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 This paper proposes a new variant of NTRU with a slightly different critical formulation. The 
significance of this new variant is that it requires an additional private key to provide a tighter 
scheme. Because of these changes, modified key generation, encryption and decryption algo-
rithms have been developed accordingly. The new variant is analyzed and tested against several 
well-known attacks, namely the alternate private key attack, brute force attack, meet-in-the-mid-
dle attack, multiple transmission attacks and lattice attack. Security properties related to these 
attacks have been established and explored to ensure the new variant is secure against the said 
attacks. Several examples are provided to illustrate the ideas. 
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1. Introduction 

Due to the rapid development of mobile phone networks and the internet, security plays a crucial role in maintaining the 
secrecy of information for either people or organizations (Abu-Ulbeh et al., 2021; Mughaid et al., 2022). It spurs the rising 
demand for applications with optimum security since it will ensure the confidentiality of information transmissions in the 
communication network (Otair, Ibrahim, Abualigah, Altalhi, & Sumari, 2022). Intensive research in the cryptography field 
has suggested that the best candidate for secure applications with cryptographic techniques is public-key cryptography (Imam, 
Areeb, Alturki, & Anwer, 2021; Prasadh, Ramar, & Gnanajeyaraman, 2009). Public-key cryptography, sometimes known as 
asymmetric cryptography, is any cryptographic system with two cryptographic keys, an encryption key, and a decryption key 
(Otair et al., 2022). An encryption key usually is called a public key that has been shared publicly, whereas a decryption key 
usually is called a private key that has been kept secret. These cryptographic keys are distributed in such a way as to ensure 
that the contents of the message not be interpreted by unauthorized users, and the message can be transmitted by the crypto-
graphic system securely where such a cryptographic system is so-called a public-key cryptosystem (Kalra & Sood, 2015; Xu, 
Dong, Ma, Liu, & Cliff, 2022). In public-key cryptography, the public-key cryptosystems are designed by manipulating the 
hardness of problems such as factorization problems, discrete logarithm problems, elliptic curves, discrete logarithm prob-
lems, and lattice problems (Huang, Zhou, Mi, Kuang, & Liu, 2022; Qin, Huang, & Fan, 2021). The reason is that the public 
key cryptosystems become infeasible to any practical means. Among these public key cryptosystems, the public key cryp-
tosystem associated with the lattice problems is the hardest to break in practice. This type of public key cryptosystem is 
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constructed using the idea when the encryption is within a particular lattice, and then the decryption is solved based on some 
lattice problems (Alshurideh & Kurdi, 2023; Jarah, Jarrah, Almomani, AlJarrah, & Al-Rashdan, 2023). There are several 
lattice-based public key cryptosystems, including the AD (Ajtai-Dwork) cryptosystem (Ajtai & Dwork, 1997), GGH 
(Goldreich-Goldwasser-Halevi) cryptosystem (Goldreich, Goldwasser, & Halevi, 1997), NTRU (N-th degree Truncated pol-
ynomial Ring Unit) cryptosystem (Jeffery Hoffstein, 1996), and LWE (Learning with Errors) cryptosystem (Regev, 2009). 

In order to offer effective protection via the Internet, security- and privacy-enhancing approaches are created (Kaaniche, 
Laurent, & Belguith, 2020). Using these methods, users should be able to communicate anonymously, whether by sending 
emails, making payments online, surfing the web, or posting to newsgroups. The most feasible method for obscuring messages 
and sender addresses is MixNet (Barsocchi et al., 2021). Numerous routing methods are contained in the anonymous channel 
and involve the transmission of anonymous data among nodes. This method of achieving anonymity is also the foundation of 
the MixNet structure. Following Chaumian MixNet's suggested work, several successful practical implementations of MixNet 
have been made thus far utilizing a variety of methodologies. In this paper (Ahmad, Kamal, Ahmad, Khari, & Crespo, 2021), 
the asymmetric NTRU cryptosystem-hybrid MixNet is proposed. They created a system for anonymous communication so 
that more individuals may participate in their safe conversation. It conceals how input and output are related in each Mix 
server step. Compared to Hybrid MixNet employing ElGamal and ECC, NTRU-based Hybrid MixNet performs better. Ac-
cording to the proposed system, Hybrid MixNet using NTRU operates on average 16.4 milliseconds faster than Hybrid 
MixNet utilizing ElGamal or ECC, which operate at 93.4 and 182.2 milliseconds faster, respectively. 

Asymmetric Cryptography makes information unintelligible to an unauthorized user and provides confidentiality to genuine 
users. Encryption and decryption technology are solutions to protect data from unauthorized users. Many opportunistic net-
work algorithms in the existing literature provide optimal performance. However, in this research work (Abouaroek & Ahmad, 
2021), the NTRU post-quantum algorithm is proposed due to its high performance, low cost, and fast execution during the 
encryption and decryption of the data over the network. We also implemented and analyzed the performance of the proposed 
NTRU algorithm and compared its results with the Elliptic Curve Cryptography and ElGamal algorithm. After the analysis, 
they concluded that our proposed technique is highly effective and secure. In opportunistic networks, the nodes communicate 
wirelessly with one another and transfer data using the store-carry-forward method. Opportunistic networks have heterogene-
ous nodes with various characteristics, including high mobility, low power, low density, short radio range, and multiple secu-
rity risks to unapproved nodes. To gain users' trust, the primary difficulty in an opportunistic network is to secure and safe-
guard the information during transmission. By merging the cryptographic methods that put the present world and the virtual 
world in a safer position, this problem is technically overcome. 

The NTRU public key cryptosystem is based on efficient calculations with negligible storage and temporal complexity (Yas-
sein, Al-Saidi, & Farhan, 2022). Many researchers were driven to enhance NTRU performance by substituting newly proposed 
algebraic structures for the original polynomial ring and mathematical structure (Gaubatz, Kaps, & Sunar, 2004). In this study 
(Salman & Yassein, 2022), a brand-new NTRU-analog cryptosystem dubbed QOBTRU is suggested, built on the Carternion 
algebra, a freshly created algebraic structure. In terms of computational and spatial complexity, QOBTRU is at least quadrat-
ically more complicated than the original NTRU. It aims to provide three selected highly performant multidimensional NTRU-
like cryptosystems—QTRU, OTRU, and BITRU—with an alternate security and performance attribute. Comparing them to 
QOBTRU revealed its advantages over them. To show its effectiveness, detailed statistical and security analysis is carried 
out. By fusing the well-known NTRU public-key cryptosystem with the analytical solution of group rings, the authors of this 
study suggest two brand-new public-key cryptosystems (Mittal, Kumar, & Kumar, 2021). They discuss the security evaluation 
of these cryptosystems and demonstrate how much more secure they are than the NTRU public-key cryptosystem. More 
specifically, they demonstrate that our new cryptosystems' security depends on resolving several challenging problems just 
recently identified, such as inverse computation difficulties and discrete logarithm problems in group rings. Talk about two 
instances to demonstrate how both cryptosystems' encryption and decryption processes work. NTRU cryptosystem is an en-
cryption algorithm that interprets the lattice in the form of convolution polynomial rings. Specifically, the ring of convolution 
(or truncated) polynomials of degree N – 1 with the integer coefficients defined as the quotient ring, which is as follows. 

𝑅 = ℤ 𝑋𝑋 − 1. (1) 

 
For moduli p and q, the ring of convolution (or truncated) polynomial N - 1 with the integer coefficients are defined as the 
quotient ring, which is as follows. 
 𝑅 = (ℤ 𝑝ℤ⁄ ) 𝑋𝑋 − 1 , (2) 

𝑅 = (ℤ 𝑞ℤ⁄ ) 𝑋𝑋 − 1 , (3) 
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1.1 Our Contribution 
 
This paper proposes an improved NTRU cryptosystem associated with the new private keys in the new spaces from the 
original NTRU cryptosystem. We use new private keys to generate a new public key, and modify the encryption and decryp-
tion to retrieve the message as the NTRU cryptosystem. Furthermore, we analyze the security of the proposed scheme by 
highlighting that our proposed scheme is secure against known attacks, such as the alternate private key attack, brute force 
attack, meet-in-the-middle attack, multiple transmission attack, and lattice attack. In addition, we compare the speed of the 
proposed scheme with the NTRU cryptosystem using the computational complexity based on the arithmetic operations. We 
also compare the security level of the private key and message for the proposed scheme and the NTRU cryptosystem.  
 
