
* Corresponding author.
E-mail address: s.alhazmi@seu.edu.sa (S. Alhazmi)

ISSN 2561-8156 (Online) - ISSN 2561-8148 (Print)
© 2023 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.ijdns.2023.8.019

International Journal of Data and Network Science 7 (2023) 2053–2076

Contents lists available at GrowingScience

International Journal of Data and Network Science

homepage: www.GrowingScience.com/ijds

Android malicious attacks detection models using machine learning techniques based on permissions

Mousa AL-Akhrasa, Abdulrhman ALMohawesb, Hani Omarc, Samer Atawnehb and Samah Alhazmib*

aKing Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan
bCollege of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia
cFaculty of Information Technology, Applied Science Private University, Amman, Jordan. MEU Research Unit, Middle East University, Amman, Jordan

C H R O N I C L E A B S T R A C T

Article history:
Received: April 5, 2023
Received in revised format: July
26, 2023
Accepted: August 21, 2023
Available online: August 21, 2023

 The Android operating system is the most used mobile operating system in the world, and it is
one of the most popular operating systems for different kinds of devices from smartwatches, IoT,
and TVs to mobiles and cockpits in cars. Security is the main challenge to any operating system.
Android malware attacks and vulnerabilities are known as emerging risks for mobile devices. The
development of Android malware has been observed to be at an accelerated speed. Most Android
security breaches permitted by permission misuse are amongst the most critical and prevalent
issues threatening Android OS security. This research performs several studies on malware and
non-malware applications to provide a recently updated dataset. The goal of proposed models is
to find a combination of noise-cleaning algorithms, features selection techniques, and classifica-
tion algorithms that are noise-tolerant and can achieve high accuracy results in detecting new
Android malware. The results from the empirical experiments show that the proposed models are
able to detect Android malware with an accuracy that reaches 87%, despite the noise in the dataset.
We also find that the best classification results are achieved using the RF algorithm. This work
can be extended in many ways by applying higher noise ratios and running more classifiers and
optimizers.

© 2023 by the authors; licensee Growing Science, Canada.

Keywords:
Android, permission
Attack
Machine Learning
Noise

1. Introduction

Android is a mobile operating system that relies on the altered Linux kernel and other software open source. Android has been
developed by Open Handset Alliance (OHA) to develop open standards in mobile devices. OHA is a group of top telecom
companies. Including HTC, Sony, Motorola, Google, Samsung, and LG (OHA, 2007). Smartphones have become a significant
element of our everyday lives. Statistics show that the Android mobile operating system (OS) is the leading OS used in the
globe, with a market share of 88 percent (O'Dea, 2020). According to Android director Stephanie Cuthbertson, there are over
two and a half billion active Android devices worldwide. More than 180 hardware manufacturers manufactured these devices,
and not all of them are smartphones (Kerns, 2019).

Android malware is increasingly becoming a constant risk to users. The number of Android malware is rising exponentially;
they become dramatically sophisticated and cause possible financial and data losses for users. Hence, there is a need for
optimized and practical techniques to detect Android malware applications. Due to the large number of users, Android has
become the critical target for mobile malware. Since 2011, Android has become the most widespread and most attacked
smartphone platform. The attackers' essential rewards are stealing the user's data or money and getting hold of the system and
SMS trojans. Other features found in mobile malware include intrusive ads, the use of paid programs, and ransomware
(Skovoroda et al., 2015). The use of unified smartphone apps stores made it easier for attackers to distribute mobile malware.

 2054

Any marketplaces, for example, Apple Application Store and Windows Phone Store, search the applications submitted man-
ually, while the Google Play Store, automatically scans the latest applications and developers’ accounts using Google
Bouncer. A proper analysis dramatically decreases the amount of malware released, although it is still existing (Skovoroda et
al., 2015). According to a study by McAfee laboratories, in the first quarter of 2020, 1,5 million new malwares were detected,
and most of those malwares are targeting Android devices (McAfee, 2020).

Malware or malicious software is any software with a misbehaving intention. It can be written to interrupt normal functioning,
circumvent access controls, gather confidential information, show unauthorized ads, or get control of the system without the
user’s awareness (Doğru & KİRAZ, 2018). Moreover, malware and accidentally harmful applications were collectively
termed badware. The acceleration of Android has been growing fast. From the first-ever virus, malware for mobile devices
has grown tremendously (Qamaret al., 2019). According to a study on mobile malware in the duration from the year 2000 to
2018, mobile malware was a virus, worms, trojans, ransomware, rootkits, botnet, backdoors, and keyloggers.

Android malware detection has been an active research field recently. The mobile malware identification and approaches to
detect malicious intent and other security threats can be classified into three primary groups: (Qamar et al., 2019):

1. Structural or static analysis: an application inspection technique that tests the software code without being executed.
2. Behavioral or dynamic analysis: Dynamic analysis is the process by which a program is analyzed in runtime.
3. Hybrid analysis (static and dynamic): The hybrid analysis's underlying theme is to incorporate the characteristics of static

and dynamic analysis related to an application's code and behavior.

1.1. Android permissions

The Android operating system uses a permission-based security mechanism to identify the assets and resources that can be
used or accessed and which transactions can be performed by an application. In order to use permission in the application, the
developer must add the permission in the AndroidManifest.xml file. Before Android version 6.0, the user had to accept all the
permissions at the installation time since the Android OS was using all or nothing (Krajci et al., 2013). This policy has changed
from version 7.0, where there were install time permissions and run time permissions. Developers identify the requested
permissions in the manifest file under the <permission> tag in a unique format as an example: android.permission.INTER-
NET. Notwithstanding a high number of permissions within Android, various researchers have investigated and revealed that
the permission-based security mechanism cannot grant enough security against malicious software (Arslan et al., 2019; Doğru
& Önder, 2020).

Android malware attacks and vulnerabilities are known as emerging risks to mobile devices. It is a rising security issue ex-
pected to continue as users take crucial activities on their smartphones (Xiao et al., 2020). Most Android users have no idea
how perpetrators and intruders deeply infiltrate their mobile devices without their privileges and knowledge. The worst case
is that users feel protected from threats like these and have inadequate awareness of the rapid growth in mobile malware and
attacks. In many attacks, user vulnerabilities remain critical as they become critical vulnerabilities to mobile attackers' entry.
Most users download and install third-party applications (games, image editors, chatting apps). Because of this, it is also
possible to install ransomware and adware applications without their knowledge. That is because malware applications are
usually appearing in legitimate-looking applications. The security breaches permitted by permission misuse are amongst the
most critical and prevalent issues threatening Android OS security.

Malware identification in the Android platform has been made in a variety of ways. The signature-based approach is the most
common. Malicious sample signatures are saved in a database, which is later used to detect malware. Only known malware
can be detected using this method. In order to identify zero-day malware, machine learning algorithms have been imple-
mented. Because of the increase in malware activity in the Android environment, researchers have been focusing their atten-
tion on detecting malicious Android apps.

We noticed that most of the studies were conducted on old Android malware and benign dataset. Most of the datasets were
collected for applications before 2015. In the last five years, Android application development changed many times due to the
Android framework updates and new permissions added in these frameworks. In addition, we did not find any work that
studies the noise insertion effect in our search. The feature selection and classification algorithm is noise-tolerant and can
perform well with noisy datasets. In this work, we will perform an ML study on an Android applications dataset collected
recently. In addition to studying the effect of noise in the dataset and which ML feature selection and classification algorithms
will perform well despite the noise (Xin et al., 2018).

This study uses multiple datasets to perform Android malware detection approaches using new Machine learning algorithms
(ML). The first dataset is called dataset for Android malware detection (Xiong, 2020). It was collected from three different
sources: the Drebin dataset, AMD dataset, and Google play store. The second dataset was collected from many sources,
including ApkMetaReport, AssetReport, ByteCodeReport, and VirusTotalReport (Thon, 2018). A JSON file contains a lot of
data about the applications generated for the previously mentioned resources. Then we noticed that only ApkMetaReport
contains permission, so we write code to extract the permissions and app name and hash and save it in csv in order to deal

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2055

with the dataset in an easier way. After that, we will use new ML algorithms to detect Android malware by using the applica-
tion permissions from the previously mentioned dataset.

The following sections are organized as follows. Section 2 shows a literature review of Android and malware. The method-
ology is presented in Section 3. In Section 4, we show the implementation and the results. Conclusion in section 5. Finally,
future work is presented in section 6.

2. Literature review

Recently, more attempts have been spent on analyzing permission in the Android framework. Researchers have used machine
learning and data mining techniques to detect Android malware based on permission use. In this section, we will look at how
serious the issue of abusing permissions is. In addition, we will discuss many permission-based methods that have been pro-
posed to identify malware in Android applications.

2.1. Abusing Android permissions

The studies conducted by Alenezi and Almomani (2017, 2018) pay more attention to Android permissions. Also, how attacks
can exploit them. They study 71 apps and check the requested and used permissions. They find out that: 80.3% of the apps
request permissions more than they need.11.2% of apps have requested less than what they have used 8.5% of the apps have
used exactly what they requested. Many permissions, with 63.77 percent, are normal permissions. Dangerous permissions
come next with 27.17 percent. Both Signature and SignatureOrSystem represent 9.05 percent of the total permissions.

2.2. Using permissions for malware detection

DroidPermissionMiner is a static analysis mechanism suggested by (Aswini et al., 2014) to detect malware by evaluating
applications' permissions. The research included reviewing 436 applications APK files and mined unique features related to
malicious activities. The proposed model categorized the apps based on machine learning classifiers.

Utku et al. (2017) employed machine-learning methods such as Naive Bayes and KNN algorithms in Android malware de-
tection focused on app permissions. They tested their method on more than 5000 malicious applications of the Drebin dataset
and about 1300 benign applications retrieved from the Android play store. They obtained a good malware detection ratio of
97.29 percent with the Naive Bayes classifier and 97.74 percent with the K-Nearest Neighbors algorithm.

The study of Alsoghyer et al. (2019) offers a comprehensive investigation. One thousand samples were screened from Android
to collect all permissions required or used by the app whether it is benign or ransomware. The experiments show that the
framework gets an accuracy of 96.9% by using only the permissions.

