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 The main objectives of this research are to identify significant spatial and temporal components 
associated with diarrhea and provide an accurate forecast. Using data from the Bandung city health 
surveillance system, the analysis reveals a decreasing trend in both the number of incidences and 
the estimated relative risks of diarrhea in most districts. Key factors contributing to diarrhea var-
iation include temporally structured, spatially structured, and unstructured effects of space-time 
interaction Type I. No clear seasonal pattern is observed in diarrhea incidence among children 
under five, emphasizing the need for consistent vigilance and preventive measures. Spatial clus-
tering was observed in the eastern and western parts of Bandung city. The forecasting model pre-
dicts a continued decline in diarrhea incidence and relative risk throughout 2022.   
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1. Introduction 
 

 
Diarrhea is a significant health concern, especially for children younger than five (Jaya et al., 2019). Diarrhea in children is 
characterized by the presence of three or more liquid stools within a 24-hour period (Alebel et al., 2018; Li et al., 2020; Walker 
et al., 2013). The World Health Organization (WHO) reports that diarrhea is the most common cause of death among children. 
It is astounding that nearly 1.7 billion incidences of diarrhea among children under five years are reported annually worldwide. 
This results in the unexpected deaths of approximately 525,000 per year (Kotloff et al., 2017; WHO, 2017). Diarrhea remains 
a significant threat in Indonesia, especially among children under the age of five, despite a declining trend in incidence over 
the years. According to the Indonesian Ministry of Health, approximately four million cases of diarrhea in this age group were 
reported in 2018 (Ministry of Health RI, 2019). Bandung is one of the most populous cities in Indonesia, and has a concerning 
incidence of childhood diarrhea. According to Rahayu et al. (2023), the prevalence of diarrhea among toddlers in the city of 
Bandung in 2019 was 17,554 cases, accounting for 8.93% of the total toddler population in the same city. According to George 
et al. (2014) and Paul (2020), environmental variables and the adoption of hygienic and health-conscious behaviors are 
strongly correlated with the number of cases of diarrhea among children under 5. To control the spread of diarrhea, an effective 
and efficient early warning system (EWS) is necessary. It is essential, particularly for small cities like Bandung. Identifying 
hotspot areas is the first step in developing an early warning system (Fang et al., 2020; Jaya & Folmer, 2020, 2021, 2022). 
The spatiotemporal forecasting model has a chance of helping with the recognition of high-risk areas and facilitating the 
implementation of interventions that have been customized to reduce those risks. A key component of an early warning system 
is the utilization of spatiotemporal maps that monitor the spatial and temporal distribution of a disease. According to Ugarte 
et al. (2012), mapping disease risk provides significant insights into the spatiotemporal progression of the disease's incidence 
rate, enabling epidemiologists to enhance their understanding of disease outbreaks and develop relevant hypotheses. 
Because of limited data availability, it is difficult to develop spatiotemporal forecasts for diarrhea among children under 5. 
Data on the number of cases and the population at risk is generally available. While covariate variables such as weather and 
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socioeconomic variables are unavailable, especially for small areas. In this study, we consider developing a pure 
spatiotemporal model with two essential components: (i) the intercept component and (ii) the random effect component. The 
random effect component includes spatially and temporally structured and unstructured effects, seasonal components, and 
spatial and temporal interaction effects. The spatially structured effect captures the spatial clustering patterns observed in the 
data, while the spatially unstructured effect is responsible for spatial heterogeneity. Temporally structured and unstructured 
effects are included to account for temporal autocorrelation and temporal heteroscedasticity, respectively. In addition, the 
seasonal component is used to account for the regular pattern in diarrhea cases caused by seasonal variations. The spatial and 
temporal interaction effects are used to capture an extra variation that cannot be explained by the main spatial and temporal 
components (Jaya & Folmer, 2020).    
 

The simplicity of the univariate modeling approach is one of its primary advantages over multivariate models with covariates. 
Univariate models are simpler to implement and interpret because they focus on a single variable and do not require the 
forecasting of additional covariables. Even without covariates, univariate models can still generate accurate forecasts, 
especially when there is a strong autocorrelation among the observations. Univariate models can effectively capture and 
forecast the dynamics of a variable by exploiting its temporal patterns and dependencies. When including covariates is not 
necessary or possible, univariate models are a good choice for forecasting because they are easy to use and accurate (Assad 
et al., 2023; Pena & SaNchez, 2007).  Bayesian methods are often used to estimate pure models (Blangiardo & Cameletti, 
2015). They have advantages when it comes to specifying the random parts by putting the parameters in a hierarchical order. 
When analytical solutions are not possible (Blangiardo & Cameletti, 2015), Markov Chain Monte Carlo (MCMC) is a popular 
algorithm in a Bayesian setting. However, for complex models with a huge number of parameters involved, the computational 
aspect of MCMC can be challenging. MCMC can result in significant Monte Carlo errors and require substantial 
computational resources. Rue et al. (2009) introduced the Integrated Nested Laplace Approximation (INLA) as an alternative 
to the MCMC. INLA has demonstrated the ability to reduce computation time while providing parameter estimates 
comparable to those obtained through MCMC techniques. 
 

