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 The determinants of bring-your-own-device (BYOD) use protection intentions affecting BYOD us-
age protection behaviors were examined in this study. The determinants of employees’ behavioral 
intention to use and their actual protection behavior in protecting their devices BYOD environment 
were identified. Jordanian residents aged 18 and above, with mobile learning behavioral usage 
awareness, made up the study population. A survey questionnaire was used to obtain the data, while 
the proposed research model was tested using structural equation modeling (SEM). The results show 
positive impact of BYOD usage protection intention on mobile learning behavioral usage, while 
attitude showed insignificant impact on BODY usage protection intention. Subjective norms signif-
icantly affected BYOD usage protection intention, while information security awareness showed 
insignificant impact on BYOD usage protection intention. 
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1. Introduction 
 
 

The use of mobile devices in medical education and healthcare delivery is increasingly more common and crucial, especially 
following the progressions in information and communication technologies (ICTs). Personal mobile device usage in medical 
schools and healthcare facilities allows smooth communication and collaboration, as well as easy access to medical infor-
mation (Al Ayubi et al., 2016; Chang et al., 2013). In addition, it allows flexible and timely self-paced learning (Ally, 2013; 
Hardyman et al., 2013). At the same time, certain issues have to be addressed pertaining to mobile device usage in this context, 
such as incorrect usage of mobile devices like the use of mobile devices that lack security features (Nguyen, 2019; Wani et 
al., 2020). Also, the lack of regulations to medical applications adds to the problem (Lewis & Wyatt, 2014). As the use of 
mobile devices is widespread today, there is also an issue relating to etiquette, as can be exemplified in the problems of 
distracted learning and doctoring (O’Connor et al., 2014; Tran et al., 2014), in addition to poor control measures of infection 
(O’Connor et al., 2014).  

In medical education and healthcare environments, mobile devices for medical education and healthcare delivery are either 
provided by the institution or personally owned (Meneghetti, 2013; Williams, 2014). However, the use of personal mobile 
devices in medical education and healthcare delivery is increasingly favored and promoted, owing to several benefits, and the 
correct and safe usage of these devices are being fostered as well (Disterer & Kleiner, 2013; Weeger et al., 2016). This had 
led to the policy of bring-your-own-device (BYOD). BYOD policy is cost effective to the institution, as the cost is shifted 
from the institution to the user. Nonetheless, BYOD is not easy to implement owing to the varied conceptualizations and the 
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widespread usage of mobile devices in various environments.  BYOD is generally the usage of personal mobile devices for 
medical education and healthcare delivery purposes (Dimond et al., 2016; O’Connor et al., 2014). 

Mobile technologies are clearly an outstanding and prized invention by man (Al-Emran, 2020). Mobile devices as a constituent 
of mobile technologies, comprise wireless information and communications technologies, allowing users from various places 
to be consistently connected with one another simultaneously, and at all times (Zaidi et al., 2021). Through these technologies, 
people could acquire knowledge as well, at any time and from any place. Indeed, mobile devices allow information processing 
and contribution among users (Al-Emran, 2020). Notably, smartphones and tablets, mobile devices, are increasingly useful in 
the workplace, and in fact, the policy of Bring Your Own Devices (BYOD) is a current trend among organizations. BYOD 
involves the use of smartphones, mobile phones, laptops, and tablets by organization members including employees. The use 
of these devices allows more flexibility in task completion – the employees could complete their tasks even when they are not 
at the office.  

BYOD and IT consumerization co-exist as these personal mobile devices have become part of business and government 
operation (Weeger et al., 2020). In BYOD policy, members of an organization or institution use their mobile devices in their 
work completion. In this regard, smartphones are increasingly being used as the tool for accessing the internet resources 
(Oberlo, 2020). Turner (2021) accordingly reported that in the year 2021, there would be approximately 6.3 billion smartphone 
users all over the world, and about 5.22 billion users would be using their mobile devices to complete their work-related tasks. 
In describing a BYOD environment, Hughes (2016) explained that employees would utilize their devices to gain access to the 
networks of their   organizations, and to obtain the work related data. To this end, the use of mobile devices like smartphones 
would save employees from having to bring various devices for work and personal use, and from having to use numerous 
device makes and models.  