Almomani et al. (2020) present a thorough review of the Android permissions framework from 2008 until 2020. Case research
was performed for the last five years' versions of the top Android apps, and all the API levels (1 to 30), have been examined.
For each release update of permission, the previous permissions were not deleted to allow existing applications to use them.
The authors notice that the permissions were expanded in all third-party applications over the last five years. Besides the
continuous enhancements of Android permission implement numerous security issues and disadvantages. Consequently, the
application can exploit this system feature to improve its privileges. In the work of (Alqatawna et al., 2021), Android botnets
are examined with static analysis to extract features from source code after reverse-engineering the applications. The features
are then used to create efficient machine-learning models for such malicious applications. They extract features from 2224
Android benign applications and 1928 botnet applications ISCX dataset. They download and scan the applications using the
tools developed in this work. The features extracted are trained and tested with four common ML classifiers. For the training
of classifiers in this work, 406 features were used. The best results can be achieved using the RF and MLP classifier, respec-
tively. RF classifier achieved 98%. Yerima et al. 2021 presents an analysis of the Android botnet using deep learning tech-
niques. They use 342 static features extracted from the application to unclassify applications into clean or botnets. Deep
learning has many models (Wang, 2018). The results of these models are evaluated on 6802 apps consisting of 1929 ISCX
dataset applications. Convolutional Neural Networks (CNN), Dense Neural Networks (DNN), Gated Recurrent Units (GRU),
Long Short-Term Memory (LSTM), CNN-LSTM, and CNN-GRU were among the models investigated. The best results were
obtained by the DNN and CNN-GRU models. Both models obtained the highest accuracy of 99.1 percent, which correlates
to the highest F1-score of 0.984. (Abdullah et al., 2020) proposed a technique for detecting Android ransomware using dy-
namic analysis. There were two datasets used: a ransomware dataset and a benign dataset. The system calls obtained from
dynamic analysis were used as features in the proposed method. The proposed features were used to classify the instances
using the classification algorithms Random Forest, J48, and Naive Bayes.

 2056

3. Methods and the materials
We will introduce the multiple datasets we identify to perform malware detection approaches using new Machine learning
algorithms (ML). After that, we will select the appropriate datasets. We will perform the pre-processing of these datasets to
make them ready for the experiments. In addition, we will show the overall methodology for this work.

3.1. Methodology

We will identify the Android datasets that contain benign and malware applications. We will study each one of them, and we
will select the appropriate datasets in terms of the number of applications and whether it is updated recently or not. Then we
will divide the dataset into two different datasets: training dataset and testing dataset. After that will try the training dataset
with free noise insertion, then will insert noise in different percentages. The main goal of the noise insertion is to see which
ML classifier will be noise tolerant and provide better results. Next, we will use noise-cleaning algorithms to increase the
efficiency of the ML algorithms. For the two datasets, training, and testing, we might perform optimization and feature selec-
tion. As a result, the unused features will be eliminated, increasing the performance, and reducing the time. The optimized
dataset will be tested using many ML algorithms like decision tree, random forest, and support vector machine. Finally, we
measure the performance using accuracy, recall, and precision equations. Fig. 1 summarizes the overall methodology, while
Fig. 2 presents the algorithm of the steps that will be conducted during the research.

Fig. 1. Overall Methodology

1. Procedure Detect_Malicious (datasets D, noise_level = {0, 5, 10, 20})
2. Return trained models
3.
4. //Select an appropriate dataset Da and split it into train set DTN and test set DTT
5. DTN, DTT =train_test_split (Da)
6.
7. //Call Noise_Insertion function with noise level
8. For each noise_level:
9. DTN_noise_level = Noise_Insertion (DTN, noise_level)
10.
11. // Noise Filtering
12. For each dataset with inserted noise:
13. DTN_noise_level_f = Noise_Filtering (DTN_level)
14.
15. // Feature Selection for all datasets (TN, TN_level, TN_level_f)
16. DTN_s = Feature_Selection (DTN)
17. For each dataset after noise insertion:
18. DTN_noise_level_s = Feature_Selection (DTN_level)
19. For each dataset with noise insertion after filtering:
20. DTN_noise_level_f_s = Feature_Selection (DTN_noise_level_f)
21.
22. // Train classification (IBK, MLP & RF) models for each datasets
23. For each dataset (TN, TN_noise_level, TN_noise_level_f, TN_s, TN_noise_level_s,
 TN_noise_level_f_s):

24. For each classification model:
25. Train_model (classification_model, dataset)
26. Evaluate_model (DTT)
27. end

Fig. 2. Research algorithm

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2057

3.2. Dataset

In machine learning, data plays a vital role. The data are used to train and evaluate any machine learning model, most often
as static data. Such datasets' properties can affect a model's behavior: if its deployment environment does not fit its training
or assessment datasets, or if those datasets represent undesirable distortions, a model will probably not function well. Android
datasets usually contain both benign applications and malicious applications. Most researchers obtain these from app stores
such as Google Play Store for benign applications. On the other hand, the malware application depends on malicious actions
in the study. For instance, VirusTotal was a significant source for many researchers of malware Android applications. A study
done by (Almomani et al., 2019) disclosed the most popular datasets used in research work in 2018 for Androzoo. It was used
in 42% of Android malware research as shown in Fig. 3. After that, the Derbin dataset was used in 25% of the research. At
the same time, the third most used dataset with 23% is Genome.

Fig. 2. Android malware Datasets usage in 2018 research

3.2.1. Available Dataset

Datasets are primarily categorized into two types. In the first category, the datasets of the Android apps. This covers both
benign applications and malware apps. Most researchers are gathering them from app stores like Google play store for the
benign apps. While for the malicious software, it depends on the malicious activity under analysis. VirusTotal was one of the
critical sources for many researchers of malware Android apps. In the second category, the datasets are created after extracting
the application features. The researchers can either use the existing dataset considering the features under analysis or create
new ones by removing the framework's features (Almomani et al., 2019). In the following subsection, we will explore the
most used malware datasets in the literature.

3.2.2. AMD Project

Android malware dataset (AMD) has 24,650 samples from 71 malware families, classified into 135 varieties, between 2010
and 2016. The dataset offers a current image of the Android malware landscape and is available to the public. Android malware
apps are obtained from many sources, the samples are analyzed, and detailed behavior is reported (Wei et al., 2017).

3.2.3. Kharon Malware Dataset

The Kharon dataset is a completely reversed and recorded malware collection. This dataset was designed to assist the re-
searchers in assessing their research experiments. Its building required an incredible amount of work to comprehend and
create documentation for malicious applications. Kharon dataset focused on seven types of malware (Kiss et al., 2016).

3.2.4. AndroZoo

AndroZoo is a growing list of Android apps gathered from many different sources like the Google Play store. Currently,
14.456.513 multiple APKs are available, each with numerous antivirus products analyzed to identify malware applications.
They distribute this dataset for ongoing research and to promote new research topics on Android apps (AndroZoo, 2020).
According to a study done by Almomani and Khayer, this is the most used dataset in the 2018 research publications
(Almomani et al., 2019).

3.2.5. RansDS-Permissions

This dataset was conducted to overcome the shortage of ransomware malware detection for Android applications. The creators
study the old datasets HelDroid and RansomProber and remove the duplications. They also add new applications from Vi-
rusTotal and Koodous by searching for Android ransomware applications. There are 500 malicious applications. The creators
also add 500 benign applications to study the difference in permissions between the benign and ransomware apps (Alsoghyer
& Almomani, 2019, 2020).

 2058

3.2.6. Drebin

The dataset comprises 5,560 applications of 179 separate families of malware. During the period from August 2010 to October
2012, samples were collected. Drebin carries out a static code analysis on Android applications that extract as many features
as possible from the application. These features are arranged in string sets, for example, permissions, API calls, and addresses
of the network (Arp et al., 2014).

3.2.7. Dataset for Android Malware Detection

This dataset was published in the IEEE data port by (Xiong, 2020) for Android malware detection. It was obtained from
various sources: Drebin dataset, AMD dataset, and Google play store. It consists of 7,681 benign applications from the An-
droid default store, 8000 samples of benign and malicious from this dataset, and 12000 benign and malicious samples from
the AMD dataset. The dataset was published as text files, and it misses some features.

3.2.8. Static Analysis of Android Benign and Malware Applications

Thon published this dataset by performing static analysis to process permissions and intents of Android apps by reading the
applications' manifest files (Thon, 2018). It uses these files to perform many collected data operations on many static analyzing
tools, including ApkMetaReport, AssetReport, ByteCodeReport, and VirusTotalReport. A JSON file contains a lot of data
about the applications generated for the previously mentioned tools. The dataset consists of more than 8000 benign and mal-
ware Android applications and is published as two different datasets, one for benign apps and the other for malicious apps.

3.2.9. Preprocessing for the dataset

The first dataset we work on is the dataset for Android malware detection. It was collected from different sources. The first
source is the Derbin dataset. The creator takes from it 4000 malicious apps and another 4000 benign apps. The second source
was the AMD project dataset, where the creators take from it 6000 malicious apps and another 6000 benign apps. The dataset
was published in two different folders; each folder represents one of the previously mentioned datasets, and inside each folder,
there are five different text files. Each file has one specific purpose; the first file contains malware families (Derbin has 179
families and AMD 71 families). Another file presents the indexing of malware families. The third file is called label and
consists of each application's labels, either benign or malware. The authors show a sample for the apps in each dataset in the
fourth file where the fifth file was containing the features. We contribute to this dataset by merging the files into single dataset
files (.csv) and classifying them. The challenge we faced was that the feature's title was not mentioned in the dataset.

The second dataset we work on is a static analysis of Android benign and malware applications. It was published as two
different datasets, one for benign applications and the other for malicious applications. The creator uses many static code
analyzers, including ApkMetaReport, AssetReport, ByteCodeReport, and VirusTotalReport. Each dataset contains four fold-
ers, and each folder represents the used tool. Inside every folder, multiple JSON files. In each file, the file name is the hash of
the application, and inside the file is the result of the analyzing tool. To work with the dataset, we write a Python code that
reads the JSON files and converts them into a single dataset file to make it easier to read and work with. After that, we notice
that the result of the ApkMetaReport is the only one consisting of permissions, so we write another Python code to read the
JSON files and convert them into a dataset that contains the name of every application along with the permissions used in the
application.