The remaining sections of the paper are as follows: The spatial-temporal model is presented in Section 2 using an INLA-based 
methodology. The third section describes the application of the model to diarrhea data for children under the age of five. The 
discussion section in Section 4. Section 5 is the conclusion of the study. 
 

2. Method 
 

2.1 Spatiotemporal autocorrelation  
 

The spatiotemporal analysis starts by examining the possibility of spatiotemporal autocorrelation in the diarrhea cases data 
among children under 5 in Bandung city. Let the number of diarrhea cases in district 𝑖 (𝑖 = 1,2, … ,𝑛 = 30) and month 𝑡 (𝑡 =1,2, . . . ,𝑇 = 60), denoted as 𝑦௜௧, the spatiotemporal Moran's formula can be expressed as follows (Jaya & Folmer, 2020): 
 Moranᇱs I = 𝑛𝑇∑ ∑ ∑ ∑ 𝑤෥(௜௧,௝௦)(𝑦௜௧ − 𝑦ത)൫𝑦௝௦ − 𝑦ത൯௦்ୀଵ௡௝ୀଵ௧்ୀଵ௡௜ୀଵ∑ ∑ ∑ ∑ 𝑤෥(௜௧,௝௦) ∑ ∑ (𝑦௜௧ − 𝑦ത)ଶ௧்௡௜ୀଵ௦்ୀଵ௡௝ୀଵ௧்ୀଵ௡௜ୀଵ  

 
(1) 

 

where 𝑦ത is the average of the observed diarrhea cases and 𝑤෥(௜௧,௝௦) is the spatiotemporal weight defined as:  
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𝑤௜௝ takes a value of 1 if areas 𝑖 and 𝑗 are neighbors and 0 otherwise. A high value of Moran's I indicate substantial positive 
spatiotemporal correlation in diarrhea cases, indicating clustering or similarity in the spatial pattern. Conversely, a value close 
to zero suggests the absence of spatiotemporal autocorrelation. 
 

2.2. Bayesian Spatiotemporal Hierarhical Model 
 

We used a spatiotemporal model to model the diarrhea transmissions over space and time. The number of diarrhea cases for 
children under five years old 𝑦௜௧, were defined to follow a Poisson distribution such that:   
 𝑝(𝑦௜௧|𝐸௜௧,𝜃௜௧) = exp(−𝐸௜௧𝜃௜௧)(𝐸௜௧𝜃௜௧)௬೔೟𝑦௜௧!  ;  𝑖 = 1, . . . ,𝑛 and 𝑡 = 1, . . . ,𝑇 (2) 

where 𝐸௜௧ represents the expected number of diarrhea counts and 𝜃௜௧ denotes the relative risk in area 𝑖 and at month 𝑡. The 
expected number of counts 𝐸௜௧ is defined as:  
 𝐸௜௧ = 𝑁௜௧ ∑ ∑ 𝑦௜௧௧்ୀଵ௡௜ୀଵ /𝑛𝑇∑ ∑ 𝑁௜௧௧்ୀଵ௡௜ୀଵ /𝑛𝑇   𝑖 = 1, . . . ,𝑛 and 𝑡 = 1, … ,𝑇, (3) 
 

with 𝑁௜௧ represents the number of children under five years old in area 𝑖 at month 𝑡, with 𝑛 is the number areas, and 𝑇 the 
length of time periods. Count data often encounters the issue of overdispersion, which can arise from various factors such as 
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an abundance of zeros or the presence of outliers (Lee et al., 2012). This issue can be handled by employing the Negative 
Binomial (NB) distribution with the probability mass function defined as follows (Mohebbi et al., 2014):  
   𝑝(𝑦௜௧|𝐸௜௧,𝜃௜௧ , 𝜍) = Γ(𝑦௜௧ + 𝜍)Γ(𝑦௜௧ + 1)Γ(𝜍) ൬ 𝐸௜௧𝜃௜௧𝐸௜௧𝜃௜௧ + 𝜍൰௬೔೟ ൬ 𝜍𝐸௜௧𝜃௜௧ + 𝜍൰చ. (4) 
 