This paper is organized as follows: Section 2 gives an overview of NTRU cryptosystem and some fundamental concepts of 
the lattices. Section 3 introduces the proposed scheme, NTRU, with modified key generation, encryption, and decryption. 
Section 4 discusses the security analysis for some attacks on the proposed scheme and Section 5 compares the proposed 
scheme and the NTRU cryptosystem. Finally, Section 6 presents the conclusion.   

2. Materials and methods 

This section gives an overview of NTRU cryptosystem and recalls some fundamental knowledge on the short vectors in 
lattices that are required by some results in this paper. 
 

2.1   NTRU Cryptosystem 

Consider the following parameters and spaces. 

Table 1 
Parameters for NTRU 

Parameter Description 𝑁 The dimension of 𝑅 𝑝 The small modulus to which each reduced coefficient 𝑞 The large modulus to which each reduced coefficient 𝑑  The number of coefficients of polynomial 𝑓 𝑑  The number of coefficients of polynomial 𝑔 𝑑 The number of coefficients of polynomial 𝜙 
 
Table 2  
Spaces for NTRU 

Space Description ℒ  The set of polynomials in 𝑅 having 𝑑  1s and 𝑑 -1 -1s.  ℒ  The set of polynomials in 𝑅 having 𝑑  1s and 𝑑  -1s.  ℒ  The set of polynomials in 𝑅 having 𝑑 1s and 𝑑 -1s. ℒ  The set of polynomials in 𝑅 having coefficients lying between − (𝑝 − 1) and (𝑝 − 1) if 𝑝 is odd or coeffi-
cients lying between  −  and   if  𝑝 is even. 

 
The NTRU cryptosystem is constructed as follows (Sever & Özdemir, 2021). 

Key Generation  

i. Choose a polynomial 𝑓(𝑋) ∈ ℒ  such that 𝑓 is invertible and satisfying the following: 𝑓(𝑋) ∗ 𝑓 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞) (4) 𝑓(𝑋) ∗  𝑓 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑝). (5) 

ii. Choose a polynomial 𝑔(𝑋) ∈ ℒ . 
iii. Compute a polynomial ℎ(𝑋) = 𝑓 (𝑋) ∗ 𝑔(𝑋)   (𝑚𝑜𝑑 𝑞). 

 

The private key is the pair (𝑓, 𝑓 ) and the public key is a polynomial ℎ. 

Encryption 

Bob wants to send a message to Alice. He converts the message into the encrypted message using Alice’s public key. 
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i. Represent plaintext as a polynomial 𝑚(𝑋) ∈ ℒ . 
ii. Choose randomly a polynomial 𝜙(𝑋) ∈ ℒ . 

iii. Compute ciphertext as a polynomial 𝑒(𝑋) ≡ 𝑝𝜙(𝑋) ∗ ℎ(𝑋) + 𝑚(𝑋)   (𝑚𝑜𝑑 𝑞). 
 

Then Bob sends the ciphertext 𝑒 to Alice. 

Decryption 

Alice wants to decrypt the encrypted message received from Bob. She retrieves message from the encrypted message using 
her private key as follows. 

i. Compute temporary polynomial 𝑎(𝑋) ≡ 𝑓(𝑋) ∗ 𝑒(𝑋)   (𝑚𝑜𝑑 𝑞). 
ii. Center-lift 𝑎 from 𝑅  to 𝑅. 

iii. Compute polynomial 𝑏(𝑋) ≡ 𝑓 (𝑋) ∗ 𝑎(𝑋)   (𝑚𝑜𝑑 𝑝). 
iv. Center-lift 𝑏 from 𝑅  to 𝑅. 

 

Then Alice retrieves the message.  

2.2   Gaussian Expected Shortest Length 
 
The following Gaussian heuristic is required to compute the length of a shortest nonzero vector in a lattice ℒ. 
 
Definition 1: Let ℒ be a lattice of dimension n (Jeffrey Hoffstein, Pipher, Silverman, & Silverman, 2008). The Gaussian 
expected shortest length is calculated as follows. 
 𝜎(ℒ) = 𝑛 2𝜋𝑒 (detℒ) / . (6) 

 
The Gaussian heuristic says that a shortest nonzero vector in a “randomly chosen lattice” will satisfy, which is presented as 
follows. 
 ‖𝑣 ‖ ≈ 𝜎( ℒ). (7) 
 
2.3   Hermite Theorem 
 

The following Hermite theorem is required to estimate the length of a shortest nonzero vector in a lattice ℒ (Jeffrey Hoffstein 
et al., 2008). 

Theorem 1: Every lattice ℒ of dimension n contains a nonzero vector 𝑣 ∈ ℒ satisfying ‖𝑣‖ ≤ √𝑛 (det(ℒ)) ⁄  . 
3. The proposed method 

Remarkably, all private keys in the proposed scheme chosen to be invertible in 𝑅  (or 𝑅 ). This condition is needed in gener-
ating the public key and the decryption process. Thus, all private keys must not be in ℒ(𝑑 ,𝑑 ) because the elements 
in ℒ(𝑑 ,𝑑 ) never have inverses in 𝑅  (or 𝑅 ). The following result will show that elements in ℒ(𝑑 ,𝑑 ) is not invertible 
in 𝑅  (or 𝑅 ). 

 
Proposition 1 For any positive integers 𝑑  and 𝑑 , let ℒ(𝑑 ,𝑑 ) ⊂ (ℤ 𝑞ℤ⁄ ) 𝑋  where 𝑞 is a prime. If 𝑓(𝑥) in ℒ(𝑑 ,𝑑 ), then 𝑓(1) ≡ 0  (𝑚𝑜𝑑  𝑞). Therefore, 𝑓(𝑥) is not invertible in 𝑅 . 
 
Proof. Suppose that 𝑓(𝑥) in ℒ(𝑑 ,𝑑 ) and 𝑥 − 1 is a factor of 𝑓(𝑥). Then 𝑓(𝑥) = (𝑥 − 1)𝑎(𝑥) for some 𝑎(𝑥). Thus, 𝑓(1) ≡(1 − 1)𝑎(1)   (𝑚𝑜𝑑  𝑞) = 0   (𝑚𝑜𝑑  𝑞), 
where 1 is a root of 𝑓(𝑥). 
 
It is known that 𝑓(𝑥) in (ℤ 𝑞ℤ⁄ ) 𝑋  has an inverse if 𝑓(𝑥) is coprime to 𝑞. By definition,  𝑓(𝑥) and 𝑞 are coprime 
if gcd(𝑓(𝑥), 𝑞) = 1. So, there are 𝑎(𝑥), 𝑏(𝑥) in (ℤ 𝑞ℤ⁄ ) 𝑋  such that 𝑓(𝑥)𝑎(𝑥) + 𝑞𝑏(𝑥) = 1. 

 
Then, 𝑓(𝑥)𝑎(𝑥) = 1 − 𝑞𝑏(𝑥), that is, 𝑓(𝑥)𝑎(𝑥) = 1  (𝑚𝑜𝑑  𝑞). Use the fact that 1 is a root of 𝑓(𝑥) in the latter equation 
yields 0  (𝑚𝑜𝑑  𝑞) ≡ 𝑓(1)𝑎(1) ≡ 1   (𝑚𝑜𝑑  𝑞). 
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This contradiction shows that 𝑓(𝑥) is not coprime to 𝑞, and 𝑓(𝑥) in ℒ(𝑑 ,𝑑 ) has no inverse in  (ℤ 𝑞ℤ⁄ ) 𝑋 . Therefore, 𝑓(𝑥) 
is not invertible in 𝑅 .  

 
Furthermore, there is an important method is applied on the polynomials in the decryption process. This method is used to 
lifting the coefficients of polynomial in 𝑅  (or 𝑅 ) to R as follows. 

 
Proposition 2 Let 𝑐(𝑥) is in  𝑅  and 𝑐 (𝑥) is the center-lift of  𝑐(𝑥) to 𝑅. If any coefficients  𝑐  within the interval  − < 𝑐 ≤
, then 𝑐 = 𝑐 . For any coefficient 𝑐 < − , then 𝑐 = 𝑐 + 𝑞 .  For any coefficient 𝑐 > , then 𝑐 = 𝑐 − 𝑞. Therefore, all the 

coefficients of 𝑐 (𝑥) are in the interval − < 𝑐 ≤ .   
 
Proof. Let 𝑐(𝑥) has a representation of the form ∑ 𝑐 𝑥   𝑚𝑜𝑑 𝑞. Center-lifting 𝑐(𝑥) yields 𝑐 (𝑥) with all the coefficients 
of 𝑐(𝑥) are chosen within the interval − < 𝑐 ≤ . For any coefficient 𝑐  that already in the interval − < 𝑐 ≤ , the co-
efficients of 𝑐 (𝑥) are exactly in the interval − < 𝑐 ≤ . 
 