3.2.10. Dataset statistics

A key design of the Android security architecture is that no app can perform operations that could adversely affect the user.
Therefore, the Android permissions framework regulates the applications' requests for components, confidential data, and
particular system functionality. Table 1 shows 10 Android system permissions, where there are 172 permissions
(AndroidDeveloper, 2020). The aim of showing all Android System Permissions is to help us to understand the dataset statis-
tics in the following sections.

Table 1
Some Android system permissions (AndroidDeveloper, 2020)

Constants Added in API level Deprecated
1 ACCEPT_HANDOVER 28 NO
2 ACCESS_BACKGROUND_LOCATION 29 NO
3 ACCESS_CHECKIN_PROPERTIES 1 NO
4 ACCESS_COARSE_LOCATION 1 NO
5 ACCESS_FINE_LOCATION 1 NO
6 ACCESS_LOCATION_EXTRA_COMMANDS 1 NO
7 ACCESS_MEDIA_LOCATION 29 NO
8 ACCESS_NETWORK_STATE 1 NO
9 ACCESS_NOTIFICATION_POLICY 23 NO

10 ACCESS_WIFI_STATE 1 NO

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2059

The first dataset mentioned previously is called Android malware detection. It contains 20000 applications, collected from
two datasets AMD and Derbain. AMD dataset contains 12000 applications, half of them benign, and the other half is malicious
application. The dataset after the processing contains 434 features. While Derbain has 8000 applications, half of them benign,
and the other half is malicious application. Derbain contains 491 features after processing.

The second dataset, which was collected from Kaggle, contains 8315 applications—divided into two classes, benign and
malware. The number of benign applications is 4304, while the number of malicious applications is 4011. The number of
features in this dataset is 175; the first three present the information about the applications like the application name, the hash
of the application, and the class (either benign or malicious), and the rest of the features (172) present the names of the Android
permissions which are same as the permissions in Table 1. The following 3D recommendation chart presents the usage of
these permissions based on their classes in Figure 4. We can notice that the most used permission in the benign applications
is:

While the most used permissions in the malware applications are:

Fig. 3. Android permissions comparison based on classes

3.3. Feature selection techniques

Choosing an appropriate set of features is called feature selection. When we make feature selection, we restrict ourselves to a
subset of the terms as features; some machine learning models do better. We should exclude terms that are very uncommon
as well as terms that are used by both classes and categories. The goal of feature selection is to improve the predictors'
prediction accuracy, provide quicker and more cost-effective predictors, and understand the data's underlying mechanism
(Russell et al., 2020; Choudhary & Kishore, 2018). In this work, we will use different types of feature selection: evolutionary
and statistical feature selection techniques.

 2060

3.3.1. Statistical technique

Various statistical feature selection techniques have been proposed. Based on how the feature selection module functions in
the overall classification process, feature selection approaches can be divided into three categories: filter approach, wrapper
approach, and embedded approach. Filter approaches are usually quicker, while wrapper approaches are more efficient yet
computationally costly. Feature selection strategies often aim for output that is comparable to wrapper approaches that use a
variety of computational approaches. Feature selection strategies are usually based on how feature–feature and feature–class
correlation is computed. The correlation measure that is used heavily influences these two computations (Borah et al., 2014).
In this work, we will use one of the filter methods called: Correlation-based Feature Selection (CFS). The feature subset is
ranked according to the correlation with the class label and other features by CFS. A higher value is given to subcategories
that display strong correlations with the class label and less correlations with other features. This multivariant approach does
not take into account irrelevant and redundant dataset features (Kumar et al., 2017).

3.3.2. Evolutionary technique

Feature selection becomes important as the size and complexity of datasets grow. The selection process can bring advantages
for better model performance, computation efficiency and simpler models. Evolutionary feature selection includes many nat-
urally inspired techniques such as genetic algorithms, genetic programming, ant colony optimization, or particle swarm opti-
mization algorithms. Such strategies are ideal for selecting features since the rendering of a feature subset is simple and the
assessment can also be performed easily by wrapping or filter algorithms. In addition, the ability of such heuristic algorithms
to search vast areas efficiently benefits the selection of features (Iglesia, 2013). Many algorithms can be used for evolutionary
feature selection including:

• Gray Wolf Optimizer (GWO): algorithm imitates the hierarchy of leadership and the system for hunting gray wolves. To
simulate the hierarchy of leadership, four groups of gray wolves were employed, such as alpha, beta, delta, and omega.
The three key stages of hunting are also introduced, search for prey, surrounding prey, and attacking prey. The results
show that GWO is very competitive in relation to popular heuristics algorithms like PSO, Gravitational Search Algorithm
(GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES) (Mirjalili et al., 2014).

• Firefly algorithm (FFA): evolutionary feature selection algorithm focused on the pattern of fireflies and their behavior.
Essentially, FFA uses three idealized rules (Yang et al., 2013):

1. Fireflies are unisexual so they attract another firefly regardless of sex.
2. The attraction is directly proportional to the brightness, and both reduce with increasing space. Therefore, the darker one

would move to the lighter one with any two flashing fireflies. It will move randomly if there is not one lighter than another.
3. The brightness of a firefly depends on the landscape of the objective function.

A pseudocode that summarizes how the FFA algorithm works is shown in Figure 5. Many studies confirmed that the FFA
algorithm is very efficient in solving nonlinear constrained optimization tasks. FFA was also used in solving optimization
problems. Optimization results show that the Firefly algorithm is potentially better than other proposed algorithms, for exam-
ple, the particle swarm optimization (Yang et al., 2010).

Objective function f(X), X={x1, …, , xd}T
Generate an initial population of fireflies Xi = (i = 1, 2, …, n)
Light intensity Ii at xi is determine by f (Xi)
Define absorption coefficient γ
 while (t < MaxGeneration)
 for i = 1: n all n fireflies
 for j = 1 : i all n fireflies
 if (Ij > Ii), Move firefly i toward j in two dimension; end if
 Attractiveness with distance r via exp[-γr];
 Evaluate new solutions and update light intensity;
 end for j
 end for i
 Rank fireflies and find the current best;
 end while
end

Fig. 4. Firefly Algorithm (FFA) pseudo code (Yang et al., 2010)

3.4. Noise insertion and cleaning

The existence of noise can have a negative impact on the performance of machine learning algorithms. Mislabeled data or
incidents that are wrongly identified are examples of noise. In this work, we will obtain many noise insertion and cleaning
experiments to find out the ML algorithms that provide the best results with a noisy dataset.

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2061

3.4.1. Noise insertion to training dataset

The accuracy of ML algorithms may be affected by the presence of noise. Noise may take various forms, such as wrongly
labeled and classified data or instances. Training a neural network with a small dataset will cause the network to record all
training samples. The model will learn the unique input examples and their related outputs rather than the general mapping
between inputs and outputs. This can lead to a well-performing model in the training dataset and bad in new data, resulting in
a straggler dataset being overfitted and in poor results. Random noise is an approach to improve the general error and improve
the mapping structure (Brownlee, 2018). In our work, we will add noise as label change and data change. The noise might be
a mistake or intentional. The noise will be inserted at different levels: no noise, 5 percent, 10 percent, and 20 percent. We will
measure the performance result for each one of these noises.

3.4.2. Noise cleaning

Algorithms for noise-cleaning are widely used in ML. ML algorithms store the training data during training. For any new
instance, noise cleaning looks for a memory of the most similar instances via a distance function and uses the class for the
new instance with the majority of votes. Several algorithms can be used to conduct noise filtering, which include (Amro et
al., 2020):

• Instance-Based Learning (IBL): has made heavy use of instance reduction algorithms (noise cleaning). IBL saves the
training data during training, and when a new instance needs to be categorized, they use a distance feature to scan their
memory for the most similar instance(s) and use the class with the most votes as the expected class for the new instance
(Amro et al., 2020). To save memory and preserve classification accuracy, instance reduction algorithms attempt to
classify and retain only the most important instances. IBL measures the distance to determine how close the new
instance is to others to predict the output class (Wilson and Martinez 1997). To measure the distance between two
examples, a variety of distance functions can be used. For continuous and nominal attributes, respectively, the Euclid-
ean distance function and Value Difference Metric (VDM) may be used, but not for both types of attributes. In our
experiments, we used the Heterogeneous Value Difference Metric (HVDM), which is suitable for heterogeneous ap-
plications of both types of attributes. It can also calculate distance when missing values are present. The distance
between two input vectors x and y is calculated by HVDM as shown in Eq. (1) (Amro et al., 2020):

HVDM x, y = 𝑑 2(𝑥 ,𝑦)

(1)

The number of attributes is denoted by the letter m. For attribute a, the function d (𝑥 , 𝑦) returns the distance between 𝑥
and 𝑦 of vectors x and y. If the attribute is an integer, it uses the Euclidean distance function (Eq. (2)), and if the attribute is
nominal, it uses the VDM distance metric (Eq. (3)).

d (𝑥 , 𝑦) = (𝑥 − 𝑦)/(𝑥 − 𝑦) (2)

𝑑 (𝑥 ’ 𝑦) = 𝑣𝑑𝑚(𝑥 ’ 𝑦) = (𝑃(𝑐|𝑥𝑎) − 𝑃 𝑐 𝑦𝑎)2𝑐
𝑐=1

(3)

where:

o x and y are two vectors (documents)
o The values of attributes for the vectors are 𝑥 and 𝑦 , respectively. And m is the total attributes.
o c is the number of classes (document categories).

• The Edited Nearest Neighbor Algorithm (ENN): the algorithm will check if the instance has a class different from that
of the majority of its k nearest neighbors. It will delete an instance. The reason for this is possibly a noisy instance or
close-border instance, and it may lead to a wrong classification by classifying new instances.

• Encoding Length (Explore): First, the ELGrow algorithm is performed, and then 1000 mutations are made to improve
the classifier's performance. In each mutation, delete, insert, or replace an instance is changed to the reduced set. The
move would be retained only if the expense of the classification is not increased.

• DROP5: This algorithm considers first eliminating and proceeding outward instances that are close to its nearest op-
ponent. This will lead to the deletion of most internal instances. After that, instances of elimination are then tested,
starting at the closest opponent's most distant instance. An instance is omitted if, at least, as many instances, it is
correctly identified without its nearest k neighbors. This is done many times until there are no further improvements
can be made.

