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interrelationships between variables, the impact of exogenous variables, and Inter-regional
linkages. However, this model has not adjusted the nonlinearity relationships between variables.
The relationship between economic variables is usually not linear. Therefore, we introduce the

2023 Threshold Spatial Vector Autoregressive with exogenous variables (TSpVARX). This paper
Keywords: assesses the forecasting performance of TSpVARX and compares it with SpVARX models. We
Spatial conducted a simulation study by generating 100 times the simulation data with twelve scenarios.
Threshold We found that the forecasting performance of the TSpVARX model is better than SpVARX when
SpVAR there is a nonlinear relationship between variables. In addition, we find that the forecasting
Nonlinear performance of TSpVARX models will improve as the sample size increases.

Vector Autoregressive

Simulation
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1. Introduction

Several models have been created for forecasting, especially economic data. The most popular univariate model is the
Autoregressive Moving Average (ARIMA). This model can be used to forecast by making the lag of the endogenous variable
a predetermined variable (Kong et al., 2022). However, this model cannot capture the impact of exogenous variables, so it
triggers the ARIMA model's development with exogenous variables, consisting of transfer functions, ARIMA with
intervention variables, and ARIMA with Outliers. Economic variables are often related to each other (Sohibien, 2018). Both
ARIMA and ARIMA with exogenous variables can still not capture the interrelationships between endogenous variables. It
became the forerunner of the development of Vector Autoregressive (VAR) and Vector Autoregressive with exogenous
variables (VARX).

VAR and VARX models can be used to predict by making all lag endogenous variable into predetermined variables so that
the interrelationships between endogenous variables can be accommodated (Rajab et al., 2022; Wang et al., 2021; Andreas et
al., 2022). Meanwhile, VARX can accommodate the influence of exogenous variables, which VAR does not have (Zhu, 2021;
Sohibien et al., 2022). However, in addition to the interrelationships between economic variables, the influence of endogenous
variables in one area on other areas is also very possible. Spatial Vector Autoregressive (SpVAR) is a model that can overcome
the shortcomings of ARIMA, ARIMAX, VAR, and VARX models that cannot capture inter-regional linkages. SpVAR can
accommodate connections between regions for multiple endogenous variables (Ramajo et al., 2017; Andrés-Rosales et al.,
2021 ). SpVAR evolved into the SpVAR with calendar variations to capture exogenous variables in seasonal patterns with
varying periods.
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Another aspect that also needs to be considered in the time series model is the possibility of nonlinear relationships between
variables. The relationship between economic variables is usually not linear. If the nonlinear relationship is not captured in
the model, it can lead to incorrect estimation of the model coefficient (Balke & Fomby, 1997; Stigler, 2010). Several models
have been developed to accommodate nonlinear relationships and interrelationships between variables, namely Threshold
Vector Autoregressive (TVAR). We make this model by creating multiple VAR models that will be divided into different
regimes (Yuhan & Sohibien, 2018; Jiang et al., 2021). Each regime will produce different coefficients of the VAR model.
The TVAR model then evolved into a TVAR model with an exogenous metric variable (E-TVAR) to capture the influence of
the exogenous metric variable (Tsagkanos et al., 2018).

Based on the previous explanation about the models that have been developed, we can see that several things are essential to
include in time series modeling, especially economic data, namely interrelationships between variables, interrelationships
between areas, the influence of exogenous variables, and nonlinear relationships between variables. However, there is
currently no model that can accommodate all four things simultaneously. Therefore, in this study, we want to introduce the
Threshold Spatial Vector Autoregressive model with Exogenous Variables (TSpVARX). This model can include these four
things simultaneously to improve time series data forecasting. Based on literacy studies, we have not found any research that
evaluates the forecasting performance of the TSpVARX by using simulation studies in many scenarios. This study aims to
show the TSpVARX model's forecasting performance and compare it with SpVARX through simulation studies. It is
imperative to get more convincing results related to the forecasting performance of the TSpVARX compared to SpVARX.