For any coefficient 𝑐 < − , it shows that the coefficient 𝑐  is not in the interval − < 𝑐 ≤ .  
To ensure the coefficients 𝑐  is in the interval − < 𝑐 ≤ , let calculate the difference from −  to 𝑐 , and then minus  with 

the difference from −  to 𝑐 . Thus, the coefficients of 𝑐 (𝑥) is − − − 𝑐 . Simplifying this yield 𝑐 = 𝑐 + 𝑞. 
 

Similarly, for any coefficient 𝑐 > , it also shows that the coefficient 𝑐  is not in the interval − < 𝑐 ≤ . To ensure the 
coefficients 𝑐  is in the interval − < 𝑐 ≤ , let calculate the difference from 𝑐  to , and then add −  with the difference 

from 𝑐  to . Thus, the coefficients of 𝑐 (𝑥) is − + 𝑐 − . Simplifying this yield 𝑐 = 𝑐 − 𝑞. Now, all the coefficients 
of 𝑐 (𝑥) are in the interval − < 𝑐 ≤ . 
 

3.1 The Construction of the Proposed Scheme 

This proposed scheme assumes the same parameters as per table 1 in Section 2.1 except for the parameter 𝑑 . There are a few 
new parameters such as the parameters 𝑑  and 𝑑 . This proposed scheme also assumes the same spaces as per table 2 in 
Section 2.1 except for the space ℒ . There are a few new spaces, including ℒ = ℒ(𝑑 ,𝑑 + 1), and ℒ = ℒ(𝑑 + 1,𝑑 ). 
Therefore, the proposed scheme is constructed as follows. 

Key Generation 

i. Choose the polynomial 𝑓(𝑋) ∈ ℒ  such that 𝑓 is invertible and satisfying 𝑓(𝑋) ∗ 𝑓 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞), 
ii. Choose the polynomial 𝑟(𝑋) ∈ ℒ  such that 𝑟 is invertible and satisfying  𝑟(𝑋) ∗ 𝑟 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑝), 

iii. Choose the polynomial 𝑠(𝑋) ∈ ℒ  such that 𝑠 is invertible and satisfying  𝑠(𝑋) ∗ 𝑠 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞), 
iv. Compute a polynomial 𝒽(𝑋) = 𝑓 (𝑋) ∗ 𝑟(𝑋) ∗ 𝑠 (𝑋)  (𝑚𝑜𝑑 𝑞). 

 
The private key is the triple (𝑓, 𝑠, 𝑟 ) and the public key is the polynomial 𝒽. 

Encryption 
 

Bob wants to send a message to Alice. He converts the message becomes the encrypted message using Alice’s public key as 
follows. 

i. Represent plaintext as a polynomial  𝑚(𝑋) ∈ ℒ . 
ii. Choose randomly a polynomial  𝜙(𝑋) ∈ ℒ . 

iii. Compute ciphertext as a polynomial 𝑒(𝑋) ≡ 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝒽(𝑋)   (𝑚𝑜𝑑 𝑞) 

Then Bob sends the ciphertext 𝑒 to Alice. 

Decryption 

Alice wants to decrypt the encrypted message received from Bob. She retrieves message from the encrypted message using 
her private keys as follows. 



 770 

i. Compute a polynomial 𝑎(𝑋) ≡ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝑒(𝑋)   (𝑚𝑜𝑑 𝑞) 
ii. Center-lift 𝑎 from 𝑅  to 𝑅.  

iii. Compute a polynomial 𝑏(𝑋) ≡ 𝑟 (𝑋) ∗ 𝑎(𝑋)   (𝑚𝑜𝑑 𝑝) 
iv. Center- lift 𝑏 from 𝑅  to 𝑅. 

 

Then Alice retrieves the message. 

Proof of Correctness 

Proposition 3 The proposed decryption scheme is correct. 

Proof. To decrypt the ciphertext decrypt the ciphertext 𝑒 to plaintext 𝑚, the private keys 𝑓, 𝑟 and  𝑠 will be used. Observe the 
temporary polynomial 𝑎 defined as follows. 𝑎(𝑋) ≡ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝑒(𝑋)     (𝑚𝑜𝑑 𝑞) (8) 

Using the encrypted message 𝑒(𝑋) = 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝒽(𝑋) with the public key 𝒽(𝑋) ≡ 𝑓 (𝑋) ∗ 𝑟(𝑋) ∗ 𝑠 (𝑋) in (1) 
gives 𝑎(𝑋) ≡ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝑓 (𝑋) ∗ 𝑟(𝑋) ∗ 𝑠 (𝑋)    (𝑚𝑜𝑑 𝑞). It is known that private keys 𝑓 and 𝑠 
satisfied the condition  𝑓(𝑋) ∗ 𝑓 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞) and  𝑠(𝑋) ∗ 𝑠 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞) respectively. Now, the latter ine-
quality becomes as follows. 𝑎(𝑋) ≡ 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋)    (𝑚𝑜𝑑 𝑞) (9) 

Since the parameter 𝑝 is a small modulus, and the polynomial 𝜙,𝑚 and 𝑟 all have small coefficients compare to 𝑞, then all 
coefficients of  𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) lies in the interval (−𝑞/2, 𝑞/2]. 
To retrieve the message 𝑚, multiply the inverse of private key 𝑟 with Eq. (9) produces 𝑏(𝑋) ≡ 𝑝𝜙(𝑋) +𝑚(𝑋)    (𝑚𝑜𝑑 𝑝) since the private keys 𝑟 is invertible and satisfies the condition 𝑟(𝑋) ∗ 𝑟 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑝). Then, solve 
a polynomial 𝑏 in modulo 𝑝 yields. 𝑏(𝑋) ≡ 𝑚(𝑋)    (𝑚𝑜𝑑 𝑝) (10) 

Because 𝑝𝜙(𝑋) ≡ 0  (𝑚𝑜𝑑 𝑝). From eq. (10), it shown that the polynomial 𝑚 is in modulo 𝑝 and this implies that all coeffi-
cients of 𝑚 lies in the interval (−𝑝/2,𝑝/2]. Therefore, the plaintext 𝑚 is exactly retrieved. 

Proposition 4 If the proposed parameter  (𝑝, 𝑞,𝑑,𝑑 ) are chosen to satisfy  (2𝑑 + 4𝑑 + 3)𝑝 < 𝑞, then the polynomial  𝑎(𝑋) 
computed by Alice is equal to Bob’s plaintext  𝑚(𝑋). 

Proof. First let find out the shape of Alice’s basis calculation of 𝑎(𝑋), that is, 𝑎(𝑋) ≡ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝑒(𝑋)     (𝑚𝑜𝑑 𝑞) ≡𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋)    (𝑚𝑜𝑑 𝑞) and ≡ 𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋)    (𝑚𝑜𝑑 𝑞), which shows that the polynomial  𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) is in 𝑅 .  

This implies that the magnitude of the polynomial  𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) is strictly less than 𝑞/2 where all the indi-
vidual coefficient in the polynomial  𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) have their own magnitudes largest possible coefficient. 

Now, consider the polynomial  𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) is in 𝑅 and let check the bound for its individual largest possible 
coefficient. First, the largest possible coefficient of  𝜙(𝑋) ∗ 𝑟(𝑋) is  𝑑 + 𝑑 + 1 since the polynomial  𝜙(𝑋) is in  ℒ(𝑑,𝑑) and  𝑟(𝑋) is in  ℒ(𝑑 ,𝑑 + 1).  

Next, the largest possible coefficient of 𝑚(𝑋) ∗ 𝑟(𝑋) is  ∙ (2𝑑 + 1) since the polynomial 𝑚(𝑋) is in ℒ  and 𝑟(𝑋) is 
in ℒ(𝑑 ,𝑑 + 1). To ensure the polynomial 𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) computed exactly in 𝑅, all coefficients of the pol-
ynomial 𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) is strictly smaller than 𝑞/2. In other words, the magnitude of all coefficients of the 
polynomial  𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋) is   𝑝 ∙ (𝑑 + 𝑑 + 1) + ∙ (2𝑑 + 1) <  or  (2𝑑 + 4𝑑 + 3)𝑝 < 𝑞. This condition ensures the polynomial  𝑝𝜙(𝑋) ∗ 𝑟(𝑋) +𝑚(𝑋) ∗ 𝑟(𝑋) or the polynomial  𝑎(𝑋) computed by Alice is exactly in 𝑅.  
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Hence, Alice computes the polynomial  𝑏(𝑋) modulo 𝑝 yields 𝑏(𝑋) ≡ 𝑚(𝑋)    (𝑚𝑜𝑑 𝑝). Since the polynomial 𝑚(𝑋) is in 𝑅 , 
then by Proposition 2, Alice will be able to obtain the polynomial 𝑚(𝑋) exactly in 𝑅, in which is the same as Bob’s plaintext  𝑚(𝑋) in 𝑅. Therefore, the polynomial 𝑎(𝑋) computed by Alice is equal to Bob’s plaintext  𝑚(𝑋). 