 2062

• DROP3: To delete noisy instances first, the algorithm employs a noise-filtering pass, such as ENN. The instances are
sorted by the distance between them and the nearest opponent (nearest neighbor with a different class). The instances
that are the furthest away from their closest opponent are then eliminated first. As a result, this algorithm tends to strip
center points while retaining border points; this is why it is critical to remove the noisy instances with ENN.

3.5. Machine Learning Algorithms

Here, we will show different machine learning techniques, which are used in our experiment.

3.5.1. Neural Network

The human brain was the inspiration for neural networks (NNs). In artificial intelligence, the NNs are implemented using
various artificial neurons scattered through several layers. The input layer, the hidden layer, and the output layer are the three
layers that shape the NNs. The dataset is fed into the input layer, and the classification results are shown in the output layer
(AlGethami et al., 2021). Deep Learning relies heavily on artificial neural networks (NNs). They are adaptable, efficient, and
scalable, making them suitable for large-scale, high-complexity machine learning tasks like classifying billions of photos,
powering speech recognition systems, and suggesting the best videos to watch to millions of users every day (Géron, 2019).

3.5.2. Decision Trees

A decision tree (DT) represents a function that maps a vector with the values of an attribute to a single decision output value.
To draw a conclusion, a decision tree does a series of tests beginning at the root and then doing tests as appropriate before it
reaches the leaf (Russell et al., 2020). DT utilizes a system of rules to classify information depending on the meanings of the
attributes. Classification is shown in a tree structure format, where branches reflect the value collection of the input charac-
teristics, leading to those classifications and the leaves are class labels. The DTs distinguish high classification accuracy and
ease of implementation (AlGethami et al., 2021).

3.5.3. Random Forest

The random forest (RF) model variates decision trees, which take additional steps to diversify the arboreal complex and reduce
change. Random forests can be used for classification or regression. The concept is arbitrarily to vary the choices for attributes
rather than to prepare them. We choose a random sample of attributes in each split point to calculate which data is most
beneficial (Russell et al., 2020). By a plurality of weighted voting, the results of the RF can be controlled. RF can be viewed
as an ensemble method (Li et al., 2022) of learning, as the RF combines the results of various decision trees (AlGethami et
al., 2021)

3.5.4. Support Vector Machine

A support vector machine (SVM) is a very flexible and robust learning machine, which can perform classification, regression,
and even outer detection. SVMs are ideal for classifying complex but small or medium datasets (Géron, 2019). SVM has been
trained to classify various data categories from various disciplines as a supervised learning technique. SVM creates a hyper-
plane or multiple hyperplanes, and the best hyperplane in it divides data into different classes, with the most significant class
division (Ahmad et al., 2018).

3.5.5. Instance Based Learning (IBL)

It uses a very easy method to store and label the unknown data by determining the distance of the most equivalent example
already stored. The algorithm has various implementations such as IBL and IBK (K-nearest neighbour algorithm). For which
IBK algorithm decides on the classification of a new example using a voting system, with the number of votes denoted by the
“k” value. To prevent tie situations, the value of k must be odd (Kanwal & Bostanci, 2016).

3.5.6. Multilayer perceptron (MLP)

A feed-forward artificial neural network underpins the multilayer perceptron classifier. It is made up of several layers. Each
neural layer in the network is fully linked to the next neural layer, and the input layer's nodes represent the input data. All
other nodes use a linear combination of the inputs with the nodes' weights and bias, as well as an activation or relation mech-
anism, to map inputs to outputs (Dua et al., 2017).

3.5.7. Performance Metrics

The appropriate performance metrics to assess ML algorithms using Android permission datasets must be defined. The per-
formance metrics should therefore be appropriate for the topic under review. We will use notable methods of machine learning
in this research: SVM, random forest, and extreme machine learning (ELM) since these methods are known for their classifi-
cation capabilities (AlGethami et al., 2021). These performance metrics are accuracy, precision, and recall. A simpler way to
measure a classifier's performance is to use the confusion matrix. The classification of each testing instance falls within four
cases described as follows:

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2063

a. True positive (TP): malicious cases that were correctly classified by the algorithm as malicious.
b. True negative (TN): benign cases that were correctly classified by the algorithm as benign.
c. False positive (FP): benign cases that were incorrectly classified by the algorithm as malicious.
d. False negative (FN): malicious cases that were incorrectly classified by the algorithm as benign.

To determine the performance metrics, the four above values are used (AlGethami et al., 2021). Accuracy is the proportion
of correctly categorized instances in the test dataset with the total number of instances as shown by Eq. (4): 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = TP + TNTP + TN + FP + FN (4)

The accuracy of the positive predictions; is called the precision and can be calculated by the following equation: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TPTP + FP (5)

Precision, or a true positive rate, is widely used with another metric called recall (Géron, 2019). The recall is the ratio of
positive instances correctly identified by the classifying classifier, which the following equation can calculate: 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (6)

Accuracy is the most important metric for this study since it shows the efficient ML algorithm percentage of the testing
instances being classified (AlGethami et al., 2021).

4. Implementation

This section shows all the information related to the methods of implementing the various sets of experiments in this project.
This section will illustrate the steps needed to preprocess the Android permission datasets. Furthermore, we will demonstrate
the most common testing option for several tools such as DROP for noise insertion and cleaning, EvoloPy for feature selection,
and Weka for statistical features selection and classification. In addition to the device configurations for the system used to
conduct the experiments.

4.1. Dataset balancing

In real-world datasets, there is an imbalanced distribution of samples from various groups. The classifier techniques are inca-
pable of dealing with this issue. In the literature, typical data balancing approaches rely on data sampling, which involves
either under sampling or oversampling the majority or the minority, respectively. The learning performance should be im-
proved by a clever combination of under-sampling the majority class and oversampling the minority class (Susan et al., 2019).
Table 2 shows the details of the dataset understudy, it is obvious that the dataset is imbalanced since the benign label is more
than the malware labels. Imbalance data need preprocesses to get balanced data from the majority or minority. One of the
solutions suggested was Synthetic Minority Oversampling (SMOTE). In SMOTE extra minority samples are produced along
the line segment between two available minority samples, with no regard for the samples in the adversarial majority class.
SMOTE has been studied on various datasets that have different degrees of imbalance and differing quantities of data in
training sets. The result shows that it provides an approach to oversampling that can improve the accuracy of classifiers for a
minority class. SMOTE algorithm is shown in Fig. 9 (Chawla et al,. 2002).

Table 1
dataset under study details

Name Format Source Instances Features Labels Label /Instance
Static Analysis of Android be-

nign and malware apps json Kaggle 8315 175 2 Benign: 4304
Malware:4011

To oversample our dataset, we used open-source ML software called the workbench for machine learning (WEKA). WEKA
offers learning algorithm implementations that you can easily implement on your dataset. It also contains several methods for
dataset transformation, such as discretionary and sampling algorithms. WEKA has been developed in New Zealand at the
University of Waikato (Witten et al., 2016). Fig. 6 shows our dataset before balancing, and as we can notice the benign is
bigger than malware by 293 instances. SMOTE is one of the algorithms supported in WEKA, hence we used it using the
configuration shown in Fig. 7. The percentage number that appears in the config window represents the amount of over
sampling and we used here 7.305 since 1.07305 * 4011 (number of malware class instances) = 4034, which equals the number
of benign instances. Fig. 10 shows the number of class instances after oversampling using the SMOTE algorithm presented
in Figure 9. Our Android permission dataset is binarized which only has usable values: 0 permission is not used, 1: used
permission. When we observe the dataset file after sampling, we notice that some of the new values entered by SMOTE are

 2064

not 0 or 1 as shown in Fig. 8. In order to overcome this issue, we rounded the values to the nearest number (below 0.5 will be
0, and 0.5 or above will be considered 1).

Fig. 5. dataset labels count before balancing

Fig. 6. SMOTE Configuration in WEKA

Fig. 7. dataset after balancing

Algorithm SMOTE(T, N, k)
Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest
neighbors k
Output: (N/100) * T synthetic minority class samples
1. (∗ If N is less than 100%, randomize the minority class samples as only a random
percent of them will be SMOTEd. ∗)
2. if N < 100
3. then Randomize the T minority class samples
4. T = (N/100) ∗ T
5. N = 100
6. endif
7. N = (int) (N/100) (∗ The amount of SMOTE is assumed to be in integral multiples of
100. ∗)
8. k = Number of nearest neighbors
9. numattrs = Number of attributes
10. Sample[][]: array for original minority class samples
11. newindex: keeps a count of number of synthetic samples generated, initialized to 0
12. Synthetic[][]: array for synthetic samples
(∗ Compute k nearest neighbors for each minority class sample only. ∗)
13. for i ← 1 to T
14. Compute k nearest neighbors for i, and save the indices in the nnarray
15. Populate (N, i, nnarray)
16. endfor
 Populate (N, i, nnarray) (∗ Function to generate the synthetic samples. ∗)
17. while N ≠ 0
18. Choose a random number between 1 and k, call it nn. This step chooses one of
the k nearest neighbors of i.
19. for attr ← 1 to numattrs
20. Compute: dif = Sample[nnarray[nn]][attr] − Sample[i][attr]
21. Compute: gap = random number between 0 and 1
22. Synthetic[newindex][attr] = Sample[i][attr] + gap ∗ dif
23. endfor
24. newindex++
25. N = N − 1
26. endwhile
27. return (∗ End of Populate. ∗)
End of Pseudo-Code.

Fig. 8. SMOTE algorithm (Chawla et al., 2002)

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2065

Fig. 9. dataset labels count after balancing

4.2. Noise insertion and filtering

In this section, we present an overview of the use of noise insertion and cleaning algorithms and the tools we used to perform
the noise cleaning and insertion. After that, we will use these algorithms in our Android permission datasets and present the
details and results of the experiment.