The outbreak of COVID-19 pandemic has intensified the trend of BYOD, owing to the switch from the conventional work-
from-office policy to the work-from-home policy, among government institutions and corporate bodies all over the world 
(Vrhovec & Markelj, 2018). The switch from the work-from-office policy to work-from-home policy was mainly factored by 
movement restrictions and social distancing regulations as among the methods to curb the spread of COVID-19. In this regard, 
organizations adopted BYOD so that employees could still perform their work as usual, despite the severity of the pandemic. 
Among universities, the use of mobile devices in learning and teaching is increasingly popular. Like other institutions, uni-
versities also have been making attempts to leverage on the advantages of personal mobile device usage. Hence, the use of 
BYOD policy in the delivery of education is increasingly common in universities today.  

Despite the effectiveness and benefits of BYOD policy in several institutions, this policy has not been adequately examined. 
In fact, there has been a lack of research covering this subject. As such, the present study attempted to fill the void. With 
concern over the issue of safety in BYOD, the present study attempted to identify the factors affecting BYOD usage protection 
intention and its effect on mobile learning (ML) behavioral usage. Accordingly, a comprehensive model was proposed in this 
study. The model was grounded upon some common acceptance theories namely ATT, SN, ISA and BUPI. The impact of 
BYOD on ML behavioral intention to use was explored. Also, based on TBP theory, this study examined how the factors can 
affect ML behavior usage.  Notably, the present study would be the first one exploring BYOD on ML usage.  

2. Literature review and hypothesis development  

The present study examined the determinants of students’ protection intention and their protection behavior in their devices 
usage within the environment of BYOD.  Accordingly, a model was proposed in this study, as can be viewed in the following 
Fig. 1. The model was underpinned by TRA as its major underpinning theory, and TRA has been applied in studies on infor-
mation security. Social behavioral theories were also included in the model, in addition to the inclusion of the factors of 
attitude, subjective norm, information security awareness, protection intention and behavior use intention.   

 

 

 

 

 

 

 

Fig.1. Research model 
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3.1 Theory of reasoned action (TRA) 

Theory of reasoned action (TRA) (Fishbein & Ajzen, 1980) illustrates the behaviors of people under the control of individu-
als.   TRA posits that the behavior of a person is mainly determined by his or her intention to execute that behavior. In essence, 
it encompasses how far the person is willing to perform that behavior.  There are two factors affecting behavioral intention 
namely the attitude of the person towards that behavior, and subjective norms (Ajzen, 2020). The former concerns the evalu-
ation of the person towards the consequences of performing that behavior, while the latter concerns the viewpoint of the 
person towards social pressure on performing (or not performing) that behavior (Fishbein & Ajzen, 1980).   

TRA proposes a linear relationship, whereby attitude and subjective norm affect behavioral intention, and thus, both factors 
determine a person’s actual behavior. As such, greater social pressure and better attitude towards certain behavior will increase 
the likelihood of performing the behavior. Among the strong points of TRA are: it is simple, has good explanatory power, and 
able to use various combinations of factors in linearly and sequentially determining an individual’s behavior (Boxer & Thomp-
son, 2020; Ajzen, 2020). 

TRA posits that behavior is determined by the intentions to perform the behavior, but intention has been used as a dependent 
variable in past studies. In other words, intention has been often determined by other variables. Hence, in describing protection 
intention (PI), it could be understood as a protection motive that sustains, guides, and initiates the intentions of individuals to 
perform the precautionary behavior proposed (Milne et al., 2002). Therefore, the present study hypothesized that: 

H1: BYOD usage protection intention has a positive influence on mobile learning behavioral usage.  

Attitude (ATT) refers to the general evaluation of a person towards performing the actual behavior, and attitude can be either 
positive or negative (Hina & Dominic, 2017; Ifinedo, 2012). Among users of social networks, their behavior (attitude) is 
influenced by factors like age, gender, and career (Dhawan et al., 2014). Relevantly, an Information Security Culture (ISC) 
model was introduced by Nasir et al. (2019), with the purpose of increasing the effectiveness of employees' protection behav-
ior in an organization. The model included seven characteristics that investigate its impact on workers' Information Security 
Policy (ISP) compliance behavior, and attitude was one of the model’s characteristics. ISP was expected to affect the attitude 
of employees towards ISP compliance, while the intention of employees to comply with ISP was affected by their attitude 
towards ISP compliance, and so, this study proposed the following:  

H2: Attitude has a positive influence on BYOD usage protection intention.  