2. Methodology
2.1. SpVARX

The SpVARX model with spatial lag 1, autoregressive lag length p, and exogenous variable lag length ¢ can be written as
SpVARX (1,p,q). The form of SpVARX (1,p,q) for N areas, K endogenous variables, and one exogenous variable is as follows
(Ramajo et al., 2017; Andrés-Rosales et al., 2021):

1 () pl «9) pl 1,(i) pl () pl 1,(q) pl
S _T +5‘ R111+"'+51'1 th +-- +é;m Rmtl+ +5IIMRMII+ +5 Rqu

+771(10)S|

Lt-1

1,(1,1)
+771 (ms et St

1,(:0) gl
11 lzl+ +W11( )S111)+ 1, S

1a)
1L,(j>D 2 1,(p,0) ol (
+77|r ( lrlZS///+ +M/I I,uS///+ +M/I( )Srl/)+ +?7 SK/p
1(p51) u
+1hk (Wum Z)SK T +W11<1u Sk - +"'+W11<(1,MSK I—p)+811’
no_ n ny(1) pn n(q) pn ny(i) pn L(1) pn n(q) pn n,(1,0) on
SI\7_TIIf0+5kl Rn—1+"'+§ Rl,l—q+ +6 Rm:—:+ +5n RMI—1+ +5 RMf—q+77kl Slt—]
(L) 1 -1 ntl 1(.0) @n
Tl ( Wttt T +Wk1(nr11S11—1+Wk](nn+l Sim + +Wk1(nh)Sll—l)+ H1, S
1
+ap S +otw SEL AW, S e SN PO ST (16)
nla' Lt—j Fr(nyn=1)= =1 k(1) r =1 kr(n,N) S rit=j 77 K,t—p
) -l il "
T (WkK(n,])SK,t—p +"'+Wk1<(nn 1 SKr | T Wik KK (nntl) SKr 1T Wk 1<z p)+81k7‘ >
N _ N (1) V() W(i) V(1) pN N(q) 4(1,0) oV
S K() +3y &r]"’ +6 RN +eot n,+ +6a Ryt +00y sz"'ﬂN A
Nl N-1 NGO oN
Tla ( Kli\lsltl+ +W1<1xuS|lt1+ Wy NNISItI)+ +170S,
lc
+77N’“")(w S totw S bW, SN - )+ ISy (1e)
Kr KN ri=j K(Nu)=ri=j Kr(N,N-1) 7= Ki=p
No(p) N-1
i (WKK(’VI)SKI Tt W, (Nu)S[u(J—p +e W 1)S1< !—p)+€NKI >
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can be done using the Maximum Likelihood Estimation method, which can be seen at Tsay (2014), Tsay (2010), and Bickel
& Doksum (2013).

2.2. TSpVARX

The TSpVARX model is formed by dividing data into several parts according to the selected value (v) of threshold variable
(S¢,..)» where d is the delay value. Each rule will have a SpVARX model with different model coefficients. The coefficient

estimation of SpVARX in each regime can be resulted using the Maximum Likelihood Estimation (MLE) method. A
TSpVARX model with spatial lag 1, autoregressive lag length p, exogenous variable lag length ¢, and delay value d can be
written as TSpVARX (1,p,d,q). The equation of TSpVARX (1,p,d,q) with two regimes for K endogenous variables and N
areas is as follows:
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where:
i is the notation to indicate regime (=1 and 2),

MU . . . . . . .
(TM) is an interception of the equation with endogenous variable S} at regime i,

o\ . . . . "
(6'“5‘” ) is the coefficient of the metric exogenous variable R,, , of the equation with endogenous variable s; at regime i,
ny(j () . . . n . . . . .
( A ) is the coefficient of the endogenous lag variable S, ; of the equation with endogenous variable s; at regime i,

(77,:’,’(/’1) )u) is the space-time coefficient for W,{,(,,,l)Sllq,,_, ot W) Sl +w Wit Sr"fll +-- +w,{,(,,,N)Sff,,, of the equation with en-
dogenous variable s; at regime i.

There are some stages to determine the estimator of threshold (9) and delay values (d) .