4.2.1. Using Noise insertion and cleaning in ML algorithms

The accuracy of ML algorithms may be affected by the presence of noise. Noise may take various forms, such as wrongly
labeled and classified data or instances. A noise presence may affect the efficiency and accuracy of ML-based dataset, partic-
ularly in real-life situations where noisy information is more likely to occur. The effect of noise on the accuracy of the ML-
based Android permission in this project is empirically investigated through a significant number of experiments. We will
examine the impact on the efficacy of ML-based Android permissions of mislabeled instances. Various noise level is injected,
and the accuracy of classification is investigated. The aim of using an ML algorithm to analyze noise is to measure the ro-
bustness of various ML algorithms in noisy situations. In other words, our objective is to find the most noise tolerant ML
algorithm. This section shows an explanation of the proposed set of experiments on our Android permission datasets, specif-
ically, noise injection, noise filtering, and the tool that is used to conduct the experiments.

Our Android permission dataset originally was in json format, we converted it into csv in order to handle the data easily. The
tool we used for the noise insertion and cleaning algorithms is developed in C language and requires the dataset to be in NUM
format (Wilson et al., 2000). In order to make our dataset in num file format we write a program in Python to convert our
dataset from csv to num and also to return the files from num to csv format. Before any instance reduction algorithm was
implemented, noise was also injected into full datasets. Adding noise is primarily accomplished by altering the original class
of certain instances in a dataset. The noise can be applied manually or automatically; in our experiments, the noise was auto-
matically inserted. The noise ratio determines the number of instances affected: (i.e., 5 percent, 10 percent, or 20 percent of
instances). The instances that are affected by this process are randomly selected. The experiments were run over 10-fold cross-
validation and then averaged for each combination of a dataset and an instance reduction algorithm. Each fold created nearly
the same number of instances. The noise insertion and cleaning algorithms used in this experiment were kNN, ENN, Explore,
DROP3, and DROP5. We ran the algorithms with different ratios at the same time (i.e., ENN with 0%, 5%, 10%, and 20%).

4.3. Feature selection

Choosing a subset of appropriate features to be used in the model. Features that are relatively uncommon, as well as features
that are used by all classes, should be excluded. The aim of feature selection is to boost predictor accuracy, provide faster and
more cost-effective predictors, and learn more about the data's underlying mechanism. In this work we will use evolutionary
and statistical feature selection techniques, we will perform feature selection techniques on datasets of different noise ratios
to observe whether the noise will have an impact on feature selection or not.

4.3.1. Statistical feature selection

Various statistical feature selection techniques have been proposed. We will use correlation-based feature selection (CFS). In
order to perform the statistical feature selection on our dataset we will use WEKA. The input for the WEKA is the result of
the best noise cleaning algorithm with different ratios from the previous section. Our objective is to observe the effect of the
noise on the feature selection on different noise ratios.

4.3.2. Evolutionary feature selection

Feature selection becomes important as the size and complexity of datasets grow. Evolutionary feature selection includes such
as genetic algorithms, genetic programming, ant colony optimization, or particle swarm optimization algorithms. Such strat-
egies are ideal for selecting features since the rendering of a feature subset is simple and the assessment can also be performed
easily by wrapping or filter algorithms. In this work, we will conduct our experiments on the same datasets we used on the
statistical feature selection. The experiment will be on two evolutionary feature selection algorithms: Grey Wolf Optimizer
(GWO) and Firefly Algorithm (FFA). The tool we used is a Python open-source optimization framework called EvoloPy-FS.
EvoloPy-FS consists of a variety of well-considered swarm intelligence (SI) algorithms. It is aimed at optimizing feature

 2066

selection issues. It is a framework that is simple to use, reusable, and adaptable. Eight metaheuristic optimizers were intro-
duced in the framework, including particle swarm optimization (PSO), firefly algorithm (FFA), gray wolf optimizer (GWO),
whale optimization algorithm (WOA), multi-verse optimizer (MVO), moth-flame optimization (MFO) algorithm, bat algo-
rithm (BAT), and cuckoo search (CS). EvoloPy-FS allows you to load your dataset as a CSV file either as a physical path or
URL (Abu Khurma et al., 2020). In this experiment we will use the result of the best noise cleaning algorithm, the input will
be four datasets based on different noise ratios. While the result will be 8 datasets since we are going to use two different
optimizers GWO and FFA.

4.4. Classification

The purpose of this work is to look at the factors that may affect the classification accuracy of ML-based Android malware
detection systems. To do this, we will use WEKA. There are many categories of classifiers in WEKA including Bayesian
classifiers, trees, rules, functions, lazy classifiers, and a final miscellaneous category. In this work, we will use different
classification algorithms from different categories in order to evaluate their performance. The algorithms we will use are K-
Nearest-Neighbor (IBk), Multilayer Perceptron (MLP), and Random Forest (RF). In order to get the accuracy of the classifi-
cation algorithms, the datasets class values should be nominal rather than numeric. Since ML algorithms can only be compared
to datasets with nominal class values, we convert the class values in our datasets from numeric values to nominal for the class
attribute only.

4.5. Device Configuration

In this work, we used a MacBook Pro laptop (Retina, 13-inch, Early 2015), with a CPU processor 2.9 GHz Intel Core i5, 8
GB 1867 MHz DDR3. The operating system is MacOS Catalina version 10.15.7.

5. Research results and discussions

We will discuss the result of the experiments we perform in this work. The experiments are grouped based on their types:
noise insertion and cleaning, feature selection, and finally, classification. The goal of the research is to find the most noise
tolerance classifier for detecting Android malware applications.

5.1. Noise insertion and cleaning

The existence of noise can influence the accuracy of machine learning algorithms. Data or instances that have been incorrectly
labeled and categorized are examples of noise. In this experiment, we will perform noise insertion and cleaning. Since many
datasets have noise by default the instance cleaning will result in a more capable learning model. Our objective is to find the
most accurate noise cleaning algorithm. We will use the noise cleaning algorithms introduced in subsection 4.4.2.

Before any noise cleaning algorithm is implemented, the noise was injected into datasets. In our experiments, the noise was
automatically inserted. The noise ratio determines the number of instances affected: (i.e., 5 percent, 10 percent, or 20 percent
of instances). The instances that are affected by this process are randomly selected. The noise insertion and cleaning algorithms
used in this experiment were: kNN, ENN, Explore, DROP3, and DROP5. We ran the algorithms with different ratios at the
same time (i.e., ENN with 0%, 5%, 10%, and 20%). The execution time varies based on the algorithm used. For example, the
ENN takes about two to three hours for execution and DROP3 takes 40 hours on average for different noise ratios. The
experiment of executing DROP5 with 0% noise took more than 96 hours of running time. Other DROP5 noise insertion took
a significant amount of time also as shown in Table 3.

Table 2
Noise cleaning algorithms execution duration

Noise cleaning algorithm 0% 5% 10% 20%

kNN (none) 4 Hours 6 Hours 7 Hours 8 Hours

DROP5 96 Hours 88 Hours 80 Hours 70 Hours

DROP3 46 hours 40 hours 35 Hours 27 Hours

ENN 8 Hours 12 Hours 14 Hours 18 Hours

Explore 6 Hours 8 Hours 9 Hours 10 Hours

The detailed result of our experiment with all the trails information for all algorithms is shown in Table 4. Another summa-
rized table for the result is shown in Table 5, and a comparison of the accuracy between the algorithms is shown in Fig. 11.

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2067

Table 3
detailed result of using noise insertion and cleaning algorithm

Noise
Ratio

Trail None (kNN) ENN DROP5 DROP3 Explore
Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size

0% 1 89.00 100.00 87.83 89.22 89.33 8.20 88.00 6.30 86.67 0.04
2 89.00 100.00 86.83 88.98 89.33 7.85 87.67 6.30 86.83 0.04
3 88.83 100.00 86.83 89.13 87.67 7.74 86.17 6.46 85.17 0.04
4 90.00 100.00 88.50 89.19 88.83 8.56 88.83 6.54 86.17 0.04
5 88.17 100.00 87.17 89.13 86.50 7.93 86.33 7.17 86.17 0.04
6 90.33 100.00 89.67 88.81 89.17 8.04 88.67 6.85 86.17 0.04
7 86.67 100.00 86.33 88.91 87.17 7.70 86.67 6.46 82.67 0.04
8 88.00 100.00 88.33 89.26 87.17 8.35 87.83 6.98 84.00 0.04
9 87.83 100.00 87.67 89.13 87.50 8.59 88.00 7.02 85.00 0.04
10 89.50 100.00 87.67 89.04 88.83 8.13 90.50 6.89 85.50 0.04

Avg. 88.73 100.00 89.83 89.08 88.15 8.11 87.87 6.70 85.43 0.04
5% 1 88.33 100.00 87.17 84.85 88.50 9.11 88.33 5.76 86.17 0.04

2 87.83 100.00 86.33 84.46 87.50 7.94 86.67 6.59 85.33 0.07
3 88.33 100.00 86.17 84.78 87.67 8.44 86.67 6.00 86.17 0.17
4 88.33 100.00 88.5 84.89 88.00 9.70 89.00 6.48 87.33 0.11
5 86.17 100.00 85.83 84.96 85.83 8.04 85.50 6.63 85.83 0.15
6 90.17 100.00 89.17 84.57 90.17 9.09 89.67 6.67 88.00 0.19
7 85.17 100.00 84.33 84.94 85.00 10.06 85.67 5.91 84.83 0.15
8 86.33 100.00 88.00 84.89 85.83 8.78 87.67 6.72 86.33 0.13
9 86.67 100.00 86.5 84.91 86.17 9.33 86.17 7.11 87.00 0.15
10 89.50 100.00 89.17 84.56 90.17 8.61 89.00 6.22 87.00 0.11

Avg. 87.68 100.00 87.12 84.78 87.48 8.91 87.43 6.41 86.40 0.13
10% 1 86.83 100.00 86.33 80.24 88.33 9.35 87.17 6.83 86.17 0.04

2 87.50 100.00 86.17 79.67 87.50 9.09 87.17 6.93 85.67 0.13
3 85.83 100.00 86.33 80.17 86.83 9.87 86.50 6.61 86.00 0.11
4 87.50 100.00 87.83 80.22 87.00 10.20 88.33 6.57 84.17 0.11
5 84.83 100.00 85.33 80.15 84.33 10.39 85.83 7.02 85.33 0.15
6 88.00 100.00 89.17 79.83 87.50 10.07 90.33 7.43 83.67 0.13
7 83.83 100.00 83.83 79.96 84.67 10.07 84.00 6.39 80.67 0.11
8 84.67 100.00 87.33 80.24 85.00 9.63 87.17 6.76 81.83 0.09
9 85.17 100.00 86.33 80.52 85.83 10.37 85.17 7.43 82.50 0.07
10 87.83 100.00 88.00 80.07 87.83 10.19 88.67 7.37 84.33 0.09