The NB distribution has an expectation or mean 𝐸(𝑦௜௧) = 𝐸௜௧𝜃௜௧ and variance Var(𝑦௜௧) = 𝐸௜௧𝜃௜௧ + (𝐸௜௧𝜃௜௧)ଶ/𝜍 with 𝜍 denote 
the overdispersion parameter.  We employed the log linear models to describe the space-time variation in the relative risk 𝜃௜௧ 
over space, as expressed by the following equation: 
 𝜂௜௧ = log(𝜃௜௧) = 𝛼 + 𝜔௜ + 𝜐௜ + 𝜙௧ + 𝜑௧ + 𝛾௧ + 𝛿௜௧  for 𝑖 = 1, … ,𝑛 and 𝑡 = 1, … ,𝑇, (5) 
 

where 𝛼 represents the intercept, which reflects the global relative risk. The spatially structured effects are denoted by 𝜔௜, 
capturing the spatial patterns and clustering. The spatially unstructured effects are represented by 𝜐௜ accounting for spatial 
heterogeneity. The temporally structured effects are denoted by 𝜙௧, capturing the temporal trends and patterns. The seasonal 
effects are expressed by 𝜙௧, accounting for the regular seasonal variations. The temporally unstructured effects are denoted 
by 𝛾௧, capturing the temporal heterogeneity. Lastly, the interaction effect is denoted by 𝛿௜௧, representing the combined spatial 
and temporal influence. The conditional autoregressive model of Leroux (LCAR) (Leroux et al., 1999) was utilized to effec-
tively capture the spatially correlated random effects such that: 
 𝜔௜|𝝎ି௜,𝑾~𝑁ቆ 𝜌∑ 𝑤௜௝𝜔௝௡௝ୀଵ𝜌∑ 𝑤௜௝௡௝ୀଵ + 1 − 𝜌 , 𝜎ఠଶ൫𝜌∑ 𝑤௜௝௡௝ୀଵ + 1 − 𝜌൯ቇ  for every 𝑡 and  𝑖 = 1, … ,𝑛 (6) 
 

where 𝐖 = ൫𝑤௜௝൯  denotes the spatial weights matrix, 𝜌 denotes the spatial autocorrelation coefficient, and 𝜎ఠଶ  the variance 
of 𝝎 = (𝜔ଵ, … ,𝜔௡)′.  We employed the queen contiguity weight matrix in our analysis. The weight matrix is designed to 
incorporate the adjacency relationship between areas, which is determined by the presence of a shared boundary or vertex. 
The exchangeable prior was used to capture the spatial heterogeneity such that: 
 𝜐௜~𝑁(0,𝜎జଶ) for every 𝑡 and  𝑖 = 1, … ,𝑛 (7) 
 

where 𝜎జଶ denote the variance of 𝜐 = (𝜐ଵ, … , 𝜐௡)′.  For temporally structured effects we utilized Random Walk of order 1 or 
2 (RW1 or RW2) such that: 
 RW1: 𝜙௧ାଵ − 𝜙௧|𝜎థଶ~𝑁൫0,𝜎థଶ൯ for every 𝑖 and  𝑡 = 1, . . ,𝑇 (8)
 RW2: 𝜙௧ − 2𝜙௧ାଵ + 𝜙௧ାଶ|𝜎థଶ~𝑁൫0,𝜎థଶ൯ for every 𝑖 and 𝑡 = 1, … ,𝑇 (9)
 
with 𝜎థଶ the variance of 𝛟 = (𝜙ଵ, … ,𝜙்)′. 
 
The seasonal component (𝜑௧) for 𝑚 seasonality period is defined as:  
 𝜑௧ + 𝜑௧ାଵ + ⋯+ 𝜑௧ା௠ିଵ|𝜏఑~𝑁൫0,𝜎ఝଶ൯ for every 𝑖 with 𝑡 = 1, . . . ,𝑇 −𝑚 + 1, (10)
 
with 𝜎ఝଶ denotes the variance of 𝝋 = (𝜑ଵ, … ,𝜑்)′. Temporally unstructured effects 𝛾௧ is assumed to follow exchangeable 
prior: 
 𝛾௧|𝜎ఊଶ~𝑁൫0,𝜎ఊଶ൯ for every 𝑖 and 𝑡 = 1, … ,𝑇, (11)
 

with 𝜎ఊଶ denotes the variance of 𝜸 = (𝛾ଵ, . . . , 𝛾்)′. For the space-time interaction effects 𝜹 = (𝛿ଵଵ, … , 𝛿௡்)′, we considered 
four types of interactions. These interactions correspond to different combinations of spatially unstructured and temporally 
unstructured effects (Type I), spatially unstructured effects and temporally structured effects (Type II), spatially structured 
effects and temporally unstructured effects (Type III), and spatially structured effects with temporally structured effects (Type 
IV), respectively. By considering these different interaction types, we aimed to capture the complex interplay between spatial 
and temporal factors in our modeling approach (see Knorr-Held (2000) for details). 
 
We employed vague Gaussian distributions as prior for the model parameters. The parameters' prior distributions were spec-
ified as follows: 𝛼~𝒩(0,10଺) . Following Simpson et al., (2017), the square root hyperparame-
ters 𝜎ఠ,𝜎జ,𝜎థ,𝜎ఝ,𝜎ఊ, and 𝜎ఋ are assumed to follow Penalized Complexity (PC) prior. To account for the limited range of 
values for 𝜌 (between 0 and 1), we employed a non-informative Gaussian prior with a large variance for the log transformation 
of 𝜌, such that 𝑙𝑜𝑔 ቀ ఘଵିఘቁ~𝒩(0,10) (Bivand et al., 2015).  
 