1. Determine the lag of the endogenous variable that will be used as a threshold variable (S ,;’_,,d) .

2. Determine the maximum value d is p.
3. Determine the 10-th percentile of S;,_, as the lower limit of the candidate threshold value (v,,) and the 90-th percentile

of S;,4 as the upper limit of the candidate threshold value (v,,) so that v, <v<uv,, .
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4. Specify the data of the 1% regime when S}, <v and the 2" regime when S;,_, >v for each possibility of v .
5. Estimate the coefficients of TSpVARX in the 1 and 2" regimes using the MLE method.
6. Calculate the log-likelihood function values / (ﬁ%g,g,mx (d,v)|Q" ) on the 1% and 2" regimes for all possible data divisions,

where Q) is the matrix of error covariance in the regime i. How to determine the log-likelihood function can be seen in
Bickel & Doksum (2013).
7. Calculate the total log-likelihood for all possibilities ¢ and v with the following formula:

l(flm,ﬁpvw(d’v) |Q) =1(ﬁ&5,»vm(dav) |Ql))+l( A;z)LE,SpVARX(d’v) |Q(2)) .
8. The delay estimator (d) and threshold value (0) are obtained from 4 and v which can maximize the value of

l(ﬁMLE,TSpVARX (d’v) | Q) :

2.3 Simulation method

This study evaluates the forecasting performance of TSpVARX and compares it with SpVARX. We simulate the TSpVARX
and SpVARX models for three areas, two endogenous at each area and one exogenous variable at each area. Thus, there are
six endogenous variables used in this simulation. Our simulation has 12 scenario combinations based on the following:

1. two scenarios of the conditions of model error distribution used to generate data, namely multivariate normal and multivar-
iate T distributed errors,

2. two scenarios of the error correlation between equations used to generate data, namely:
a. the correlation error between equations of 0.1 (covariance error between endogenous variables 0.01),
b. the correlation error between equations of 0.9 (covariance error between endogenous variables 0.09),

3. three scenarios of sample size conditions are used, namely 120, 240, and 360 samples.

The simulation is done by generating data and then creating SpVARX and TSpVARX models 100 times for each combination
of scenarios. There are several steps performed in our simulation.

1. We specify the spatial weight used is uniform with the following shape:
o NN
w=ll o Ul
oS0
2. We specify the true parameter by using the following TSpVARX equation:

The 1* regime (when S, ,<0)

S, =0.4R,,, +0.25S], , +0.3(0.55}  +0.58 ,)+0.25,  +0.5(0.55;,, +0.55;, ) +e/, (3a)
S; =0.55R,,, +0.25}  +0.12(0.55,, +0.55} ) +0.3S; , +0.25(0.55},, +0.55;, ) +e, (3b)
S} =0.2R,,, +0.3S},+0.3(0.55,, +0.557 )+0.355;,, +0.4(0.58),, +0.55;, ) +¢, (3¢)
Sy =0.5R,,, +0.15S),, +0.05(0.55]_, +0.55],_,)+0.1255, , +0.2(0.5S;,_, +0.55; ) +e}, (3d)
S;=0.3R,,, +0.2557 +0.3(0.55,,, +0.55; ,)+0.3S;,, +0.05(0.55, , +0.5S;,, ) +¢; (3e)
Sy, =04R,, +0.25), +0.3(0.55],, +0.557,,)+0.255;,, +0.02(0.55), +0.55; ) +e; . (3H
The 2" regime (when S|, ,>0)
S, =02R,,  +0.28], ,+024(0.55  +0.58} _)+0.165),, +0.4(0.55],_, +0.55] )+e, (3g)
S2=0.25R,,, +0.165],, +0.096(0.5S!,, +0.55],_)+0.245; , +0.2(0.55,,, +0.55; ) +e’, (3h)
S} =0.1R,,, +0.24S} , +0.24(0.55), , +0.55 )+ 0.285; , +0.32(0.55,,, +0.55; ,)+¢/, (31)
Sy =0.25R,, , +0.125 , +0.04(0.557  +0.55’ )+ 0.175, ., +0.016(0.557,_, +0.55; ) +e], (3
S5 =0.1R,,, +0.25}, , +0.24(0.55,,, +0.5S;, ) +0.24S;, , +0.04(0.55, , +0.55; ) +e; , 30

S5, =0.15R,,, +0.165],, +0.24(0.55,_ +0.55,_)+0.28;,, +0.016(0.58},_, +0.55; _ )+e] . (3D
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3. We generate a normally distributed error (,) with an average of zero and a variance of 0.2 (€,~ N (0,0.2)) to form