Numerical Illustration of the Proposed Scheme 
 
Consider the parameter 𝑁,𝑝,𝑞,𝑑 ,𝑑 ,𝑑 ,𝑑  = (7,3,47,2,2,2,2) and the following polynomials 𝑓(𝑋) = 𝑋 − 𝑋 + 1 ∈ℒ(2,1), 𝑟(𝑋) = 𝑋 + 𝑋 − 𝑋 − 𝑋 − 1 ∈ ℒ(2,3), 
 𝑠(𝑋) = 𝑋 − 𝑋 + 𝑋 + 𝑋 − 1 ∈ ℒ(3,2), The decryption will work since 45 = (2𝑑 + 4𝑑 + 3)𝑝 < 𝑞 = 47. Then Bob 
computes the inverses of the private key 𝑓, 𝑟 and 𝑠, and the public key ℎ as follows. 
 𝑓 (𝑋) = 46𝑋 + 𝑋 + 46𝑋 + 𝑋 + 1 ∈ 𝑅 , (11) 𝑟 (𝑋) = 𝑋 + 2𝑋 + 2 ∈ 𝑅 , (12) 𝑠 (𝑋) = 10𝑋 + 46𝑋 + 33𝑋 + 12𝑋 + 27𝑋 + 9𝑋 + 5 ∈ 𝑅 , (13) 𝒽(𝑋) ≡ 7𝑋 + 18𝑋 + 10𝑋 + 19𝑋 + 44𝑋 + 18𝑋 + 24   (𝑚𝑜𝑑 47) (14) 
 
Then, Alice chooses message 𝑚 as follows. 
 𝑚(𝑋) = 𝑋 + 𝑋 − 𝑋 − 𝑋 + 1 ∈ ℒ  , 

 
(15) 

 
and the random polynomial 𝜙 as follows. 
 𝜙(𝑋) = 𝑋 + 𝑋 − 𝑋 − 1 ∈ ℒ(2,2). 

 
(16) 

 
By using those together with the public key ℎ, she calculates an encrypted message 𝑒 as 
 𝑒(𝑋) ≡ 33𝑋 + 7𝑋 + 42𝑋 + 25𝑋 + 28𝑋 + 39𝑋 + 13   (𝑚𝑜𝑑 47). Then she sends the encrypted message 𝑒 to Bob.  
Now, Bob receives the encrypted message 𝑒 from Alice. Next, Bob calculates the temporary polynomial 𝑎 using a private 
key 𝑓 and 𝑠. The calculation of 𝑎 yields 𝑎(𝑋) ≡ 38𝑋 + 43𝑋 + 4𝑋 + 12𝑋 + 8𝑋 + 44𝑋 + 38    (𝑚𝑜𝑑 47) and center-
lifting it modulo 47 with the coefficients are chosen from −23,−22, … ,22,23  gives 𝑎(𝑋) = −9𝑋 − 4𝑋 + 4𝑋 + 12𝑋 +8𝑋 − 3𝑋 − 9. Finally, Bob can retrieve the message 𝑚 by multiplying the inverse 𝑟 with 𝑎 as follows. 
 𝑟 (𝑋) ∗ 𝑎(𝑋) ≡ 𝑋 + 𝑋 + 2𝑋 + 2𝑋 + 1    (𝑚𝑜𝑑 3) 

 
(17) 

and then center-lifting it modulo 3 with the coefficients are chosen from −1,0,1  as follows. 
 𝑋 + 𝑋 − 𝑋 − 𝑋 + 1 = 𝑚(𝑋). 

 
(18) 

3.2   The Algorithm of the Proposed Scheme 

The following algorithms illustrated the key generation, encryption, and decryption of the proposed scheme. 
 

Algorithm 1 Keys Generation 
Input: 𝑁, 𝑝, 𝑞,𝑑 ,𝑑 ,𝑑 ∈ 𝑁 
Output: Private key 𝑓, Private key 𝑟, Private key 𝑠, Public key 𝒽 
1: repeat 
2: 𝑓 ← ℒ 𝑑 ,𝑑 − 1  
3: until 𝑓 is invertible in modulo 𝑞 
4: repeat  
5: 𝑟 ← ℒ(𝑑 ,𝑑 + 1) 
6: until 𝑟 is invertible in modulo 𝑝 
7: repeat 
8: 𝑠 ← ℒ(𝑑 + 1,𝑑 ) 
9: until 𝑠 is invertible in modulo 𝑞 
10: Compute 𝒽(𝑋) ≡ 𝑓 (𝑋) ∗ 𝑟(𝑋) ∗ 𝑠 (𝑋)   (𝑚𝑜𝑑 𝑞) 
11: return Private key ← 𝑓, Private key ← 𝑟, Private key ← 𝑠, Public key ← 𝒽 
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Algorithm 2 Encryption 

Input: 𝑝, 𝑞,𝑑 ∈ 𝑁, Public key 𝒽 

Output: Ciphertext 𝑒 

1: repeat 
2: 𝑚 ← ℒ  
3: until the coefficients of 𝑚 are  − (𝑝 − 1), (𝑝 − 1) or 0 
4: repeat 
5:  𝜙 ← ℒ(𝑑,𝑑) 
6: until the number of +1 and −1 in 𝜙 are each equal to 𝑑  
7: Compute 
        𝑒(𝑋) ≡ 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) 
8: return Ciphertext ← 𝑒 

 
 

Algorithm 3 Decryption 

Input: 𝑝, 𝑞 ∈ 𝑁, Private key 𝑓, Private key 𝑟, Private key 𝑠, Ciphertext 𝑒 

Output: Plaintext (or message) 𝑚  

1: Compute 𝑎(𝑋) ≡ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝑒(𝑋)     (𝑚𝑜𝑑 𝑋 − 1,𝑚𝑜𝑑 𝑞) 
2: Compute 𝑎 (𝑋) = Center-lift of 𝑎(𝑋)  
3: for 𝑖 = 0 to 𝑁 − 1 do 
4:        a'(X) where its coefficients within the  

       interval: − < 𝑎 ≤  
5:        if the coefficient 𝑎 < −  then 
6:                a' = a + q   
7:         else if the coefficient 𝑎 >  then 
8:               a' = a -q   
9:          else  
10:               𝑎 = 𝑎  
11:          end if     
12:  end for 
13:  Compute b(X) = r- (X)*a'(X)    (mod p) 
14:  Compute 𝑏 (𝑋) =Center-lift of 𝑏(𝑋) 
15: for  i = 0 to N-1 do 
16:       𝑏 (𝑋) where its coefficients within the  

      interval:   - < b' ≤  
17:          if the coefficient  𝑏 < −  then 
18:                 b' = b + p  
19:         else if  𝑏 >  then 
20:                 b' = b -p  
21:          else  
22:                b' = b  
23:          end if     
24: end for 
25: Obtain  b'(X) = m(X) 
26:  return Plaintext ← 𝑚 

 

4. Security analysis 

The security of the proposed scheme depends on well-known attacks such as the alternate keys attack, brute force attack, 
meet-in-the-middle attack, multiple transmission attacks and lattice attack. Note that the relationship 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋) ≡𝑟(𝑋)   (𝑚𝑜𝑑 𝑞), will be used in most attacks against the proposed scheme.  

4.1  Alternate Private Key Attack 

The alternate private keys attack is introduced by (Al-Saidi & Yassein, 2017), and this attack can find an alternate private key 
that has the same characteristics as the private key to decrypt the same message. The following definition defines an alternate 
private key. 

Definition 2: An alternate private key, denoted as 𝑓  is a rotation of the private key 𝑓, that is 𝑓 = 𝑋 ∗ 𝑓(𝑋) for some positive 
integer 𝑖. 
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The above definition will be used in the result below. 

Theorem 2. The proposed scheme is secure against alternate private keys attack.  