The spatiotemporal model (5) was estimated using INLA. The marginal posterior distributions are utilized to compute 
posterior means, standard deviations, and forecast values (Jaya & Folmer, 2020). In addition, the INLA provide several model 
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selection criteria, such as the deviance information criterion (DIC) and the Watanabe–Akaike information criterion (WAIC) 
(Spiegelhalter et al., 2002; Watanabe, 2010). These criteria help evaluate the model's validity. In addition, the INLA method 
permits the computation of additional metrics for prediction performance, such as Conditional Predictive Oridinate (CPO), 
marginal predictive likelihood (MPL), root mean squared error (RMSE), mean absolute error (MAE), and correlation 
coefficient (r) (Blangiardo & Cameletti, 2015).   
 
The marginal predictive posterior distribution, denoted as 𝑝(𝐲ො|𝐲) (Wang et al., 2018), is utilized for Bayesian prediction.The 
INLA method facilitates the prediction process by constructing a model that combines historical observations from previous 
time intervals with missing values for the desired time intervals. 
 
The exceedance probability criteria proposed by Lawson (2010) were utilized to identify spatiotemporal hotspots. The 
probability of spatiotemporal exceedance is computed using the marginal posterior distribution. It indicates the probability 
that the estimated of the relative risk exceeds a predetermined cut-off value 𝑐. This probability is denoted as Pr෢(𝜃௜௧ > 𝑐|𝐲). 
The calculation of this probability is determined as follows: 
 Pr෢(𝜃௜௧ > 𝑐|𝐲) = 1 −න 𝑝(𝜃௜௧|𝐲)ఏ೔೟ஸ௖ 𝑑𝜃௜௧ (12) 

The estimation can be performed using the Laplace method (Blangiardo & Cameletti, 2015). The identification of hotspots 
through the utilization of exceedance probability necessitates the establishment of two predetermined parameters. The initial 
parameter to consider is the threshold value, denoted as 𝑐, for 𝜃௜௧. A value of 1 signifies that a county possesses an average 
level of relative risk, while values of 2 or 3 indicate a significantly heightened level of risk. The threshold  𝛾 of the probability 
represents the second parameter. According to (Lawson & Rotejanaprasert, 2014), typical values for the parameter 𝛾 include 
0.90, 0.95, and 0.99.  
 
3. Result  
 
3.1. Study Area 
 
Bandung is the capital of West Java province, located in the middle of the province and contains 30 districts (Fig. 1). Bandung 
is the most populous city, with an approximate population of 2,526,395 and a small area of 167.3 square kilometers. 
 

 
Fig. 1 Map of the study area, Bandung city, West Java, Indonesia (the ID of the Bandung city map is provided in Table 1) 
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3.2. Data description 

Over a 5-year surveillance period, from 2017 to 2021, monthly diarrheal morbidity data were collected from each of the 30 
study districts from Bandung Health Office (2017-2021). Throughout the duration of the study, not a single district reported 
missing data. There were 2,463 cases of diarrhea among children under 5 resulting in a monthly incidence rate of 7 cases per 
1,000 children under 5. The incidence rate of diarrhea varied across areas and times, exhibiting an overall upward trend with 
temporal fluctuations. From 2017 to 2021, however, the number of occurrences observed decreased. During the period from 
2017 to 2021, Bandung city Kidul district had the highest average incidence rate (11.66 per 1,000), while Buah Batu district 
had the lowest incidence rate (2.71 per 1,000) (see Table 1).  

 
Fig. 1 (A) Monthly temporal trend for 30 districts; (B) Monthly temporal trend cumulative of 30 districts of incidence rate of 
diarrhea for Bandung city 
 