PN W

simulation data of exogenous variables. Simulation data of exogenous variables is developed by following an autoregres-
sive order one or AR (1). The model coefficients are specified such that | @ |< 1 . The following equation forms the data
of an exogenous variable:

R,=0.5R,  +e,

E}

. We generate multivariate normally distributed errors with mean vectors 4 and covariance matrices X®I,

(8~N (,u,(Z@IT))) . We also create errors distributed multivariate ¢ with a degree of freedom (v) equal to 2

(8"' 12 (/‘7(2®IT )))9

where:
81; 0 var(g)) cov(e!,e}) cov(el,g) cov(el,e)) cov(el,e]) cov(el,€))
& 0 cov(e’,€)) var(g]) cov(el,€}) cov(el,e)) cov(el,€]) cov(el,€))
e= 51? e 0 o cov(e],g') cov(el,el) var(e;) cov(e],e)) cov(el,e]) cov(el,e])
& 0f° cov(es,g)) cov(ey,el) cov(es, &) var(€,) cov(es, €7) cov(ey,€;)
& 0 cov(e],el) cov(el,el) cov(e],g)) cov(el,e)) var(e}) cov(el, ;)
& 0 cov(e;,g') cov(e;,e]) cov(e;,g’) cov(el,ey) cov(e;,€]) var(€])

The diagonal value (variance of error) is determined by the same magnitude of 0.1. Off-diagonal components of X (co-
variance of error) are specified with the same value. In this simulation, the off-diagonal part of £ is determined such that
the resulting correlation error between the equation is 0,1 or 0,9. Because error covariance is obtained by multiplying error
correlation with error variance, two scenarios of the magnitude of error covariance will be simulated in this study, namely
0,01 and 0,09.

By using € €€ 461,65 ,€; as the result of the fourth step, we generate simulation data using Eq. (3a) until Eq. (31).
We use ninety percent of the simulation data as training data, while ten percent of the data as testing data.

We use MLE to estimate the model coefficients of SpVARX and TSpVARX from training data.

We perform forecasting for endogenous variables throughout the testing data period.

We calculate the RMSE of SpVARX and TSpVARX models from testing data. The RMSE formula can be seen in Wei
(2006).

10. We do the simulation for 100 times replication, and then a hypothesis test is carried out to determine whether TSpVARX

11.

could improve forecasting performance. If the difference data between TSpVARX’s RMSE and SpVARX’s RMSE are
normally distributed, then the average hypothesis test for paired observations is used (Illowsky et al., 2013). The null (Ho)
and alternative hypotheses (H;) used are:

Ho :lL(RMSE TSpVARX - RMSESpVARX) >0 (The average of the difference between TSpVARX’s RMSE and SpVARX’s

RMSE is equal to or greater than zero)
H, :LL(RMSETSpVARX - RMSESpVARX) <0 (The average of the difference between TSpVARX’s RMSE and SpVARX’s

RMSE is less than zero).

Meanwhile, Gibbons & Chakraborti (2011) stated that if the difference data between TSpVARX’s RMSE and SpVARX’s
RMSE is not normally distributed, we can use the Wilcoxon Signed-Rank (WSR) test for testing the data difference. The
hypotheses used are:

Ho : Median (RMSE TSpVARX - RMSESpVARX) 20 (The median of the difference between TSpVARX’s RMSE and

SpVARX’s RMSE is equal to or greater than zero)
H, : Median (RMSETSpVARX - RMSESpVARX) <0 (The median of the difference between TSpVARX’s RMSE and

SpVARX’s RMSE is less than zero).

We reject Ho if the probability value obtained is smaller than the significance level used. Ho rejection indicates that
TSpVARX's forecasting performance is better than SpVARX. Because six endogenous variables and 12 scenarios are
used, there are 72 hypothesis tests for testing 72 data groups of the difference between RMSE TSpVARX and SpVARX.
After generating data up to testing the RMSE difference hypothesis (as in steps 1 through 9) for six endogenous variables
of 12 scenarios, we calculate the Ho rejection percentage of 72 hypothesis test results.