Proof. By Definition 2, let 𝑓 (𝑋) = 𝑋 ∗ 𝑓(𝑋) is any rotation of the private key 𝑓 and 𝑠 (𝑋) = 𝑋 ∗ 𝑠(𝑋) is any rotation of 
the private key 𝑠. It is known that 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ ℎ(𝑋) ≡ 𝑟(𝑋)   (𝑚𝑜𝑑 𝑞), then 𝑋 ∗ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋) ≡ 𝑋 ∗𝑟(𝑋)   (𝑚𝑜𝑑 𝑞). 

Let 𝑟 (𝑋) = 𝑋 ∗ 𝑟(𝑋) be any corresponding rotation of private key 𝑟. Thus, the latter inequality be expressed as 𝑓 (𝑋) ∗𝑠(𝑋) ∗ 𝒽(𝑋) ≡ 𝑟 (𝑋)   (𝑚𝑜𝑑 𝑞). Again, 𝑋 ∗ 𝑓 (𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋) ≡ 𝑋 ∗ 𝑟 (𝑋)   (𝑚𝑜𝑑 𝑞) and this gives 𝑓 (𝑋) ∗ 𝑠 (𝑋) ∗𝒽(𝑋) ≡ 𝑋 ∗ 𝑟 (𝑋)   (𝑚𝑜𝑑 𝑞). 
Assume that 𝑎  be an alternate temporary polynomial 𝑎, that is, 𝑎 (𝑋) = 𝑋 ∗ 𝑎(𝑋). To decrypt the message, calculate  𝑎 (𝑋) ≡ 𝑓 (𝑋) ∗ 𝑠 (𝑋) ∗ 𝑒(𝑋)   (𝑚𝑜𝑑 𝑞), then 𝑎 (𝑋) ≡ 𝑋 ∗ 𝑓(𝑋) ∗ 𝑋 ∗ 𝑠(𝑋) ∗ 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝒽(𝑋)     (𝑚𝑜𝑑 𝑞) 

          ≡ 𝑋 ∗ 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝑝𝜙(𝑋) + 𝑚(𝑋) ∗ 𝑓 (𝑋) ∗ 𝑠 (𝑋) ∗ 𝑟(𝑋)     (𝑚𝑜𝑑 𝑞) 

Using  𝑓(𝑋) ∗ 𝑓 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞) and  𝑠(𝑋) ∗ 𝑠 (𝑋) ≡ 1   (𝑚𝑜𝑑 𝑞) in the above equation yields, 

 𝑎 (𝑋) ≡  𝑋 ∗ 𝑝𝜙(𝑋) ∗ 𝑟(𝑋) + 𝑚(𝑋) ∗ 𝑟(𝑋)     (𝑚𝑜𝑑 𝑞) ≡ 𝑋 ∗ 𝑎(𝑋)    (𝑚𝑜𝑑 𝑞). 
This contradicts the assumption that  𝑎 (𝑋) = 𝑋 ∗ 𝑎(𝑋), and this shows that  𝑎  is not an alternate temporary polynomial 𝑎. 
Hence, this concludes that  𝑓  and 𝑠  cannot be used to decrypt the same messages as the private keys  𝑓 and  𝑠. Therefore, the 
proposed scheme is secure against alternate private keys attack. 

4.2 Brute Force Attack 

The brute force attack is proposed by (Jeffrey Hoffstein, Pipher, & Silverman, 1998), and this attack against the proposed 
scheme uses the number of elements in the search spaces to find the private keys and the message. The following definition 
defines the number of elements in the search space that will be used in this brute force attack. 

 
Definition 3: Let 𝑁 be the degree of polynomial, 𝑑  be the numbers of coefficients equal to 1, and 𝑑  be the numbers of 
coefficients equal to -1. Then the number of elements in the search space is defined by the following equation. 
 #ℒ(𝑑 ,𝑑 ) = 𝑁𝑑 𝑁 − 𝑑𝑑  

 

(19) 

 
where 𝑁,𝑑 , and 𝑑  are some positive integers. 
 
In the NTRU cryptosystem, #ℒ  has been used to determine its key security instead of  #ℒ  because space ℒ  is smaller than 
the space ℒ . For the same reason, the proposed scheme will use #ℒ  to determine the key security instead of  #ℒ  and  #ℒ , 
and will use  #ℒ  to determine the message security. 
 
Theorem 3: The proposed scheme is secure against brute force attack. 
 
Proof. Assume that an attacker who knows the public key ℎ can find the private keys and an attacker who knows the encrypted 
message 𝑒 can recover the message.  
 
To find the private keys, an attacker can check 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) has small coefficients compared to 𝑞 or not by 
trying all possible 𝑓 ∈ ℒ 𝑑 ,𝑑 − 1  and all possible  𝑠 ∈ ℒ(𝑑 + 1,𝑑 ). Or an attacker can check  𝑟(𝑋) ∗ 𝑓 (𝑋) ∗𝒽 (𝑋)  (𝑚𝑜𝑑 𝑞) has small coefficients compared to 𝑞 or not by trying all possible  𝑟 ∈ ℒ(𝑑 ,𝑑 + 1) and also all possible  𝑓 ∈ ℒ 𝑑 ,𝑑 − 1 . Or an attacker can check  𝑟(𝑋) ∗ 𝑠 (𝑋) ∗ 𝒽 (𝑋)  (𝑚𝑜𝑑 𝑞) has small coefficients compared to 𝑞 or not 
by trying all possible  𝑟 ∈ ℒ(𝑑 ,𝑑 + 1) and also all possible  𝑠 ∈ ℒ(𝑑 + 1,𝑑 ).  
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Thus, the number of elements in the search space for the private keys 𝑓, 𝑠 and 𝑟 are given by #ℒ = #ℒ 𝑑 ,𝑑 − 1 =𝑁𝑑 𝑁 − 𝑑𝑑 − 1 = ! ! !  , #ℒ = #ℒ(𝑑 + 1,𝑑 ) = 𝑁𝑑 + 1 𝑁 − 𝑑 − 1𝑑 = !( )( )!( !)  , and #ℒ = #ℒ(𝑑 ,𝑑 + 1) = 𝑁𝑑 𝑁 − 𝑑𝑑 + 1 = !( )( )!( !)  , respectively. Since the space ℒ  is smaller than the 

space ℒ  and ℒ , then #ℒ  will be used to determine the key security.  
 
To recover the message, an attacker can check 𝑒(𝑋) ∗ 𝒽 (𝑋) − 𝑝𝜙(𝑋)  (𝑚𝑜𝑑 𝑞) has small coefficients compared to 𝑞 or not 
by trying all possible 𝜙 ∈ ℒ(𝑑,𝑑). Thus, the number of elements in the search space for the random polynomial 𝜙 is given by #ℒ = #ℒ(𝑑,𝑑) = 𝑁𝑑 𝑁 − 𝑑𝑑 = !( )!( !)  , and this  #ℒ  will be used to determine the message security. 
 
From the fact above, #ℒ  will represent the search time for finding the private keys and #ℒ  will represent the search time 
for finding the message. For sufficiently large 𝑁, #ℒ  and #ℒ  will produce a considerably long search time for finding the 
private keys and recovering the message respectively. When the search time is elongate, the brute force attack is difficult and 
infeasible to find the private key and recover the message, and this contradict our assumption. Therefore, the proposed scheme 
is secure against brute force attack. 

 
The following table illustrates the comparison between the NTRU cryptosystem and the proposed scheme based on the list 
parameters used in (Jeffrey Hoffstein et al., 1998). 
 
Table 3  
The Number of Elements in The Search Space for The Private Keys and The Message. 

 
4.3  Meet-In-The-Middle Attack 
 
The meet-in-the-middle attack was first investigated by (Howgrave-Graham, 2007) based on the original meet-in-the-middle 
attack by Andrew Odlyzko, which applied to an encrypted message 𝑒 against a random polynomial 𝜙. Then, the NTRU cryp-
tosystem  applied a similar attack as in (van Vredendaal, 2016) on the private key 𝑓. Here, the meet-in-the-middle-attack is 
applied to the private keys 𝑓 and 𝑠. 

The following steps described the meet-in-the-middle attack for the proposed scheme. 

1) Enumerate the polynomial  𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) . 
Assume that 𝑁 > 𝑘 where 𝑁 is odd number and  𝑘 is a positive integer. Let 𝑓(𝑋) = 𝑓 (𝑋) + 𝑓 (𝑋) or 𝑓(𝑋) =∑ 𝑎 𝑋( )⁄ + ∑ 𝑎 𝑋( )⁄ , and 𝑠(𝑋) = 𝑠 (𝑋) + 𝑠 (𝑋) or 𝑠(𝑋) = ∑ 𝑏 𝑋( )⁄ + ∑ 𝑏 𝑋( )⁄ , respec-
tively.  