Table 1 
The annual incidence rate of diarrhea in Bandung city, 2017–2021 

id District 2017 2018 2019 2020 2021 Mean 
1 Andir 18.180 5.926 8.006 2.975 1.345 7.287 
2 Antapani 7.127 5.611 5.674 3.235 2.329 4.795 
3 Arcamanik 7.860 4.417 6.048 2.772 2.121 4.644 
4 Astana Anyar 13.487 9.863 15.451 10.566 6.440 11.161 
5 Babakan Ciparay 13.646 9.462 6.056 4.225 2.650 7.208 
6 Bandung city Kidul 20.434 20.517 8.091 6.349 2.929 11.664 
7 Bandung city Kulon 10.770 9.586 10.878 5.101 3.762 8.019 
8 Bandung city Wetan 20.947 15.581 13.183 5.000 2.722 11.487 
9 Batununggal 11.284 8.342 6.393 1.992 1.246 5.851 
10 Bojongloa Kaler 13.673 13.452 6.122 4.086 1.942 7.855 
11 Bojongloa Kidul 7.776 8.696 9.013 3.713 2.255 6.291 
12 Buah Batu 4.928 3.797 2.565 1.147 1.118 2.711 
13 Cibeunying Kaler 6.752 5.805 6.418 2.253 1.831 4.612 
14 Cibeunying Kidul 5.975 5.955 5.933 1.869 1.183 4.183 
15 Cibiru 15.437 12.611 8.134 3.531 2.237 8.390 
16 Cicendo 12.088 9.862 12.283 2.724 1.801 7.751 
17 Cidadap 14.498 9.007 5.228 2.634 1.718 6.617 
18 Cinambo 15.347 11.569 10.195 7.399 13.304 11.563 
19 Coblong 11.804 9.273 8.619 2.745 1.403 6.769 
20 Gedebage 10.482 9.630 5.357 3.318 2.251 6.207 
21 Kiaracondong 7.259 6.512 6.473 4.836 3.182 5.652 
22 Lengkong 8.399 7.871 7.201 6.576 2.768 6.563 
23 Mandalajati 22.092 15.578 9.189 4.394 3.831 11.017 
24 Panyileukan 15.140 9.524 11.452 3.998 2.392 8.501 
25 Rancasari 9.354 7.021 2.734 1.135 1.946 4.438 
26 Regol 6.023 5.520 3.505 2.564 2.249 3.972 
27 Sukajadi 6.005 6.064 5.032 3.070 2.232 4.481 
28 Sukasari 12.990 15.824 10.967 5.183 2.848 9.563 
29 Sumur Bandung city 6.000 9.319 8.761 4.753 2.324 6.232 
30 Ujung Berung 12.994 7.969 8.602 3.648 1.871 7.017 
Mean 11.625 9.339 7.785 3.926 2.741 7.083 
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3.3 Bayesian hierarchical spatiotemporal modeling 
 
We analyzed the data for spatiotemporal autocorrelation before performing spatiotemporal modeling. We used spatiotemporal 
Moran's I to measure spatiotemporal autocorrelation on spatiotemporal data. The calculation yields a large spatiotemporal 
Moran's I value of 0.6173 (p-value = 0.0196), indicating that there is evidence of spatiotemporal autocorrelation in diarrhea 
data for children under the age of five in Bandung. Next, the models are estimated utilizing two likelihood distributions, 
Poisson and Negative Binomial, and two temporal trends, random walk order 1 (RW1) and random walk order 2 (RW2). This 
method yields sixteen models. Multiple criteria, including DIC, WAIC, MAE, RMSE, R, MPL, and CPO are used to evaluate 
the performance of these models. The primary focus of our evaluation is CPO Failure, which indicates that the Poisson like-
lihood distribution is inadequate for representing the frequency of diarrhea cases in children under 5, as its CPO Failure value 
is greater than zero. Consequently, we evaluate the models using different criteria. In general, the models have comparable 
DIC and WAIC values. In contrast, the model that includes a NB likelihood and a temporal trend RW2, specifically interaction 
types I and III, exhibits a statistically significant reduction in both MAE and RMSE in comparison to the alternative models. 
We chose a model with a NB likelihood, a RW2 to capture temporal trends, and interaction type I because we needed to find 
a good balance between model complexity and performance. This specific model will be designated Model I. 
 
Tabel 2 
Model Selection  

Model Likelihood Temporal Trend DIC WAIC MAE RMSE R CPO Failure MPL 
Type I Poisson RW1 10513.626 10275.573 10.565 13.280 0.461 1182 -6288.384 
Type II Poisson RW1 10524.019 10545.248 30.422 36.735 0.544 377 -8306.206 
Type III Poisson RW1 10514.812 10278.838 9.720 12.422 0.463 1188 -6299.213 
Type IV Poisson RW1 10507.689 10496.642 23.941 42.382 0.509 448 -8138.201 
Type I NB RW1 12141.771 12145.083 10.957 13.651 0.461 0 -6288.191 
Type II NB RW1 11744.924 11755.624 25.491 31.597 0.544 0 -8188.070 
Type III NB RW1 12255.183 12260.717 11.663 14.342 0.463 0 -6293.719 
Type IV NB RW1 11734.374 11743.096 12.021 17.622 0.509 0 -8006.922 
Type I Poisson RW2 10515.984 10281.183 6.680 10.542 0.461 1183 -6405.967 
Type II Poisson RW2 10810.414 11209.093 46.252 59.582 0.544 126 -12271.217 
Type III Poisson RW2 10515.445 10275.440 7.245 11.385 0.463 1195 -6414.339 
Type IV Poisson RW2 10727.154 11019.627 1.540E+27 2.910E+28 0.509 209 -11869.394 
Type I NB RW2 12154.207 12166.113 6.692 10.518 0.461 0 -6407.446 
Type II NB RW2 11859.172 11866.325 136.497 399.434 0.544 0 -11511.499 
Type III NB RW2 12259.836 12266.430 6.740 10.613 0.463 0 -6403.770 
Type IV NB RW2 11847.509 11856.527 447.889 1667.593 0.509 0 -11313.034 