We provide a flowchart in Figure 1 to make it easier to understand the simulation steps, from generating data to testing
hypotheses on RMSE (step 1 until step 9) in our research. The flowchart in Fig. 1 describes only the simulation steps for the
scenario: normally distributed error, a covariance error of 0.01, and a sample size of 120.
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Specify uniform spatial weighting

v

Specify true parameter of TSpVARX (1,1,1)

[
1* replication 100* replication

® Generate normally distributed error with average 0 and vari- ® Generate normally distributed error with average 0 and vari-
ance 0.2 for as many as 120 samples ance 0.2 for as many as 120 samples

e Generate multivariate normally distributed errors for 6 error o e Generate multivariate normally distributed errors for 6 error
variables with error variance 0,1 and error covariance 0,01 for variables with error variance 0,1 and error covariance 0,01 for
as many as 120 samples. as many as 120 samples.

v v

® Get e~ N(0,0.2) for generating exogenous variable

* Get e~ N(0,0.2) for generating exogenous variable

e Gete~ N(ﬂ,(Z@IT)) for generating endogenous variables e Gete~ N(,u,(Z@I,)) for generating endogenous variable

Generate data of exogenous variable by
true coefficient model specified of AR(1)

Generate data of exogenous variable by
true coefficient model specified of AR(1)
Generate data of endogenous variable by true coeffi-

cient model specified of TSpVARX (1,1,1)

Generate data of endogenous variable by true coeffi-
cient model specified of TSpVARX (1,1,1)

.

/ Training and Testing Simulation Data /

/ Training and Testing Simulation Data /

Estimate coefficient of TSpVARX (1,1,1) and SpVARX (1,1,1)

| Estimate coefficient of TSpVARX (1,1,1) and SpVARX (1,1,1) |

Forecast Data for period of testing data by using TSpVARX (1,1,1) Forecast Data for period of testing data by using
and SpVARX (1,1,1) TSpVARX (1,1,1) and SpVARX (1,1,1)

Calculate RMSE that is gotten from TSpVARX (1,1,1) and Calculate RMSE that is gotten from TSpVARX
(1,1,1) and SpVARX(1,1,1)

SpVARX(1,1,1)
v v

Calculate the difference between TSpVARX’s RMSE and SpVARX’s Calculate the difference between TSpVARX’s
RMSE RMSE and SpVARX’s RMSE

| |
v

/ Data of Difference between TSpVARX’s RMSE and SpVARX s /

RMSE from 1% until 100" replication

v

perform normality testing of the difference between TSpVARX’s RMSE and SpVARX’s RMSE |

Is the RMSE difference normally distributed?

Perform a Wilcoxon signed-
rank test

Perform a hypothesis test for paired observations

v

/ The result of hypothesis test Lbl Finish

Fig. 1. Flow Chart of the simulation steps from generating data to testing hypotheses on RMSE for the scenario: multivariate
normally distributed error, a covariance error of 0.01, and a sample size of 120.
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A flowchart regarding the calculation of the percentage of Ho reject decisions from the results of the RMSE difference hy-

pothesis test is as shown in Fig. 2.

72 results of the hypothesis test of the RMSE
difference

v

Calculate the percentage of reject Ho

v

/ The percentage of reject Ho /

v

Fig. 2. Flow Chart of the calculation of reject Ho percentage of the hypothesis tests of the RMSE difference

3. Result

Based on subsection 2.3, there are 72 hypothesis tests of the difference between TSpVARX’s RMSE and SpVARX’s RMSE.
This test helps compare TSpVARX and SpVARX forecasting performance. Before we perform a hypothesis test to compare
the forecasting performance of TSpVARX and SpVARX, we first test the distribution of the difference between TSpVARX’s
RMSE and SpVARX’s RMSE for the 72 data groups. If the difference is normally distributed, then the hypothesis test used
is the average hypothesis test for paired observations. The hypothesis test uses the Wilcoxon signed-rank test if the difference
is not normally distributed.