Avg. 86.20 100.00 86.67 80.11 86.48 9.92 87.03 6.93 84.03 0.10
20% 1 83.50 100.00 83.33 71.61 83.50 11.94 83.50 7.43 84.67 0.04

2 82.00 100.00 82.17 71.35 81.83 12.85 83.17 8.94 82.67 0.13
3 81.67 100.00 85.00 71.46 83.83 11.65 84.33 7.81 87.17 0.09
4 83.17 100.00 87.00 71.41 86.83 12.91 87.33 8.43 87.50 0.09
5 80.17 100.00 83.50 71.59 80.83 11.93 81.67 8.80 85.83 0.11
6 81.17 100.00 85.17 71.70 84.33 12.02 87.00 9.09 88.50 0.13
7 80.17 100.00 81.17 71.52 81.83 12.81 81.50 8.57 85.00 0.13
8 81.33 100.00 85.33 71.65 83.83 11.59 85.83 8.46 86.50 0.11
9 81.33 100.00 83.83 72.43 82.50 13.09 85.33 8.80 85.83 0.13
10 82.50 100.00 85.33 71.93 85.00 11.87 85.00 8.63 85.67 0.15

Avg. 81.70 100.00 84.18 71.66 83.43 12.27 84.47 8.50 85.93 0.11

Fig. 10. Comparison of the accuracy between the algorithms

Table 4
Summary of using noise insertion and cleaning algorithm

Noise Ratio None (kNN) ENN DROP5 DROP3 Explore
Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size

0% 88.73 100.00 89.83 89.08 88.15 8.11 87.87 6.70 85.43 0.04
5% 87.68 100.00 87.12 84.78 87.48 8.91 87.43 6.41 86.40 0.13

10% 86.20 100.00 86.67 80.11 86.48 9.92 87.03 6.93 84.03 0.10
20% 81.70 100.00 84.18 71.66 83.43 12.27 84.47 8.50 85.93 0.11

80

82

84

86

88

90

92

0 5 10 15 20 25

NOISE RATIO DIFFERENCE

kNN ENN DROP5 DROP3 Explore

 2068

We can notice from the previous results that DROP3 and ENN provide the best accuracy at all the noise insertion levels. We
also observe that their result might be close to each other but DROP 3 was better in almost all the noise insertion levels. The
following experiments will work on the Datasets of DROP 3 only since it is the best noise-cleaning algorithm.

5.2. Feature selection

Features that are not used by both classes, as well as features that are relatively rare, should be omitted. The objective of the
feature selection is to increase the accuracy and the performance. In this work, we will use evolutionary and statistical feature
selection techniques. The experiment will be performed on datasets of different noise ratios to observe whether the noise will
have an impact on feature selection or not, and finally, we will compare the provided results.

Statistical feature selection

Statistical feature selection methods involve evaluating the relationship between the features and the class using statistical
methods. In this work, we will use a statistical feature selection algorithm called Correlation-based Feature Selection (CFS).
In order to perform the statistical feature selection on our dataset we will use WEKA. The input for the WEKA is the result
of the DROP3 noise cleaning with different ratios. Our objective is to observe the effect of noise on the feature selection on
different datasets. That means we are doing the feature selection on four different datasets with noise ratios of 0%, 5%, 10%,
and 20%. After executing the statistical features selection, the total number of features we got in the four experiments was
66. Of these features, only 35 are unique as shown in Table 6. Five features from those 35 appear in all four experiments,
which are:

These features are shown in bold font in Table 6. The execution result for the feature selection on our dataset with a 20%
noise percentage is shown in Fig. 12.

Fig. 11. Result of Feature selection using WEKA on DROP3 with 20% noise dataset

Table 5
WEKA Statistical unique values with duplicate in all noise ratio in bold.

SN Permission SN Permission
1 android.permission.ACCOUNT_MANAGER 19 android.permission.WRITE_SECURE_SETTINGS
2 android.permission.BIND_DEVICE_ADMIN 20 android.permission.ACCESS_LOCATION_EXTRA_COMMANDS
3 android.permission.BLUETOOTH 21 android.permission.CALL_PRIVILEGED
4 android.permission.BODY_SENSORS 22 android.permission.DIAGNOSTIC
5 android.permission.DELETE_CACHE_FILES 23 android.permission.INSTALL_PACKAGES
6 android.permission.DELETE_PACKAGES 24 android.permission.MOUNT_FORMAT_FILESYSTEMS
7 com.android.launcher.permission.INSTALL_SHORTCUT 25 android.permission.RECEIVE_MMS
8 android.permission.INTERNET 26 android.permission.REQUEST_INSTALL_PACKAGES
9 android.permission.MANAGE_DOCUMENTS 27 com.android.alarm.permission.SET_ALARM

10 android.permission.MEDIA_CONTENT_CONTROL 28 android.permission.STATUS_BAR
11 android.permission.MOUNT_UNMOUNT_FILESYSTEMS 29 android.permission.USE_SIP
12 android.permission.PROCESS_OUTGOING_CALLS 30 android.permission.ACCESS_WIFI_STATE
13 android.permission.READ_LOGS 31 android.permission.BIND_APPWIDGET
14 android.permission.READ_PHONE_STATE 32 android.permission.REBOOT
15 android.permission.REORDER_TASKS 33 android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
16 android.permission.SEND_SMS 34 android.permission.PACKAGE_USAGE_STATS
17 android.permission.SET_PREFERRED_APPLICATIONS 35 android.permission.USE_FINGERPRINT
18 android.permission.WRITE_EXTERNAL_STORAGE

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2069

5.2.1 Evolutionary feature selection

Evolutionary feature selection includes many naturally inspired techniques. Such techniques are ideal for selecting features
since the rendering of a feature subset is simple and the assessment can also be performed easily. The ability of such heuristic
algorithms to search vast areas efficiently benefits the selection of features. We will conduct our experiments on the same
datasets we used on the statistical feature selection. The experiment will be on two evolutionary feature selection algorithms:
Grey Wolf Optimizer (GWO) and Firefly Algorithm (FFA). The first experiment we conducted on our dataset using the
EvoloPy tool was using the gray wolf optimizer (GWO). In the experiment, we use four datasets with different noise ratios.
The total number of features in the dataset was 172. The unique values selected in all the datasets (every dataset with different
noise ratio: 0, 5, 10, and 20%) was 159 features. Only eleven features were selected in the four datasets and are listed below:

Our second experiment in evolutionary feature selection is done using the Firefly algorithm (FFA). We used four datasets of
varying noise levels in the experiment of using FFA for feature selection. In the dataset, there were 172 features. The unique
features selected from the 4 datasets, while twelve features selected in every dataset are listed below:

5.2.2 Comparison between statistical and evolutionary feature selection results

In this section, we will compare the statistical and evolutionary feature selection in terms of the number of features selected
by different algorithms and the most selected features by all algorithms, in addition to the relation between the top ten benign
and malware applications and the feature selection. In order to start our comparison, we should know that the statistical feature
selection algorithms work based on the correlation between a feature to feature or feature to class. On the other hand, the
evolutionary feature selection algorithms work based on finding global optimization with randomization in feature selections
and natural selection of parameters. The way each type of feature selection works explains the difference in numbers between
the features selected. The number of features in the statistical algorithms is below 20 (out of 172 features) due to its work
since it focuses on the correlation between the features and classes. While for the evolutionary, the algorithms always try to
optimize their selection. This can be shown in the number of selected features in these algorithms, which vary between 79
and 93 features, as shown in Table 7.

Table 7
Number of features selected by each algorithm

Noise ratio/ Algorithm GWO FFA Statistical
0% 79 88 19
5% 87 90 18
10% 93 87 16
20% 84 88 12

 2070

In this experiment, we found that some of the features are selected by the optimizer or FS algorithm despite the noise ratio
injected into the dataset. As shown in Table 8.

We can observe from the table permissions like READ_PHONE_STATE, MOUNT_UNMOUNT_FILESYSTEMS, INTER-
NET, and ACCESS_WIFI_STATE is selected in two FS algorithm and at every noise ratio level. This is because these per-
missions have an effect on the accuracy of the classification, and it has an impact on whether the classifier will classify this
application as benign or malware. Moreover, the following two permissions were never selected by the FS algorithm:

That is because the first permission was never used by any application, while the second permission appears in seven appli-
cations out of more than 8000 applications.

FS algorithms often select the features or permission that have an impact on the classification. To clarify that, we will show
the top ten benign and malware permissions and how many times the FS algorithms selected them in Table 9 and Table 10.
We can notice that the FS algorithms detect the importance of these features with the exitance of noise. From Table 9, we can
see the popular permissions used by benign applications. We notice from the table that the permissions WAKE_LOCK, VI-
BRATE, and READ_PHONE_STATE are used widely among benign applications. Moreover, when we compare Table 9 and
Table 10, we can observe that, in general, benign applications tend to request fewer permissions than malware applications.
On the other hand, we can observe from Table 10: WRITE_EXTERNAL_STORAGE, SYSTEM_ALERT_WINDOW, and
CHANGE_WIFI_WINDOW are used widely among malware apps since attackers used these permissions to achieve their
malicious goals.