Subjective Norms (SN) are the belief that the surrounding individuals could influence a person in performing certain behavior 
(Thompson et al., 2017).  In their study on the impacts of subjective norms on behavior intention, Martens et al. (2019) found 
subjective norms a strong predictor of protective behavior. Meanwhile, Safa et al. (2015) found significant impact of infor-
mation security policies on the establishment of subjective norms on information security behavior in an organization. The 
hypothesis below was therefore proposed:  

H3: Subjective norm has a positive influence on BYOD usage protection intention. 

Information Security Awareness (ISA) relates to the level to which all employees are aware of the value of information 
security policies, rules, and regulations, and feel accountable in safeguarding the information of their organization via dis-
playing appropriate behaviors (Kaur & Mustafa, 2013; McCormac et al., 2017). Meanwhile, in their study, Ortiz et al. (2017) 
classed ISA into two categories as follows: general information security awareness (GISA) and information security policy 
awareness (ISPA). Between both, ISA is crucial in removing security breaches risks in organizations. As such, the present 
study established the following hypothesis:  

H4: Information security awareness positively influences BYOD usage protection intention. 

4. Methodology  

4.1 Sample and data collection procedure  

Jordanian residents aged 18 and above, with understanding of mobile learning behavioral usage (at least) made up the study 
population. These specific Jordanians were chosen as the study population because, in general, an 18-year-old would have 
sufficient understanding of the technology. However, as affirmation, the potential participants were to answer the criteria 
fulfillment questions in the questionnaire; there were two exit questions to be answered by the respondents, one being the 
question on their age and residency, while the other being an affirmation question on their familiarity with mobile learning 
behavioral usage.   

A sampling frame with a complete list of potential mobile learning consumers in Jordan was impossible to obtain, and so, this 
study had opted to utilize convenience sampling method as it was the most appropriate one for the study context.  A total of 
425 respondents were involved in this study, and 400 valid responses were obtained (94.1% response rate). The items in the 
questionnaire were equipped with a seven-point Likert scale (1 to denote “Strongly Disagree” to 7 to denote “Strongly 
Agree”).  Specifically: items on mobile learning behavioral usage were based on Ameen et al. (2021) and Thompson et al. 
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(2017); items on BYOD usage protection intention were based on Chon et al. (2018) and Bulgurcu et al. (2010); items on 
attitude were based on Ameen et al. (2021) and Musarurwa et al. (2019); items on subjective norms were based on Ameen et 
al. (2021) and Herath and Rao (2009); and items on information security awareness were based on D’Arcy et al. (2009) and 
Haeussinger and Kranz (2013).  

4.2 Respondents’ demographic profile  
 

From the data obtained: the majority of respondents were male at 52.2%; the majority (53.7%) were of the age of 20 or less; 
half of the overall respondents were high school leavers or had lower educational qualifications; and 150 respondents (37.5%) 
expressed that their knowledge of technology was of high level. Fig. 2 presents the details. 

  
Gender Age 

  
Educational background Technology level 

Fig. 2. Characteristics of the respondents. (N = 400) 
 
5. Data Analysis and Result 
 
SEM was used in this study, and prior to its execution, the reliability of correlation was measured using Cronbach’s Alpha. 
Hair et al. (2019) had recommended the values between 0.60 and 0.70 for Cronbach’s Alpha for reliability affirmation. As 
displayed in Table 1, the scored values were between 0.84 and 0.91, and thus, reliability was affirmed. Further, as shown in 
Table 3, the compound reliability values were between 0.73 and 0.94, which were larger than the proposed cutoff value of 
0.60.  In the measurement model, constructs’ validity needs to be ascertained, particularly in terms of convergent validity and 
discriminant validity, as detailed below.  
 
Table 1  
Reliabilities of the scales (N = 400)   

Constructs Number of items Indicators Cronbach’s alpha 
Attitude 5 ATT1-ATT5 0.91 
Subjective norms 5 SN1-SN5 0.87 
Information security awareness 6 ISA1-ISA6 0.84 
Body usage protection intention  4 BUPI1-BUPI4 0.88 
Mobile learning behavior usage 5 MLBU1-MLBU5 0.90 