 

 
 

Fig. 2. (A) The probability integral transform (PIT) and (B) observed versus predicted cases 
 
Fig. 2 (A) provides support for Model I, as the PIT histogram closely resembles the uniform distribution histogram. This 
indicates that the model is effectively capturing the underlying distribution of the data, as the observed values align well with 
the expected uniform distribution. Furthermore, Fig. 1 (B) demonstrates a strong correlation between the predicted and ob-
served cases. The points on the scatter plot cluster closely along the diagonal line, indicating a close alignment between the 
predicted values and the actual observations. This correlation reinforces the accuracy and reliability of the model's predictions, 
as it successfully captures the patterns and trends present in the data. 
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3.4 Relative Risk and Exceedance Proability Estimation  
 
Model I is considered to provide an estimation of the relative risk, exceedance probability and an accurate forecast for January 
to December 2022. Table 3 shows the fixed effects component exhibits an average relative risk of 0.655%. Furthermore, Table 
4 shows the hyperparameter of the random effect components.  
 
Table 3 
Estimated overall relative risk (intercept) 

Parameter Mean SD Parameter Mean SD 
Overall relative risk 0.655 1.103 0.541 0.654 0.793 

 
Table 4 
Estimated hyperparameter 

Hyperparameter Mean SD q(0.025) q(0.50) q(0.975) Fractional Variance 
Overdispersion 11.105 1.536 8.480 10.967 14.491  
Leroux coefficient 0.577 0.086 0.398 0.581 0.730  
SD for Spatially structured effect 0.237 0.027 0.188 0.236 0.295 6.223 
SD for Spatially unstructured effect 0.337 0.015 0.310 0.336 0.367 12.557 
SD for Temporally structured effect 0.771 0.068 0.648 0.766 0.917 65.628 
SD for Temporally unstructured effect 0.202 0.008 0.185 0.202 0.218 4.500 
SD for Seasonal effects 0.002 0.002 0.000 0.002 0.008 0.001 
SD for interaction effect type I 0.317 0.020 0.280 0.316 0.359 11.092 

Table 3 shows the six random effect components that contribute to the spatiotemporal transmission of diarrhea disease for 
children under five years old in Bandung, Indonesia. These include (i) spatially structured effects, (ii) spatially unstructured 
effects, (iii) temporally structured effects, (iv) temporally unstructured effects, (v) seasonal effects, and (vi) space-time inter-
action effects. The four main factors that critically explain diarrhea transmission are temporally structured effects, spatially 
structured effects, spatially unstructured effects, and space-time interaction effects. Notably, the seasonal factor does not 
contribute significantly to the explanation of diarrhea's temporal variation. The analysis reveals that temporally structured 
effects account for 65.628% of the spatiotemporal variability in diarrhea, as measured by the fractional variance. In addition, 
the average standard deviation of these effects is calculated to be 0.77. The contribution of spatially structured effects to the 
total variation is 6.223%, whereas the contribution of unstructured effects is 12.557%. The space-time interaction accounts 
for 11.092% of the observed variation in spatiotemporal phenomena. In contrast, the seasonal component accounts for a 
negligible 0.001% of the total variation, whereas the temporally unstructured effect component accounts for a substantial 
4.500%. Through careful consideration of these factors, we can gain important insights into the complex spatiotemporal trans-
missions of diarrhea, thereby facilitating the development of targeted interventions and preventive measures. As indicated by 
a parameter value of 11.105, the results of the analysis reveal a significant degree of overdispersion. In addition, a correlation 
coefficient of 0.57 demonstrates that our research demonstrates a significant spatial correlation. Fig. 3 shows the relative 
contributions of the six components to the overall diarrhea risk in Bandung. 

 

Fig. 3. (A) Temporally structured, (B) Temporally Unstructured, (C) ) Seasonal, (D) Spatially structured, (E) Spatial 
Unstructured, and (F) Interaction effects  
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Fig. 3 (A) shows the temporally structured effect modeled with an RW2, which reveals an ongoing decrease in the relative 
risk of diarrhea from 2017 to 2022. Notably, the most significant decline occurred between 2019 and 2020, indicating an 
upward trend in the reduction of diarrhea cases over time. Fig. 3 (D) also illustrates the spatially structured effect that was 
modeled using the Leroux model. The results clearly identify clusters of high-risk areas for diarrhea on the western and eastern 
sides of the city of Bandung city. These clusters provide valuable insights into the disease's spatial distribution, allowing for 
targeted interventions and concentrated efforts to reduce the risk of diarrhea in these specific areas. 
 