Compute (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) and convert into a binary representation based on the most 
significant bit of the first 𝑘 coordinates of (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞). To obtain the binary rep-
resentation of the first  𝑘 coefficients of (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞), take each of such first 𝑘 
coefficients and convert it into binary numbers. Then take the leading bit of each binary number to form the bin labeled 
for the polynomial (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞). 

2) Enumerate the polynomial 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) . Compute −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) and convert −(𝑓 (𝑋) ∗ 𝑠 (𝑋) +𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) into a binary representation based on 
the most significant bit of the first 𝑘 coordinates of   − 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) as well as a binary representation based on the most significant bit 
of the first 𝑘 coordinates of −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) with addition 1s and -1s on it. To obtain 
these binary representations, take each such first 𝑘 coefficients and converts it to binary number. Then take the leading 
bit of each binary number to form the bin labeled for the polynomial −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗𝒽(𝑋)  (𝑚𝑜𝑑 𝑞). Next, take the leading bit of each binary number which has been added 1s and -1s on it to form the list 
of the bin labeled for the polynomial −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞).   
 

 

𝑁 𝑞 𝑑  𝑑  𝑑 NTRU [HPS 98] Proposed scheme #ℒ  #ℒ  #ℒ  #ℒ  
107 64 15 12 5 1.4 × 10  8.9 × 10  9.5 × 10  8.9 × 10  
167 128 61 20 18 8.4 × 10  4.3 × 10  6.4 × 10  4.3 × 10  
503 256 216 72 55 3.7 × 10  2.3 × 10  5.4 × 10  2.3 × 10  
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Check the matches for the bin labeled for the polynomial (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) against the 
bin labeled for the polynomial −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) together with all the lists of the bin 
labeled for the polynomial −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞). If the matches having the same bit, 
then 𝑓 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑠 (𝑋)  can be the private keys. 

Theorem 4: The proposed scheme is secure against meet-in-the-middle attack. 

Proof. Assume that the meet-in-the-middle attacks can be used to find the private key 𝑓 and 𝑠. Let the private key 𝑓 and 𝑠 
defined by  𝑓(𝑋) = 𝑓 (𝑋) + 𝑓 (𝑋) and  𝑠(𝑋) = 𝑠 (𝑋) + 𝑠 (𝑋) respectively. It is known that 𝑓(𝑋) ∗  𝑠(𝑋) ∗ 𝒽(𝑋) ≡ 𝑟(𝑋)   (𝑚𝑜𝑑 𝑞), then (𝑓 (𝑋) + 𝑓 (𝑋)) ∗ (𝑠 (𝑋) + 𝑠 (𝑋)) ∗ 𝒽(𝑋) ≡ 𝑟(𝑋)  (𝑚𝑜𝑑 𝑞). Expanding the above equation yields 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) ∗ 𝒽(𝑋) ≡ 𝑟(𝑋) − 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞). Since 𝑟 is ternary 
polynomial, this means that the coefficients of (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) and −(𝑓 (𝑋) ∗ 𝑠 (𝑋) +𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) will be either −1, 0 or 1 modulo 𝑞. Using the meet-in-the middle attack, obtain the matches (𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) against −(𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋)) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞). When the 
matches have the same bit, it shows that the inequalities 𝑓 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑠 (𝑋) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞), has small co-
efficients and thus  𝑓 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑠 (𝑋)  can be a private key. For a sufficiently large 𝑁, it is difficult to obtain 
the same bit for  𝑓 (𝑋) ∗ 𝑠 (𝑋) + 𝑓 (𝑋) ∗ 𝑠 (𝑋) . Thus, the private keys 𝑓 and 𝑠 cannot be found and this contradict our 
assumption that the meet-in-the middle attack would be able to find the private keys 𝑓 and 𝑠. Therefore, the proposed scheme 
is secure against meet-in-the-middle attack. 

In addition, the meet-in-the-middle attack also manages to reduce the search time using #ℒ  and #ℒ  from the brute force 
attack, as follows. KeySecurity = #ℒ = 1𝑑 − 1 ! 𝑁!𝑑 𝑁 − 2𝑑 + 1 ! , (20) 

MessageSecurity = #ℒ = 1𝑑! 𝑁!(𝑁 − 2𝑑)! . (21) 

Note that the search time is reduced by squaring root #ℒ  and  #ℒ  to obtain the key and message security for the proposed 
scheme. Thus, the following table will give the security level of the keys and message for the proposed scheme using the 
number of elements in the search space for the private key and the message in Table 3. 

Table 4 
The Key and Message Security for NTRU and the Proposed Scheme. 

Level of Security NTRU (Mittal, Kumar, Narain, & Kumar, 2021) Proposed scheme #ℒ  #ℒ  #ℒ  #ℒ  

Moderate 1.2 × 10  9.4 × 10  9.7 × 10  9.4 × 10  
High  9.2 × 10  2.1 × 10  2.5 × 10  2.1 × 10  

Highest 6.1 × 10  4.8 × 10  2.3 × 10  4.8 × 10  

 
4.4 Multiple Transmission Attacks 
 

Multiple transmission attacks were first presented in (Jeffrey Hoffstein et al., 1998) and then analyzed further in (Jeffery 
Hoffstein, 1996). This attack could recover the message when a message has been sent multiple times using the same public 
key with different random polynomial for each time. 

Theorem 5 The proposed scheme is secure against multiple transmission attacks. 

Proof. Let the encrypted message be  𝑒 (𝑋) = 𝑝𝜙 (𝑋) + 𝑚(𝑋) ∗ 𝒽(𝑋)  (𝑚𝑜𝑑 𝑞) for 1 ≤ 𝑖 ≤ 𝑁 − 2. Assume that the mes-
sages were encrypted several times by a single public key h and different random polynomial 𝜙  where 𝜙  be a sequence of 
random choices of polynomials in ℒ(𝑑,𝑑). Then, the attacker will compute the following. 𝑒 (𝑋) −  𝑒 (𝑋) ≡ (𝑝𝜙 (𝑋) + 𝑚(𝑋)) ∗ 𝒽(𝑋) − (𝑝𝜙 (𝑋) + 𝑚(𝑋)) ∗ 𝒽(𝑋)   (𝑚𝑜𝑑 𝑞) ≡ 𝑝(𝜙 (𝑋) −𝜙 (𝑋)) ∗𝒽(𝑋)   (𝑚𝑜𝑑 𝑞). Rearranging the latter inequality yields 𝜙 (𝑋) − 𝜙 (𝑋) = 𝑒 (𝑋) − 𝑒 (𝑋) ∗ 𝒽 (𝑋)    (𝑚𝑜𝑑 𝑞). 
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Note that the coefficients of the 𝜙’s are ranging from -1 to 1. To get the possibility for the coefficient of 𝜙 − 𝜙 , let , α be 
the kth coefficient of 𝜙 , β be the kth coefficient of 𝜙  and α - β be kth coefficient of 𝜙 − 𝜙 . Then those possibilities are 
listed in the following table. 

Table 5 
The Coefficient of 𝛟𝐢 − 𝛟𝟏 

  𝛽  𝛼 −1 0 1 −1 0 −1 −2 0 1 0 −1 1 2 1 0 
 
Table 5 shows that an attacker manages to recover approximately 1/9 of the coefficients of 𝜙 − 𝜙 , that is α – β = 2, by 
deducing β = -1. Similarly, an attacker manages to recover approximately 1/9 of coefficients of 𝜙 − 𝜙 , that is,  α – β = -2 
by deducing β = 1. Next, an attacker manages to recover approximately 2/9 of coefficients of 𝜙 − 𝜙 , that is, α – β = 1 by 
deducing β = -1,0. Similarly, an attacker manages to recover approximately 2/9 of coefficients of 𝜙 − 𝜙 , that is, α – β = -1 
by deducing β = 0,1. This shows that an attacker should be able to recover almost every coefficient of 𝜙 − 𝜙 , and obtain 
exactly the values of 𝜙 − 𝜙 . Hence, an attacker can recover the single message m corresponding to 𝜙  by using the brute 
force attack. However, this single message  m corresponding to 𝜙  is only a small part of the message and does not contain 
an information for any subsequent messages. This implies that an attacker would only manage to decrypt a single part of 
message m and not able to decrypt the whole message m. Therefore, the proposed scheme is secure against multiple transmis-
sion attacks.  
 