We use the Shapiro-Wilk method for testing the normality data of all 72 data groups. The result can be seen in Table 1. In
normality hypothesis testing, normal data condition becomes the Ho, and the alternative hypothesis (H;) is that data does not
follow a normal condition or distribution. If the probability value obtained is more than the significance level, the data has
normal distribution. The data does not follow normal distribution if the probability value is less than the significance level.
In Table 1, we can see that the results of 72 normality hypothesis tests get a probability value of < 0.010. If we use the five
percent significance level, then the normality test rejects the null hypothesis for all 72 normality hypothesis tests. It means
the difference between TSpVARX’s RMSE and SpVARX’s RMSE for all 72 groups is not normally distributed.

Table 1
The Normality Test of The Difference between TSpVARX’s RMSE and SpVARX’s RMSE for All 72 Data Groups (Combi-
nation of 12 Scenarios and 6 Endogenous Variables)

Sample o Error correla- Endogenous The Prqbabilz:ty '
No Size Error Distribution tion beWeen Variable Value of-Shapzro Conclusion
equations Wilk
1 120 Multivariate Normal 0,1 % <0,010 not normal
2 120 Multivariate Normal 0,1 S; <0,010 not normal
3 120 Multivariate Normal 0,1 S <0,010 not normal
4 120 Multivariate Normal 0,1 S}, <0,010 not normal
5 120 Multivariate Normal 0,1 S22 y <0,010 not normal
6 120 Multivariate Normal 0,1 S5 <0,010 not normal
7 120 Multivariate Normal 0,9 Slll <0,010 not normal
8 120 Multivariate Normal 0,9 Sz <0,010 not normal
9 120 Multivariate Normal 0,9 Sft <0,010 not normal
10 120 Multivariate Normal 0,9 S, <0,010 not normal
11 120 Multivariate Normal 0,9 Sz <0,010 not normal
12 120 Multivariate Normal 09 S; <0,010 not normal

2t

13 120 Multivariate T 0,1 S

t 1
L <0,010 not norma
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14
15
16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

120
120
120
120
120
120
120
120
120
120
120
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
360
360
360
360
360
360
360
360
360
360
360

Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal

Multivariate Normal

0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9

S
1t
S,,
Sy
Sy

2t
S,
S,
S
S
S,

SZ

2t

S3

2t

Sl

1t

SZ

1t
S,
S,y
S,
S,

Sl

1t

1t
3
Sy
1
SZ)‘
S2

2t

<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010
<0,010

not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal
not normal

not normal
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60 360 Multivariate Normal 0,9 S23r <0,010 not normal
61 360 Multivariate T 0,1 Sllf <0,010 not normal
62 360 Multivariate T 0,1 Sllt <0,010 not normal
63 360 Multivariate T 0,1 Sl3t <0,010 not normal
64 360 Multivariate T 0,1 S;, <0,010 not normal
65 360 Multivariate T 0.1 S22z <0,010 not normal
66 360 Multivariate T 0,1 Sz3; <0,010 not normal
67 360 Multivariate T 0,9 Sllf <0,010 not normal
68 360 Multivariate T 0,9 SIZt <0,010 not normal
69 360 Multivariate T 0,9 Sﬁ, <0,010 not normal
70 360 Multivariate T 0,9 S;r <0,010 not normal
71 360 Multivariate T 0,9 Szzz <0,010 not normal
7 360 Multivariate T 0,9 523’ <0,010 not normal

Because the difference between TSpVARX’s RMSE and SpVARX’s RMSE of all 72 data groups is not normally distributed,
the evaluation TSpVARX forecasting performance compared to SpVARX is carried out using the WSR test. The hypothesis
of the Wilcoxon signed-rank test in this study are:

Ho : Median (RMSE TSpVARX - RMSE SpVARX) =0

H, : Median (RMSE TSpVARX - RMSESpVARX) <0

The rejection of Ho is occurred when the probability value of the Wilcoxon signed-rank test is less than the significant
level (o) used. If we reject Ho, TSpVARX has better forecasting performance than SpVARX at a certain o.

The results of the WSR test for all 72 data groups (a combination of 12 scenarios and six endogenous variables) can be seen
in Table 2. Meanwhile, concise results containing the percentage of Ho reject and Ho reject failure results of the WSR test
are presented in Figure 3 and Figure 4. The greater the percentage of Ho rejection of the test, the better TSVARX forecasting
performance compared to SpVARX.