 
Fig. 4. (A) Temporal trend, (B) Spatiotemporal maps, and (C) Exceedance probaility of of the estimated relative risk over 
January 2017 – December 2022 in Bandung city 
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From 2017 to 2022, Fig. 4(A) depicts the temporal trend of the predicted relative risk of diarrhea in children under five years 
old in Bandung. In general, the relative risk decreases each year, with the greatest decline occurring at the end of 2019. Fig. 
4(B) depicts the relative risk distribution map, whereas Fig. 4(C) depicts the identified hotspots based on the exceedance 
probability measure. Fig. 4(B-C) demonstrates that the western and southern regions of Bandung exhibited a higher and 
statistically significant relative risk of diarrhea during the period of 2017-2019. However, a substantial reduction in risk is 
observed beginning in early 2020. Notably, the risk continues to decline from 2020 to 2022, and the projected values for 2022 
indicate the absence of hotspots. These findings indicate a positive trend in the reduction of relative risk, especially in 2022 
as predicted. The analysis highlights the efficacy of interventions and preventive measures in reducing the risk of diarrhea in 
children under the age of five in Bandung, resulting in better public health outcomes. 
 
3.5 Forecasted incidences of diarrhea 
 
We predicted the number of diarrhea cases in 30 subdistricts of Bandung city from January to December 2022 using Bayesian 
spatiotemporal models with type I interactions. For the forecast, we utilized the infant birth rate for the same time period. We 
used the number of babies born in 2021 as a proxy for 2022 on the assumption that the birth rate is relatively stable over 
multiple years. Fig. 5 depicts the forecasting outcomes, and Table 5 provides a comprehensive breakdown. Forecasts indicate 
a continual decline in the overall number of diarrhea cases. Nonetheless, several districts continue to experience a heavy 
caseload. Bandung city Kulon, Babakan Ciparay, Bojonglua Kaler, Mandala Jati, and Kiara Condong are the five sub-districts 
with the highest monthly case counts throughout 2022. Each of these districts consistently reported a sizeable number of cases, 
which is noteworthy. In 2022, the total number of cases for each district exceeds 200. Fig. 5 and Table 5 provide a 
comprehensive visual and numerical representation of the forecasting results, highlighting the persisting high burden in 
specific districts while illustrating the decreasing trend in diarrhea cases. These results emphasize the need for targeted 
interventions and concentrated efforts to address the ongoing problems in these high-risk regions.  
 

 
Fig. 5. (A) Monthly Forecasted Diarrhea Incidences 2022 (B) Cummulative Forecasted Diarrhea Incidences 2022 in Bandung 
city, Indonesia 
 
Table 5 
Forecasted Diarrhea Incidences in Bandung city, Indonesia: January to December 2022 

Id District Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 
1 Andir 14 12 13 10 10 10 12 14 14 16 16 16 157 
2 Antapani 10 9 9 7 7 7 9 10 10 12 12 12 114 
3 Arcamanik 10 8 9 7 7 7 8 9 9 11 11 11 107 
4 Astana Anyar 20 18 18 14 14 14 17 20 20 23 23 23 224 
5 Babakan Ciparay 27 23 24 19 18 19 22 26 26 30 30 30 294 
6 Bandung city Kidul 16 14 15 11 11 11 14 16 16 18 19 19 180 
7 Bandung city Kulon 29 26 27 21 20 21 25 29 29 33 34 34 328 
8 Bandung city Wetan 6 5 5 4 4 4 5 6 6 7 7 7 66 
9 Batununggal 15 13 14 11 10 11 13 15 15 17 17 17 168 
10 Bojongloa Kaler 23 20 21 16 16 16 19 23 23 26 27 26 256 
11 Bojongloa Kidul 14 12 13 10 10 10 12 14 14 16 16 16 157 
12 Buah Batu 7 6 6 5 5 5 6 7 7 8 8 8 78 
13 Cibeunying Kaler 8 7 7 5 5 5 6 8 7 9 9 9 85 
14 Cibeunying Kidul 11 10 10 8 8 8 9 11 11 13 13 13 125 
15 Cibiru 16 14 14 11 11 11 13 15 15 18 18 18 174 
16 Cicendo 16 14 14 11 11 11 13 16 15 18 18 18 175 
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Table 5 
Forecasted Diarrhea Incidences in Bandung city, Indonesia: January to December 2022 (Continued) 

Id District Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 
17 Cidadap 7 7 7 5 5 5 6 7 7 8 9 9 82 
18 Cinambo 9 7 8 6 6 6 7 8 8 10 10 10 95 
19 Coblong 17 15 16 12 12 12 14 17 17 20 20 20 192 
20 Gedebage 6 6 6 4 4 4 5 6 6 7 7 7 68 
21 Kiaracondong 20 18 19 14 14 14 17 20 20 23 23 23 225 
22 Lengkong 11 9 10 7 7 7 9 10 10 12 12 12 116 
23 Mandalajati 20 18 18 14 14 14 17 20 20 23 23 23 224 
24 Panyileukan 8 7 7 6 6 6 7 8 8 9 9 9 90 
25 Rancasari 9 8 8 6 6 6 8 9 9 10 10 10 99 
26 Regol 8 7 7 5 5 5 6 7 7 9 9 9 84 
27 Sukajadi 12 10 11 8 8 8 10 12 11 13 14 13 130 
28 Sukasari 17 15 16 12 12 12 14 17 17 20 20 20 192 
29 Sumur Bandung city 5 4 5 3 3 3 4 5 5 6 6 6 55 
30 Ujung Berung 15 13 14 11 10 10 13 15 15 17 17 17 167 
Total 406 355 371 283 279 282 340 400 397 462 467 465 4507 