4.5 Lattice Attack 
 
In the lattice attack, an attacker will attack the NTRU cryptosystem through the public key ℎ using LLL algorithm to recover 
the private keys  𝑓 and  𝑔. Recall that the NTRU public key ℎ is generated using the private keys  𝑓 and  𝑔 by the relationship  𝑓(𝑋) ∗ ℎ(𝑋) = 𝑔(𝑋)  (𝑚𝑜𝑑 𝑞). In addition, the NTRU public key ℎ associated by the NTRU lattice, ℒ  can derive a 
basis of ℒ , which represent the private keys 𝑓 and 𝑔. For this lattice attack, the proposed scheme used a similar argument 
to define the proposed lattice  ℒ𝒽  associated to a public key  𝒽, which satisfies (𝑋) ≡ 𝑓 (𝑋) ∗ 𝑟(𝑋) ∗ 𝑠 (𝑋)    (𝑚𝑜𝑑 𝑞) where 𝑓, 𝑟 and 𝑠 are private keys. 
 
Definition 4 The proposed lattice, ℒ𝒽  associated to a proposed public key 𝒽(𝑋) = 𝒽 + 𝒽 𝑋 + 𝒽 𝑋 + ⋯+𝒽 𝑋  is the 2𝑁-dimensional lattice generated by the rows of the following block matrix 

ℒ𝒽 =
⎝⎜⎜
⎛⋮ ⋮ ⋯⋯⋱⋯ ⋮
⋮ ⋮ ⋯⋯⋱⋯ ⋮

𝒽𝒽 ⋮𝒽
𝒽𝒽⋮𝒽

⋯⋯⋱⋯
𝒽𝒽 ⋮𝒽

⋮ ⋮ ⋯⋯⋱⋯ ⋮ ⎠⎟⎟
⎞, 

which composed by four 𝑁–by-𝑁 quadrants: 
Upper left quadrant = Identity matrix, 
Upper right quadrant = Circulant matrix 𝒽 (Cyclic permutation of the coefficients of 𝒽(𝑋)) 
Lower left quadrant = Zero matrix, 
Lower right quadrant = 𝑞 times the identity matrix. 
 
Note that the proposed lattice ℒ𝒽  is convenient to abbreviate as a 2-by-2 block matrix with coefficients in 𝑅 as follows: ℒ𝒽 = 𝒽 ≡ 𝑀𝒽  , which also called the proposed matrix 𝑀𝒽 . 
 
The above definition will be used in the following result. 
 
Proposition 5 Suppose that 𝑓(𝑋) ∗ 𝑠(𝑋) ∗  𝒽(𝑋) ≡  𝑟(𝑋)  (𝑚𝑜𝑑 𝑞). For any 𝑢(𝑋) ∈ 𝑅, let 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋) = 𝑟(𝑋) +𝑞 ∗ 𝑢(𝑋),  then, (𝑓 ∗ 𝑠 −𝑢)𝑀𝒽 = (𝑓 ∗ 𝑠 𝑟). Therefore, the vector (𝑓 ∗ 𝑠 𝑟) is in ℒ𝒽 . 
 
Proof. Let choose (𝑓 ∗ 𝑠 −𝑢) be a row vector. The multiplication of a vector (𝑓 ∗ 𝑠 −𝑢) with a proposed matrix  𝑀𝒽  yields (𝑓 ∗ 𝑠 −𝑢) 𝒽 = (𝑓 ∗ 𝑠 𝑓 ∗ 𝑠 ∗ 𝒽 − 𝑞 ∗ 𝑢). In particular, when the row vector (𝑓 ∗ 𝑠 −𝑢) is mul-

tiply with the first column of proposed matrix  𝑀𝒽 , which consists of the identity matrix at the first quadrant followed 
by the zero matrix at the second quadrant, produces the vector 𝑓 ∗ 𝑠. 
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Next, multiply the vector (𝑓 ∗ 𝑠 −𝑢) with the second column of proposed matrix  𝑀𝒽 , which is the circular matrix 
of 𝒽 at the first quadrant followed by the identity matrix multiply with 𝑞 at the second quadrant, yields the vector (𝑓 ∗ 𝑠 𝑓 ∗ 𝑠 ∗ 𝒽 − 𝑞 ∗ 𝑢). Note that the 𝑘th entry of the vector (𝑓 ∗ 𝑠 ∗ 𝒽 − 𝑞 ∗ 𝑢) can be represented as 𝑓 ∗ 𝑠 ∗ 𝒽 +  𝑓 ∗𝑠 ∗ 𝒽 + ⋯+ 𝑓 ∗ 𝑠 ∗ 𝒽 − 𝑞 ∗ 𝑢 . From (4), the 𝑘th entry of the vector (𝑓 ∗ 𝑠 ∗ 𝒽 − 𝑞 ∗ 𝑢) is equal to the 𝑘th 
entry of the vector 𝑟. Thus, (𝑓 ∗ 𝑠 𝑓 ∗ 𝑠 ∗ 𝒽 − 𝑞 ∗ 𝑢) = (𝑓 ∗ 𝑠 𝑟) since the vector (𝑓 ∗ 𝑠 𝑟) is a linear combination of 
the column of the matrix  𝑀𝒽 , then the vector (𝑓 ∗ 𝑠 𝑟) is in  ℒ𝒽 . 
 
From Proposition 5, it is clear that the vector (𝑓 ∗ 𝑠 𝑟) is in  ℒ𝒽 . It is also know that the coefficient of the vector (𝑓 ∗ 𝑠 𝑟) is small, then the vector (𝑓 ∗ 𝑠 𝑟) can be a short nonzero vector in ℒ𝒽  or can be the shortest nonzero 
vector in ℒ𝒽 . 
 
Proposition 6 Let  𝑁,𝑝, 𝑞,𝑑 ,𝑑 ,𝑑  be proposed parameters, with assumption 𝑝 = 3,     𝑑 = 𝑑 = 𝑑 ≈ ,     𝑎𝑛𝑑      𝑞 ≈2𝑝𝑁. 
Let  ℒ  be a proposed lattice associated to the vector (𝑓 ∗ 𝑠 𝑟). Then we have the following 
(a)  det ℒ𝒽 = 𝑞 . 
(b) ‖(𝑓 ∗ 𝑠 𝑟)‖ ≈ 0.471 𝑁(2𝑁 + 3). 

(c) The Gaussian heuristic predicts that the expected shortest nonzero vector length of  ℒ𝒽  is 𝜎  ℒ𝒽 = 𝑁.              
If  𝑁 is large, then there is a high probability that the shortest nonzero vector in  ℒ𝒽  are (𝑓 ∗ 𝑠 𝑟) and its rota-

tions. Further, ‖ ∗ ]‖ℒ𝒽 ≈ 0.562 2 +   ,   
so, the vector (𝑓 ∗ 𝑠 𝑟) is a factor of 𝑂 2 + 3/N  shorter than predicted by the Gaussian heuristic. 
 

Proof.   
 
(a) Since the proposed matrix 𝑀𝒽  is an upper triangular block matrix, then its determinant is the product of the diag-

onal entries. Its diagonal entries consist of 𝑁 blocks of the identity matrix and 𝑁 blocks of the identity matrix multiply 
with 𝑞. Therefore, det ℒ𝒽 = 1 × 𝑞 = 𝑞 . 

(b) It is known that 𝑓(𝑋) ∈ ℒ 𝑑 ,𝑑 − 1 , 𝑟(𝑋) ∈ ℒ(𝑑 ,𝑑 + 1) and 𝑠(𝑋) ∈ ℒ(𝑑 + 1,𝑑 ).Then, ‖(𝑓 ∗ 𝑠 𝑟)‖ =‖𝑓 ∗ 𝑠‖ + ‖𝑟‖ = 2𝑑 − 1 (2𝑑 + 1) + (2𝑑 + 1)Using 𝑑 = 𝑑 = 𝑑 ≈ N/3 in the above inequality yields ‖(𝑓 ∗ 𝑠 𝑟)‖ = (2𝑁 + 3𝑁),  = 0.471 𝑁(2𝑁 + 3) . 

(c) Since the dimension of ℒ𝒽  is 2𝑁, then apply this and the condition (a) in Definition 1 will give the Gaussian ex-
pected shortest length of  ℒ𝒽  as follows. 𝜎 ℒ𝒽 = 2𝑁2𝜋𝑒 ( 𝑞 ) ⁄ = 𝑁𝑞𝜋𝑒  . (22) 

 
Thus, the above equation becomes Eq. (5) when 𝑞 = 6𝑁 where 𝑝 = 3. Note that 𝜎 ℒ𝒽  will produces a large 
value when  𝑁 is large. By Proposition 5, a vector (𝑓 ∗ 𝑠 𝑟) can be a short vector in ℒ𝒽 . Thus, the vector (𝑓 ∗ 𝑠 𝑟) and its rotations will have high possibility to be the shortest nonzero vectors in ℒ𝒽  when 𝑁 is large. 

