shown in Table 1, it is found that the ensemble distance method is better than the Piccolo method. When 
compared to the Piccolo method, the ensemble distance method is able to increase the clustering accuracy percentage by over 
11%. In other words, this method is better than the Piccolo method (Piccolo, 1990; Piccolo, 2010) and the ensemble parameter 
method (Hendrawati et al., 2020). 
 
This research uses the ARIMA model with model selection criteria AIC, BIC, AICc, RMSE, and MAPE. There are many 
criteria that can be used to determine the goodness of a model. As a suggestion, the next research needs to try with various 
models and the latest model selection criteria. 

5. Conclusion 
 
This study focuses on the development of a clustering method for time-series data using the ensemble distance approach. The 
simulation results demonstrate the superiority of the ensemble distance method, which utilizes the average distance of five 
models, compared to the Piccolo method that relies on a single model. The percentage of clustering accuracy using the en-
semble distance method increases as the observation period (𝑡) is extended. 
 
The simulations reveal that the ensemble distance method can improve the percentage of clustering accuracy by more than 
11%. In the practical application of monthly rainfall data for the West Java region, it was determined that the optimal number 
of clusters is three. These clusters exhibit similar rainfall patterns, and cluster models are effective in representing individual 
models within their respective clusters. 
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