 
4. Discussion 
 
We estimated the parameters of a spatiotemporal model using a hierarchical Bayesian framework. The main purpose of our 
study was to determine the spatial and temporal transmission of diarrhea among children under 5 in Bandung, Indonesia, and 
to obtain an accurate forecast from January to December 2022. We analyzed the data collected by Bandung city health office 
from January 2017 through December 2021.  
 
We discovered that four primary factors contribute to the spatiotemporal variation of diarrhea transmission among children 
under 5 in the city of Bandung. These factors are (i) temporally structured effects, which explain the decline in diarrhea risk 
during the study period; (ii) spatially structured effects, which explain the spatial cluster in some close areas; (iii) spatially 
unstructured effects, which explain spatial heterogeneity; and (iv) spatiotemporal interaction type I. Additionally, the presence 
of spatially unstructured effects suggests that a variety of factors connected to local spatial heterogeneity influence the dis-
ease's occurrence within a region (Ghosh et al., 2023; Li et al., 2020; Ngesa et al., 2014; Raza et al., 2020). In addition, the 
analysis has successfully identified a Type I spatiotemporal interaction component, indicating that additional factors contrib-
ute to the observed spatiotemporal variation. This interaction is based on an unstructured space-time phenomenon, which 
means that there are independent variables without a temporal pattern that contribute to the spatiotemporal fluctuations in 
diarrhea cases (Amegbor & Addae, 2023; Jaya & Folmer, 2020; 2022). In addition, there is no seasonal pattern in the trans-
mission of diarrhea risk. It is consistent with Barnes et al.'s (1998) previous publication. It suggests that diarrhea is not affected 
by seasonal variations and can manifest throughout the year without identifiable regular trends.  
 
According to four significant factors, our prediction results indicate that the relative risk of diarrhea decreases during period 
2017 to 2021. At the end of 2019, the decline was the greatest. In addition, we found strong spatial clustering in certain western 
and eastern districts of Bandung, indicating that diarrhea transmission typically takes place in close proximity. The result is 
consistent with Ntirampeba et al.'s (2018) study findings. This result demonstrates that diarrhea can be transmitted due to 
shared environmental characteristics such as sanitation condition (Sudasman et al., 2019; Otsuka et al., 2019).  
 
Our forecasting model forecasts that the incidence and relative risk of diarrhea will continue to decrease through December 
2022. However, it is noteworthy that certain subdistricts, namely Bandung City Kulon, Babakan Ciparay, and Bojongloa 
Kaler, persist in encountering a substantial volume of diarrhea cases. In order to effectively tackle this enduring issue, it is 
imperative to prioritize targeted interventions and allocate resources accordingly. By prioritizing the enhancement of sanita-
tion practices, raising awareness about hygiene, and implementing suitable preventive measures, it is possible to diminish the 
incidence of cases in these regions with elevated risk and safeguard the welfare of the impacted communities. 
 
The analysis conducted in our study has yielded a novel hypothesis indicating that enhanced sanitation practices have a pro-
tective effect against the occurrence of diarrhea. This result is consistent with previous research (Sudasman et al., 2019; Otsuka 
et al., 2019). Nevertheless, the issue of water quality continues to be a matter of concern, underscoring the necessity for 
forthcoming research to incorporate supplementary indicators in the assessment of drinking water quality. The decrease in the 
relative risk of diarrhea in Bandung city can be attributed to a range of factors, encompassing political advancements, national 
policies and strategies, disease control initiatives, and enhancements in sanitation and water infrastructure.  
 
However, it is essential to recognize the limitations of our research. The data were collected by the Health Office of Bandung 
through surveillance efforts. Noting that these are secondary data that may be susceptible to underreporting is essential. In 
addition, risk factors were omitted from our study because its primary objective was to obtain accurate forecast values for the 
specified time periods. 
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5. Conclusions  
 
Using Bayesian hierarchical spatiotemporal modeling, the spatiotemporal transmissions of diarrhea among children under 
five in Bandung, Indonesia have been successfully explained. Additionally, the model accurately predicted the relative risk 
and incidence of diarrhea from January to December 2022. The result of this study suggests that the incidence of diarrhea is 
not randomly distributed across space and time and tends to be concentrated in regions with poor sanitation, such as the 
western and eastern regions. The analysis also revealed that the seasonal factor does not adequately explain diarrhea trans-
mission in the city of Bandung. Although there has been a general decrease in the risk of diarrhea, the anticipated results 
indicate that certain districts, such as Bandung Kulon, have a significant number of cases. 
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