 
Generally, the Gaussian heuristic predicts that ‖𝑣 ‖ ≈ 𝜎(ℒ) and the ratio of ‖𝑣 ‖ to 𝜎(ℒ) is equal to 1. Using 
the fact that the vector (𝑓 ∗ 𝑠 𝑟) is the shortest nonzero vectors in ℒ𝒽  when 𝑁 is large, Gaussian heuristic predicts 
that   ‖(𝑓 ∗ 𝑠 𝑟)‖ ≈ 𝜎 ℒ𝒽  and the ratio of ‖(𝑓 ∗ 𝑠 𝑟)‖ to 𝜎 ℒ𝒽 , which using the condition (b) and eq. (5) 

yields  ‖( ∗ )‖ℒ𝒽 ≈ . ( ) ≈ 0.562 2 +   . 
As 𝑁 grows large, an upper bound on the ratio of ‖(𝑓 ∗ 𝑠 𝑟)‖ to 𝜎 ℒ𝒽  is 𝑂 2 + 3/N . Therefore, the vector (𝑓 ∗ 𝑠 𝑟) is a factor of 𝑂 2 + 3/N  shorter than that predicted by the Gaussian heuristic. 

 
Theorem 6 The proposed scheme is secure against lattice attack. 
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Proof. Proposition 6 tell us that the vector (𝑓 ∗ 𝑠 𝑟) and its rotations will have high possibility to be the shortest nonzero 
vectors in ℒ𝒽  when 𝑁 is large. Since the private key (𝑓 ∗ 𝑠 𝑟) is generating the public key 𝒽, then the vector 𝒽 also 
has high probability to be the shortest nonzero vector in ℒ𝒽 . Then there is a possibility for the LLL algorithm to attack 
the public key 𝒽 with the first row of the LLL reduced basis corresponds to the vector (𝑓 ∗ 𝑠 𝑟). Assume that LLL algorithm 
can attack the public key 𝒽 in ℒ𝒽  if the vector (𝑓 ∗ 𝑠 𝑟) becomes the shortest nonzero vector in ℒ𝒽 . By The-
orem 1 (Hermite’s theorem), the length of a shortest nonzero vector (𝑓 ∗ 𝑠 𝑟) in ℒ𝒽  satisfies ‖(𝑓 ∗ 𝑠 𝑟)‖ ≤√2𝑁(𝑞 ) = 2𝑁𝑞 . 
 
This explicit bound is assumed as the LLL reduce basis bound. As 𝑁 and 𝑞 grows larger, then LLL algorithm have a difficulty 
to produce LLL reduced basis. Thus, LLL algorithm hardly recover the vector (𝑓 ∗ 𝑠 𝑟) and consequently, LLL algorithm 
fails to attack the public key 𝒽. This contradicts the assumption that the LLL algorithm able attack the vector 𝒽 in ℒ𝒽  
when the vector (𝑓 ∗ 𝑠 𝑟) becomes the shortest nonzero vector in ℒ𝒽 . Therefore, the proposed scheme is secure 
against lattice attack. 
 
Numerical Illustration of Lattice Attack on Proposed Scheme 
 
Consider the parameter (𝑁, 𝑝, 𝑞) = (7,3,47) and the public key 𝒽(𝑋) ≡ 7𝑋 + 18𝑋 + 10𝑋 + 19𝑋 + 44𝑋 + 18𝑋 +24   (𝑚𝑜𝑑 47). Performing LLL algorithm on the public key 𝒽 yields a reduced basis as follows. 
 

ℒ =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 0 1 0 −1 −1 1 −1−1 0 1 0 −1 −1 1−11101

−1−10−1−1
10−1−11

−11−110
001−1−1

1−1−100
0−1011

0 1 1 0 0 −1 00 0 1 1 0 0 −10−1110
00101

−10000
010−10

01−10−1
1000−1

100105 −4 4 2 7 7 2−6 −2 −5 0 5 4 552−73−7
47−72−2

57−28−5
−62−574

−2541−4
−5−4−44−2

04−2−3−7
9 −3 9 6 3 −2 1−2 10 −5 0 10 −6 −8106−392

−6326−2
−8−2−24−9

−22−9−13
10932−9

−5−3−99−6
09−6−4−3⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 

 
The first row of LLL reduced basis represent 
 (𝑓 ∗ 𝑠 𝑟) = (0 1 1 −1 −1 1 −1|0 1 1 0 0 −1 0) 
 
which corresponding to 𝑓(𝑋) ∗ 𝑠(𝑋) = 𝑋 − 𝑋 − 𝑋 + 𝑋 − 𝑋 , and 𝑟(𝑋) = 𝑋 + 𝑋 − 𝑋 . 
 
Note that the obtained LLL reduced basis will represent the vector (𝑓 ∗ 𝑠 𝑟) when 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋) = 𝑟(𝑋). To verify 
this, let compute 𝑓(𝑋) ∗ 𝑠(𝑋) ∗ 𝒽(𝑋) ≡ 43𝑋 + 12𝑋 + 13𝑋 + 21𝑋 + 31𝑋 + 18𝑋 + 4    (𝑚𝑜𝑑 47)  ≠ −𝑋 + 𝑋 +𝑋 = 𝑟(𝑋) . This shows that the obtained LLL reduced basis is not able to represent the vector (𝑓 ∗ 𝑠 𝑟). Therefore, LLL 
algorithm fails to attack the public key 𝒽. 
 
5. Comparison between the proposed scheme and the NTRU 
 
This section will give a comparison in terms of the computational complexity and the security level of the proposed scheme 
with the NTRU cryptosystem. 
 
5.1 Computational Complexity 
 
The following table shows the computational complexity based on the arithmetic operations (polynomial addition and convo-
lution multiplication) on proposed scheme and the NTRU cryptosystem. 
 
Table 6  
The Arithmetic Operation of the Proposed Scheme and the NTRU. 

 Proposed scheme NTRU 
Key Generation 2 convolution multiplication 1 convolution multiplication 

Encryption 2 convolution multiplication and 1 polynomials addition 1 convolution multiplication and 1 polynomials addition 
Decryption 2 convolution multiplication and 1 polynomials addition 2 convolution multiplication and 1 polynomials addition 
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Based on Table 6, let 𝑡 be the time of convolution multiplication and 𝑡  be the time of polynomial addition, then the speed of 
the proposed scheme and the NTRU cryptosystem is obtained as follows.  
 
Table 7  
Speed of the Proposed Scheme and the NTRU 

 Proposed scheme NTRU 

Speed 6𝑡 + 2𝑡  4𝑡 + 2𝑡  𝑂(𝑁 ) operations  𝑂(𝑁 ) operations 

 
In terms of speed, the proposed scheme is a little bit slow compared to the NTRU cryptosystem. But the proposed scheme as 
efficient as the NTRU cryptosystem.  
 
5.2 Security Level 
 
The following table shows that the security level of the private key and message for the proposed scheme and the NTRU 
cryptosystem. 
 
Table 8  
The Key and Message Security of the Proposed Scheme and the NTRU 

 Proposed scheme NTRU 
Key security 1𝑑 − 1 ! 𝑁!𝑑 𝑁 − 2𝑑 + 1 ! 1𝑑 ! 𝑁!𝑁 − 2𝑑 ! 
Message security  1𝑑! 𝑁!(𝑁 − 2𝑑)! 

  1𝑑! 𝑁!(𝑁 − 2𝑑)! 
 
For the same coefficients, the key security level of the proposed scheme is a litter bit higher than the NTRU cryptosystem. 
But the message security of the proposed scheme is as the same as the NTRU cryptosystem. 
 
6. Conclusion  
 
In this work, a new NTRU variant is proposed, and some security analyses were performed to ensure the proposed variant is 
at least as secure as in the original NTRU cryptosystem. According to the analyses done in this work, it turns out that the 
proposed NTRU variant has a higher key security level as compared to the original NTRU cryptosystem, and at same time 
maintaining the message security level. Along the way, we have established several properties related to the security aspects, 
against some known attacks namely, the alternate private keys attack, brute force attack, meet-in-the-middle attack, multiple 
transmission attacks and lattice attack. NTRU cryptosystem is known as a lattice-based cryptosystem and has attracted many 
researchers to continue working on it. Many NTRU variants have been developed, and implemented, since it was first initiated 
in 1996 and more are still underway including this proposed scheme. It is believed that the proposed scheme is secure against 
the known attacks and will be able to survive until the next attacks.  
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