Table 8
Permission that appears in every evolutionary and statistical optimizers and all noise ratios

SN Permission Appear in
1 com.android.launcher.permission.INSTALL SHORTCUT Statistical
2 android.permission.MOUNT_UNMOUNT_FILESYSTEMS Statistical & FFA
3 android.permission.READ_PHONE_STATE Statistical & FFA
4 android.permission.REORDER_TASKS Statistical & FFA
5 android.permission.SEND_SMS Statistical
6 android.permission.ACCEPT_HANDOVER GWO
7 android.permission.ACCESS_COARSE_LOCATION GWO
8 android.permission.ACCESS_NOTIFICATION_POLICY GWO
9 android.permission.ACCESS_WIFI_STATE GWO & FFA
10 android.permission.BLUETOOTH GWO
11 android.permission.BODY_SENSORS GWO
12 android.permission.CHANGE_WIFI_STATE GWO
13 android.permission.CLEAR_APP_CACHE GWO
14 android.permission.INTERNET GWO & FFA
15 android.permission.MANAGE_OWN_CALLS GWO
16 android.permission.SET_TIME GWO
17 android.permission.ACCESS_MEDIA_LOCATION FFA
18 android.permission.BIND_CARRIER_MESSAGING_SERVICE FFA
19 android.permission.DELETE_PACKAGES FFA
20 android.permission.KILL_BACKGROUND_PROCESSES FFA
21 android.permission.READ_SYNC_STATS FFA
22 android.permission.UPDATE_DEVICE_STATS FFA
23 android.permission.WRITE_CALL_LOG FFA

Table 9
Top 10 permissions selected by benign apps and number selections by the FS algorithms

SN Permission Number of used apps Number of times selected by optimizer (max = 12)
1 android.permission.INTERNET 3609 12
2 android.permission.ACCESS_NETWORK_STATE 3365 4
3 android.permission.WRITE_EXTERNAL_STORAGE 2553 5
4 android.permission.WAKE_LOCK 1825 4
5 android.permission.VIBRATE 1588 5
6 android.permission.READ_PHONE_STATE 1424 12
7 android.permission.RECEIVE_BOOT_COMPLETED 1391 4
8 android.permission.ACCESS_WIFI_STATE 1384 12
9 android.permission.READ_EXTERNAL_STORAGE 963 5
10 android.permission.ACCESS_FINE_LOCATION 874 4

Table 6
Top 10 permissions selected by benign Apps and number selections by the FS algorithms

SN Permission Number of used apps Number of times selected by optimizer (max = 12)
1 android.permission.INTERNET 3827 12
2 android.permission.ACCESS_NETWORK_STATE 3797 4
3 android.permission.WRITE_EXTERNAL_STORAGE 3733 5
4 android.permission.READ_PHONE_STATE 3719 12
5 android.permission.ACCESS_WIFI_STATE 3582 12
6 android.permission.WAKE_LOCK 3033 4
7 android.permission.GET_TASKS 2998 3
8 android.permission.VIBRATE 2692 5
9 android.permission.SYSTEM_ALERT_WINDOW 2460 2

10 android.permission.CHANGE_WIFI_STATE 2451 12

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2071

In Fig. 13, we combine the top ten benign and malware features and how many times they were selected. We can notice that
all FS algorithms selected permissions like permissions: INTERNET, READ_PHONE_STATE, ACCESS_WIFI_STATE,
and CHANGE_WIFI_STATE. We can also observe that most of the features were selected by at least two algorithms. This
clarifies that FS algorithms focus on the important features which usually have an impact on the classifications.

Fig. 12. Top 10 Benign and Malware Features selected by the optimizer

5.3 Classification

This section will present the result of our experiment on the classification accuracy of the ML-based Android malware detec-
tion dataset. The algorithms we will use are k-nearest-neighbor (IBk), multilayer perceptron (MLP), and random forest (RF).
The experiments were done based on the result of the feature selection in the previous section; we ran the experiment on the
not optimized dataset (all features included). The result of these experiments is shown in Table 11. The experiments using no
optimization achieve the best result in all the experiments. Nevertheless, on the other side, it takes a long time. As we can see
in Table 11, at noise level 0, the time to build a model using the MLP classifier takes about 35 seconds, but the same classifier
takes less than nine seconds in GWO and FFA. ML algorithms accuracy using no optimizer varies between 84.16% - 88.88%,
as we can see in Fig. 14. The best ML algorithm accuracy result was by the RF classifier.

Fig. 13. ML algorithms accuracy using No Optimizer Fig. 14. ML algorithms accuracy using FFA optimizer

The worst result among all FS algorithms occurs using the FFA optimizer, where the accuracy varies between 74.80% -
85.35%, as shown in Figure 15. The best ML algorithm accuracy result was by the RF classifier. In addition, the ML algo-
rithms’ accuracy using statistical feature selection varies between 80.82% - 84.24%, as shown in Figure 16. There was no best
ML algorithm in this experiment since the best ML algorithm changes with different noise levels. The ML algorithms accuracy
using GWO optimizer achieve the best results in our experiments. The accuracy varies between 81.01% - 87.34%, as shown
in Figure 17. The best ML algorithm accuracy result was by the RF classifier.

0
2
4
6
8

10
12
14

Top 10 Benign and Malware Features selected by the optimizer

FFA GWO Statistical Total

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

0 5 10 20

Ac
cu

ra
cy

Noise ratio

ML algorithms accuracy using No Optimizer
(Select All features)

IBK MLP

68.00%
70.00%
72.00%
74.00%
76.00%
78.00%
80.00%
82.00%
84.00%
86.00%
88.00%

0 5 10 20

Ac
cu

ra
cy

Noise ratio

ML algorithms accuracy using FFA optimizer

IBK MLP

 2072

Table 71
The Results of Running ML Algorithms on Android malware dataset

Noise ratio Optimizer ML Algorithm Accuracy Recall Precision TP TN FP FN Time/s

0%

No Optimizer
IBK 85.96% 0.860 0.860 1148 156 1094 210 0
MLP 87.46% 0.875 0.875 1168 136 1113 191 35.95
RF 88.42% 0.884 0.884 1191 113 1115 189 0.54

Firefly Algorithm (FFA)
IBK 81.28% 0.813 0.816 1122 182 998 306 0
MLP 84.24% 0.842 0.843 1129 175 1068 236 8.54
RF 84.35% 0.844 0.846 1152 152 1048 256 0.29

Grey Wolf Optimizer (GWO)
IBK 81.71% 0.817 0.819 1119 185 1012 292 0
MLP 83.01% 0.830 0.830 1081 223 1084 220 7.49
RF 85.16% 0.852 0.852 1128 176 1093 211 0.22

Statistical
IBK 82.66% 0.827 0.835 1181 123 975 329 0
MLP 81.55% 0.816 0.825 1173 131 954 350 0.57
RF 82.63% 0.826 0.836 1189 115 966 338 0.1

5%

No Optimizer
IBK 85.85% 0.859 0.859 1144 160 1095 209 0
MLP 88.34% 0.883 0.884 1172 132 1132 172 31.53
RF 87.99% 0.880 0.882 1196 108 1099 205 0.4

Firefly Algorithm (FFA)
IBK 80.55% 0.806 0.812 1143 161 958 346 0
MLP 82.59% 0.826 0.828 1132 172 1022 282 8.21
RF 83.97% 0.840 0.843 1157 147 1033 271 0.41

Grey Wolf Optimizer (GWO)
IBK 82.66% 0.827 0.827 1109 195 1047 257 0
MLP 81.44% 0.814 0.814 1058 246 1066 238 7.41
RF 85.19% 0.852 0.852 1105 199 1117 187 0.28

Statistical
IBK 84.12% 0.841 0.851 1208 96 986 318 0
MLP 84.24% 0.842 0.852 1207 97 990 314 0.51
RF 83.39% 0.834 0.845 1206 98 969 335 0.08

10%

No Optimizer
IBK 85.73% 0.857 0.859 1158 146 1078 226 0
MLP 87.30% 0.873 0.873 1140 164 1137 167 37.88
RF 88.72% 0.887 0.888 1184 120 1130 174 0.47

Firefly Algorithm (FFA)
IBK 83.55% 0.836 0.838 1143 161 1036 268 0
MLP 84.35% 0.844 0.846 1154 150 1046 258 9.02
RF 85.35% 0.854 0.854 1145 159 1081 223 0.4

Grey Wolf Optimizer (GWO)
IBK 85.12% 0.851 0.851 1122 182 1098 206 0
MLP 84.89% 0.849 0.849 1131 173 1083 221 10.75
RF 87.34% 0.873 0.873 1136 168 1142 162 0.29

Statistical
IBK 81.51% 0.815 0.815 1082 222 1044 260 0
MLP 80.82% 0.808 0.809 1081 223 1027 277 0.51
RF 81.59% 0.816 0.816 1084 220 1044 260 0.1

20%

No Optimizer
IBK 84.16% 0.842 0.846 1173 131 1022 282 0
MLP 86.11% 0.861 0.862 1158 146 1088 216 43.12
RF 88.88% 0.889 0.889 1179 125 1139 165 0.45

Firefly Algorithm (FFA)
IBK 74.80% 0.748 0.748 961 343 990 314 0
MLP 76.68% 0.767 0.767 970 334 1030 274 10.63
RF 78.60% 0.786 0.788 971 333 1079 225 0.3

Grey Wolf Optimizer (GWO)
IBK 81.01% 0.810 0.820 1173 131 940 364 0
MLP 82.86% 0.829 0.830 1125 179 1036 268 9.87
RF 85.92% 0.859 0.860 1139 165 1102 202 0.37

Statistical
IBK 83.81% 0.838 0.848 1202 102 984 320 0
MLP 82.09% 0.821 0.831 1183 121 958 346 0.36
RF 82.82% 0.828 0.836 1180 124 980 324 0.07

Fig. 15. ML algorithms accuracy using Statistical feature

selection
Fig. 16. ML algorithms accuracy using GWO optimizer

79.00%

80.00%

81.00%

82.00%

83.00%

84.00%

85.00%

0 5 10 20

Ac
cu

ra
cy

Noise ratio

ML algorithms accuracy using Statistical optimizer

IBK MLP
RF

77.00%
78.00%
79.00%
80.00%
81.00%
82.00%
83.00%
84.00%
85.00%
86.00%
87.00%
88.00%

0 5 10 20

Ac
cu

ra
cy

Noise ratio

ML algorithms accuracy using GWO optimizer

IBK MLP

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2073

Since the previous experiment shows that the best accuracy results were achieved by using GWO, we want to compare the
classifier accuracy results in GWO and without GWO. Our aim from the comparison is to find the effect of the feature selection
on the classification accuracy. Fig. 18 shows the result of the comparison. We can notice that the difference between using
GWO and no optimization accuracy varies between 1.38% to 3.26% for the advantage of no optimization. In terms of time,
Table 13 shows the amount of time taken to build the model. We can notice that the time difference is up to 40% for the
advantage of GWO. The previous results show that using feature selection will have a small decrease in accuracy, but there
will be a significant increase in performance.