 
5.1 Convergent Validity 
 
Convergent validity is affirmed if the scale indicators load together on one construct. Schwab (1982) indicated that conver-
gence is affirmed when standard regression weights are significant.  Schwab (1982) further added that high load factor denotes 
strong representation of the scales of the combinations. The standard regression weights of the research indicators were ex-
amined, and low load was found among the underlying variables – values smaller than 0.50 would be considered as low load 
(Newkirk & Lederer, 2006), as can be viewed for ATT3, ATT4, SN5, ISA6 and MLBU5. Those items with low load were 
removed. The details can be viewed in Table 2. 
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5.2 Discriminant Validity  
 
Test of discriminant validity is carried out to affirm that the items absolutely measure different constructs and are absolutely 
evaluating different constructs. Several tests can be used in testing the discriminant validity. For instance, Fronell and Larker 
(1981) proposed evaluating the extracted mean co-contrast (AVE) by latent combinations. Equally, discriminant validity can 
be determined by examining the relations between research structures to identify any significant correlations between them.  
Here, if extremely large correlations exist, the model can be said to lack discriminant validity. Fronell and Larcker (1981) 
stated that discriminant validity can be affirmed if the AVE for each construct is greater than the square link between that 
construct and any other structures. Fronell and Larker’s (1981) formula was used in this study, in determining the model’s 
discriminant validity. Hence, the mean variance extracted from a latent structure was computed, and as shown in Table 3, the 
values were all between 0.65 and 0.81, and so, the combinations explained 50 percent or more of the variance. As such, 
discriminant validity was affirmed. Additionally, as can be viewed in Table 3, the AVE values were all greater than the square 
associations for each set of structures, demonstrating the significant differentiation of the structures by the study measures. 
 
Table 2  
Reliability and factor loadings. 

Construct Factor loading Composite reliability 
Attitude  0.92 
ATT1 0.633  
ATT2 0.511  
ATT5 0.568  
Subjective norms  0.73 
SN1 0.577  
SN2 0.644  
SN3 0.559  
SN4 0.538  
Information security awareness  0.81 
ISA1 0.501  
ISA2 0.520  
ISA3 0.504  
ISA4 0.641  
ISA5 0.711  
Body usage protection intention   0.94 
BUPI1 0.562  
BUPI2 0.633  
BUPI3 0.546  
BUPI4 0.555  
Mobile learning behavior usage  0.83 
MLBU1 0.550  
MLBU2 0.576  
MLBU3 0.632  
MLBU4 0.644  

 
5.3 Assessment of Measurement Model 
 
Maximum probability (ML) estimate was used in this study in determining the statistical effect on the model’s suitability 
model for the dataset. ML is regarded as fitting for SEM because ML is appropriate for small sample sizes (100 to 200). 
Further, ML as a commonly used estimation method, can be used in estimating all model parameters concurrently. Another 
indicator is the χ2 / df ratio. Its application necessitates three values or less, in order that the model could be regarded as 
acceptable. Here, smaller the percentage value is sought because it means better fit. James et al. (1982) had recommended the 
ratio of 2-5 for better fit.  In this study, AGFI, NFI, IFI, TLI, and CFI values should fall in the range between 0.80 and 0.90 
to be classed as acceptable. Meanwhile, RMSEA value considers the model’s goodness-of-fit, with value between 0.05 and 
0.08 as acceptable. Table 4 accordingly presents the details of the measurement model fit. 
 

Table 3 
AVE and square of correlations between constructs. 

 ATT SN ISA BUPI MLBU 
ATT 0.65     
SN 0.773 0.81    
ISA 0.512 0.572 0.77   
BUPI 0.801 0.507 0.632 0.72  
MLBU 0.741 0.533 0.655 0.71 0.67 

(Note: Diagonal elements are the average variance extracted for each of the 
five constructs. Off-diagonal elements are the squared correlations between 
constructs.) 

Table 4  
Fit indices for measurement and structural model. 

Quality of fit 
measure 

Recommended 
value 

Measurement 
model 

Structural 
model 

x2/df 2 to 5 1.21 2.9 
AGFI 0.80 to 0.90 0.41 0.85 
CFI 0.80 to 0.90 0.53 0.96 
TLI 0.80 to 0.90 0.55 0.86 
IFI 0.80 to 0.90 0.61 0.88 
NFI 0.80 to 0.90 0.78 0.84 
RMSEA 0.05 to 0.08 0.014 0.070 

 

 

Hypotheses Testing and Result of the Study  
 

Table 5 shows the hypotheses test results, including the CR estimate for each parameter. As shown, H1 was supported, which 
affirmed the positive significant impact of BOYD usage protection intention on mobile learning behavioural usage (P = 0.014). 
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Another supported hypothesis was H3, which affirmed the positive significant impact of subjective norms on BOYD usage 
protection intention (P = ***). Contrariwise, H2 was unsupported because the results were showing insignificant impact of 
attitude on BOYD usage protection intention (P =0.114). H4 was unsupported as well, which means that information security 
awareness did not have a significant impact on BOYD usage protection intention (P = 0.221).  
    