Table 2
Wilcoxon Signed-Rank (WSR) Test of All 72 Data Groups (Combination of 12 Scenarios and 6 Endogenous Varia-
bles)

No Sample Size Error Distribution

Error correlation Endogenous Reject Decision

Probability Value

between equations variables (Yes/ No)
1 120 Multivariate Normal 0,1 S 0,102 No
2 120 Multivariate Normal 0,1 S; 0,008** Yes
3 120 Multivariate Normal 0,1 S, 0,036** Yes
4 120 Multivariate Normal 0,1 s}, 0,182 No
5 120 Multivariate Normal 0,1 Szzt 0,005%* Yes
6 120 Multivariate Normal 0,1 S5 0,045%* Yes
7 120 Multivariate Normal 0.9 S 0,180 Lo
8 120 Multivariate Normal 0,9 S,zl 0,062* Yes
9 120 Multivariate Normal 0.9 S 0,038** s
10 120 Multivariate Normal 0,9 S; ' 0,317 No
11 120 Multivariate Normal 0,9 e 0,031* M
12 120 Multivariate Normal 0.9 S5 0,052* Yes
13 120 Multivariate T 0,1 S 0,028%** Yes
14 120 Multivariate T 0,1 SIZt 0,073% Yes
15 120 Multivariate T 0,1 Sl3t 0,117 No
16 120 Multivariate T 0,1 Szlz 0,021%* Yes
17 120 Multivariate T 0,1 Szzz 0,165 No
18 120 Multivariate T 0,1 3 0,165 No

2t
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19
20
21
2
23
24
25
26
27
28
29
30
31
EY)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate T
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate Normal
Multivariate T
Multivariate T
Multivariate T

Multivariate T

0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1
0,1
0,1
0,9
0,9
0,9
0,9
0,9
0,9
0,1
0,1
0,1
0,1

Sl

1t

1t
S
S,
S,
S,

Sl

1t

SZ

1t

1t

SI

2t
2t

2t

2t

2t

2t

2t

Sl

1t
S
S
S,
S,

S3

2t

Sl

1t

1t

3
Su
Sl

2t

0,608
0,048%*
0,096*
0,553
0,098*
0,075*
0,002*
0,006*
0,001*
0,003*
0,002*
0,000*
0,217
0,067+
0,116
0,258
0,024%*
0,306
0,099*
0,001%*
0,002%*
0,098+
0,001%*
0,000%*
0,034%*
0,034%*
0,049%*
0,002%*
0,027**
0,066**
0,005%*
0,037+
0,000%*
0,000%*
0,009%*
0,000%*
0,049%*
0,012%*
0,029%*
0,067+
0,04**
0,032%*
0,000%*
0,001%*
0,000%*
0,000%*
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65 360 Multivariate T 0,1 S22t 0,000%* Yes
66 360 Multivariate T 0,1 Szaz 0,001%* Yes
67 360 Multivariate T 0.9 Sllt 0,000%* Yes
68 360 Multivariate T 0,9 Slll 0,001%* Yes
69 360 Multivariate T 0,9 Sl3z 0,000%* Yes
70 360 Multivariate T 0,9 S;t 0,000%* Yes
71 360 Multivariate T 0,9 S22t 0,000%* Yes
7 360 Multivariate T 0,9 S23t 0,001%* Yes

Note: ** Reject Ho with a=5%
* Reject Ho with o= 10%

Fig. 3 shows that at a significance level (o) of 5 percent, 66.67 percent (48 out of 72 Wilcoxon signed-rank test results) reject
Ho. Meanwhile, based on Figure 4, if the o used is 10 percent, 81.94 percent of the hypothesis test (59 out of 72 Wilcoxon
signed-rank test results) result Ho rejection. It shows that most forecasting results using TSpVARX are better than SpVARX
when there is a nonlinear relationship between endogenous variables.