Fig. 17. Compare the best classifier accuracy results between GWO and no optimization

6. Conclusions and Future Work

The results from the empirical experiments show that the proposed model can detect Android malware with an accuracy that
reaches 87%, despite the noise in the dataset. We also find that the best noise filtering algorithm is DROP3, the best feature
selection algorithm is GWF, and the best classification results are achieved using the RF algorithm. This work can be extended
in many ways. One of the recommended tasks to be done in the future is to apply higher noise ratios and run more classifiers
and optimizers. We also believe that adding the Android intents and API calls can increase the accuracy and help in detecting
more malware. Building a web-based framework that takes an Android application as an .apk file and determines whether it
is benign or malware can be included in the future.

References

Abdullah, Z., Muhadi, F. W., Saudi, M. M., Hamid, I. R. A., & Foozy, C. F. M. (2020). Android ransomware detection based
on dynamic obtained features. In Recent Advances on Soft Computing and Data Mining: Proceedings of the Fourth Inter-
national Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia, January 22– 23, 2020 (pp.
121-129). Springer International Publishing.

Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance comparison of support vector machine, random forest,
and extreme learning machine for intrusion detection. IEEE access, 6, 33789-33795.

Al Khayer, A., Almomani, I., & Elkawlak, K. (2020, November). ASAF: Android static analysis framework. In 2020 First
International Conference of Smart Systems and Emerging Technologies (SMARTTECH) (pp. 197-202). IEEE.

Alenezi, M., & Almomani, I. (2017, October). Abusing android permissions: A security perspective. In 2017 IEEE Jordan
Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1-6). IEEE.

Alenezi, M., & Almomani, I. (2018). Empirical analysis of static code metrics for predicting risk scores in android applica-
tions. In 5th International Symposium on Data Mining Applications (pp. 84-94). Springer International Publishing.

Al-Gethami, K. M., Al-Akhras, M. T., & Alawairdhi, M. (2021). Empirical evaluation of noise influence on supervised ma-
chine learning algorithms using intrusion detection datasets. Security and Communication Networks, 2021, 1-28.

Almomani, I., & Alenezi, M. (2019). Android application security scanning process. In Telecommunication Systems-Princi-
ples and Applications of Wireless-Optical Technologies. London, UK.: IntechOpen.

Almomani, I., & Khayer, A. (2019, April). Android applications scanning: The guide. In 2019 International Conference on
Computer and Information Sciences (ICCIS) (pp. 1-5). IEEE.

Alqatawna, J. F., Ala’M, A. Z., Hassonah, M. A., & Faris, H. (2021). Android botnet detection using machine learning models
based on a comprehensive static analysis approach. Journal of Information Security and Applications, 58, 102735.

Alsoghyer, S., & Almomani, I. (2019). Ransomware detection system for Android applications. Electronics, 8(8), 868.
Alsoghyer, S., & Almomani, I. (2020, March). On the effectiveness of application permissions for Android ransomware de-

tection. In 2020 6th conference on data science and machine learning applications (CDMA) (pp. 94-99). IEEE.
Amro, A., Al-Akhras, M., Hindi, K. E., Habib, M., & Shawar, B. A. (2021). Instance reduction for avoiding overfitting in

decision trees. Journal of Intelligent Systems, 30(1), 438-459.

84.00%
85.00%
86.00%
87.00%
88.00%
89.00%
90.00%

0 5 10 15 20 25

Ac
cu

ra
cy

Noise ratio

Best no optimization VS best optimization

No Opt (RF) GWO (RF)

 2074

AndroidDeveloper. <permission>. 2020. https://developer.android.com/guide/topics/manifest/permission-element (accessed
2 20, 2021).

AndroidDeveloper. Manifest.permission. 2020. https://developer.android.com/reference/android/Manifest.permission (ac-
cessed 3 1, 2021).

AndroidDeveloper. Permissions on Android. 2020. https://developer.android.com/guide/topics/permissions/overview (ac-
cessed 2 20, 2021).

AndroidDeveloper. SDK Platform release notes. 2020. https://developer.android.com/studio/releases/platforms (accessed 2
19, 2021).

AndroZoo. Home. 2020. https://androzoo.uni.lu/ (accessed 2 21, 2021).
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, February). Drebin: Effective

and explainable detection of android malware in your pocket. In Ndss (Vol. 14, pp. 23-26).
Arslan, R. S., Doğru, İ. A., & Barişçi, N. (2019). Permission-based malware detection system for android using machine

learning techniques. International journal of software engineering and knowledge engineering, 29(01), 43-61.
Aswini, A. M., & Vinod, P. (2014, February). Droid permission miner: Mining prominent permissions for Android malware

analysis. In The Fifth International Conference on the Applications of Digital Information and Web Technologies
(ICADIWT 2014) (pp. 81-86). IEEE.

Borah, P., Ahmed, H. A., & Bhattacharyya, D. K. (2014). A statistical feature selection technique. Network Modeling Analysis
in Health Informatics and Bioinformatics, 3, 1-13.

Brownlee, J. (2018). Better deep learning: train faster, reduce overfitting, and make better predictions. Machine Learning
Mastery.

Ceci,L. (accessed 02 24, 2021). StatistaResearchDepartment. Number of apps available in leading app stores 2020. 2 4, 2021.
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling tech-
nique. Journal of artificial intelligence research, 16, 321-357.

Choudhary, M., & Kishore, B. (2018, January). Haamd: Hybrid analysis for android malware detection. In 2018 International
Conference on Computer Communication and Informatics (ICCCI) (pp. 1-4). IEEE.

De La Iglesia, B. (2013). Evolutionary computation for feature selection in classification problems. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 3(6), 381-407.

Doğru, İ. A., & KİRAZ, Ö. (2018). Web-based android malicious software detection and classification system. Applied Sci-
ences, 8(9), 1622.

Doğru, İ. A., & Önder, M. (2020). AppPerm analyzer: malware detection system based on android permissions and permission
groups. International Journal of Software Engineering and Knowledge Engineering, 30(03), 427-450.

Dua, R., Ghotra, M. S., & Pentreath, N. (2017). Machine Learning with Spark. Packt Publishing Ltd.
Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
Kanwal, N., & Bostanci, E. (2016). Comparative Study of Instance Based Learning and Back Propagation for Classification

Problems. arXiv preprint arXiv:1604.05429.
Kerns, T. (accessed 2 19, 2021). There are now more than 2.5 billion active Android devices. 5 7, 2019. https://www.an-

droidpolice.com/2019/05/07/there-are-now-more-than-2-5-billion-active-android-devices/
Khurma, R. A., Aljarah, I., & Sharieh, A. (2020, July). Rank based moth flame optimisation for feature selection in the medical

application. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE.
Kiss, N., Lalande, J. F., Leslous, M., & Tong, V. V. T. (2016). Kharon dataset: Android malware under a microscope. In The

LASER Workshop: Learning from Authoritative Security Experiment Results (LASER 2016) (pp. 1-12).
Klein, K. (accessed 02 19, 2021). Industry Leaders Announce Open Platform for Mobile Devices. 11 05, 2007.

http://www.openhandsetalliance.com/press_110507.html.
Krajci, I., Cummings, D., Krajci, I., & Cummings, D. (2013). History and Evolution of the Android OS. Android on x86: An

Introduction to Optimizing for Intel® Architecture, 1-8.
Kumar, C. A., Sooraj, M. P., & Ramakrishnan, S. (2017). A comparative performance evaluation of supervised feature selec-

tion algorithms on microarray datasets. Procedia computer science, 115, 209-217.
Li, Y., Xiong, Z., Zhang, T., Zhang, Q., Fan, M., & Xue, L. (2022). Ensemble Framework Combining Family Information for

Android Malware Detection. The Computer Journal, bxac114.
McAfee. McAfee Labs Threats Report - November 2020. McAfee, 2020.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
O’Dea, S. (2020). Global market share held by the leading smartphone operating systems in sales to end users from 1st quarter

2009 to 2nd quarter 2018.
Qamar, A., Karim, A., & Chang, V. (2019). Mobile malware attacks: Review, taxonomy & future directions. Future Gener-

ation Computer Systems, 97, 887-909.
Russell, S. J. Norvig, P. (2020). Artificial intelligence: a modern approach. Pearson Education, Inc.
Susan, S., & Kumar, A. (2019). SSOMaj-SMOTE-SSOMin: Three-step intelligent pruning of majority and minority samples

for learning from imbalanced datasets. Applied Soft Computing, 78, 141-149.
Taylor, P. (accessed 2 24, 2021). https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-oper-

ating-systems/
Thon, J. "Static Analysis of Android Malware of 2017 ." Static Analysis of Android Malware of 2017 . Kaggle, 7 06, 2018.

M. AL-Akhras et al. / International Journal of Data and Network Science 7 (2023) 2075

Utku, A., & Dogru, İ. B. R. A. H. İ. M. (2017). Permission based detection system for android malware. Journal of the Faculty
of Engineering and Architecture of Gazi University, 32(4).

Wang, Z. (2018). Deep learning-based intrusion detection with adversaries. IEEE Access, 6, 38367-38384.
Wei, F., Li, Y., Roy, S., Ou, X., & Zhou, W. (2017). Deep ground truth analysis of current android malware. In Detection of

Intrusions and Malware, and Vulnerability Assessment: 14th International Conference, DIMVA 2017, Bonn, Germany,
July 6-7, 2017, Proceedings 14 (pp. 252-276). Springer International Publishing.

Wilson, D. R., & Martinez, T. R. (1997). Improved heterogeneous distance functions. Journal of artificial intelligence re-
search, 6, 1-34.

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine learning, 38,
257-286.

Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations.
Acm Sigmod Record, 31(1), 76-77.

Xiao, J., Chen, S., He, Q., Feng, Z., & Xue, X. (2020). An Android application risk evaluation framework based on minimum
permission set identification. Journal of Systems and Software, 163, 110533.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., ... & Wang, C. (2018). Machine learning and deep learning methods for
cybersecurity. Ieee access, 6, 35365-35381.

Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International journal of bio-inspired
computation, 2(2), 78-84.

 2076

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