Table 5 
Summary of proposed results for the theoretical model 

Research proposed paths t-value (CR) Coefficient value (std. estimate) P-value Results 
 BUPI        →   MLBU 3.16 1.13 0.014 Supported 
  ATT     →       BUPI   2.110 1.133 0.114  Not Supported 
  SN    →         BUPI   2.531 1.20 *** Supported 
 ISA  →          BUPI    2.100 3.144 0.221  Not Supported 

(***P ≤ 0.005, **P ≤ 0.01, *P ≤ 0.05). Notes: Path = Relationship between independent variable on dependent variable; C.R = Critical ration; S.E = Stand-
ard error; P = Level of significance. 
 
6. Discussion 

The study results affirmed the aptness of TRA as a promising theoretical framework for comprehending the factors determin-
ing the decision of employees to be involved in BYOD   protection behaviors. It was predicted in H1 that intentions to perform 
protection behaviors can significantly affect actual protection behavior, and the results affirmed the prediction. Hence, em-
ployees with the intention to safeguard their devices in a BYOD environment will have greater inclination to show protection 
behavior. As predicted in H3, subjective norms would significantly impact protection intention, and the results affirmed this 
prediction. This result affirms the findings of some past studies that employees are impelled by the decisions of their peers 
and superior in BYOD’s usage and in complying to BYOD’s protection policies of their organization (Thompson et al., 2017; 
Rajab & Eydgahi, 2019).   

Meanwhile, the results show no significant impact of information security awareness on protection intention (H4), and this 
contradicted the findings of Sommestad et al. (2019) who found that employees are well aware of the potential risks and 
security threats when they use their personal devices. Another unsupported prediction was on the impact of attitude on pro-
tection intention (H2), as the results show non-significant influence of attitude. This contradicts Tsai et al.,2016, Topa and 
Karyda (2015) and Nasir et al. (2019) who reported that attitude can significantly impact protection intention and protection 
behavior. 

7. Implication 

This study increases the theoretical knowledge on the factors affecting the protection intention relating to BYOD usage pro-
tection behaviors. Specifically, this study initiated the empirical scrutiny of the factors of BYOD protection intentions affect-
ing BYOD protection behaviors. In this regard, the proposed conceptual model could increase the awareness of organizations 
of the determinants of BYOD protection intentions enterprises and facilitate in dealing with the impacts of these factors on 
employee behavior. Past studies on BYOD were mostly focusing on technological problems faced during BYOD implemen-
tation, while the human factors were not addressed, in assuring information security (Palanisamy et al., 2020; Grassegger & 
Nedbal, 2021).  Somehow, it is not enough to focus solely on the technical elements in assuring information security 
(Grassegger & Nedbal, 2021). 

In practice, this study would be of value to both policymakers and strategists, owing to the importance of understanding the 
causes of BYOD protection behaviors among employees, as this could prevent problems like data leakage, as it could happen 
either intentionally or unintentionally. It is the responsibility of employers and organizations to assure secured data assets, 
which could be achieved through BYOD usage protection. With the widespread use of smartphones, BYOD policy is only 
natural. For decision-makers, the findings of this study could facilitate them in fostering protection behavior among organi-
zation members. Among government personnel especially, the increased BYOD usage security behavior could increase per-
formance. 

8. Conclusion, limitation and further research  

The present study identified and evaluated the determinants of BYOD use protection intentions   that affect BYOD usage 
protection behaviors. The results show a positive impact of BYOD usage protection intention on mobile learning behavioral 
usage, while   ATT showed insignificant impact on BODY usage protection intention. SN significantly affected BYOD usage 
protection intention, while ISA showed insignificant impact on   BYOD usage protection intention.  For this purpose, a con-
ceptual model was proposed. Notably, the present study examined BYOD usage at an individual level, and so, similar studies 
should be carried out at the organizational level. This could facilitate the improvement of the strategies for BYOD protection 
policy at both levels (individual and organizational).  
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