= RejectHo = Fail to Reject Ho = Reject Ho = Fail to Reject Ho

Fig. 3. Percentage of Reject Ho (Blue) and Fail to Reject Ho (Or-  Fig. 4. Percentage of Reject Ho (Blue) and Fail to Reject Ho (Or-
ange) on Wilcoxon Signed-Rank Test with a 5 Percent ange) on Wilcoxon Signed-Rank Test with o 10 Percent

The results of evaluating TSpVARX forecasting performance compared to SpVARX can also be seen according to the sample
size, error distribution, and magnitude of error correlation between equations determined for generating simulation data. The
discussion will be based on the Wilcoxon signed-rank test results using o five percent. Fig. 5 shows that the more samples
used, the more Ho rejection results on the Wilcoxon signed-rank test. Only when the sample size is 120 can we see that the
number of Ho reject failures exceeds Ho rejection. It indicates that in addition to the nonlinear relationship between endog-
enous variables, TSpVARX forecasting performance will be better than SpVARX as the sample size increases.

25 23 30
B kS 24 24
P 2 25
£ » P £
L ° N
5 o L o
] £ £S5 12 12
§ = 9 3 SE
55 s 310
5 o}
o 5 2 5
g
0 —_— 0
120 240 360 Normal Multivariat T Multivariat
. Distribusi Data
Sample Size EReject Ho W Fail to Reject Ho

H Reject Ho ® Fail to Reject Ho

Fig. 5. The Number of Reject Ho (Blue) and Fail to Reject  Fig. 6. The Number of Reject Ho (Blue) and Fail to Reject
Ho (Orange) of Wilcoxon Signed-Rank Test Based on  Ho (Orange) Results on the Wilcoxon Sign-Rank Test by
Sample Size The Data Distribution

TSpVARX forecasting performance compared to SpVARX can also be seen according to the data distribution. Figure 6 shows
that the number of Ho rejections is more fantastic than the failed ones when multivariate normal and multivariate t-distributed.
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It means that the forecasting performance of TSpVARX is better than SpVARX under any data distribution conditions. In
addition, there is no difference in the number of reject Ho of the Wilcoxon signed-rank test when the data are multivariate
normally distributed and multivariate t distributed. Evaluation of TSpVARX forecasting performance compared to SpVARX
according to the error correlation between equations can be seen in Fig. 7 and Fig. 8. Fig. 7 shows that when the error corre-
lation between equations is 0.1 or 0.9, the number of Ho rejections is greater than the failed ones. It means that the forecasting
performance of TSpVARX is better than SpVARX under any conditions of error correlation between model equations. We
can also see that the number of Ho rejections is more at the time of error correlation 0.1. Besides that, Fig. 8 shows that at
each sample size used, the Ho rejection results are obtained more when the error correlation between equations is 0.1 compared
to 0.9. It indicates that in addition to the nonlinear relationship between endogenous variables and the larger sample size, the
TSpVARX model's forecasting performance will improve when the error correlation between equations gets smaller.
30

25

28
20
20 16
15
I 8 .
: =
0,1 0,9

Error Correlation between Equation

conditionsl

(2}

number of combinations of

EReject Ho ®Fail to Reject Tolak Ho

Fig. 7. The Number of Reject Ho (Blue) and Fail to Reject Ho (Orange) Results of the Wilcoxon Signed-Rank Test
Based on the Error Correlation between Equation

14 2 ;
2 12 10
= 10
Q
2
< s 6 6
5 6
ERE 3
2
2
0
120 240 360
Smple Size
m(.1 0.9

Fig. 8. The Number of Reject Ho Results on the Wilcoxon Signed-Rank Test Based on The Sample Size and Error
Correlation between Equations (green for 0,1 and yellow for 0,9)

4. Conclusion

TSpVARX model can be applied to actual data, especially those derived from economic variables that have a nonlinear
relationship. Based on our simulation study, we can conclude that when the nonlinearity between endogenous variables exists,
the forecasting performance of the TSpVARX model is better than SpVARX. The increasing sample size can also impact the
growing forecasting performance of the TSpVARX. TSpVARX forecasting performance is better than SpVARX in low or
high error correlation conditions between model equations. In addition, our simulation proves that we will get better forecast-
ing using TSpVARX with the small error correlation between equations. TSpVARX's forecasting performance is better than
SpVARX's in multivariate normal or multivariate T data distribution. There is no difference in forecasting performance of
TSpVARX between multivariate normally distributed and multivariate T distributed data.
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