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 Structural equation modeling offers various estimation methods for estimating parameters. The most 
used method in covariance-based structural equation modeling (CB-SEM) is the maximum likeli-
hood (ML) estimator. The ML estimator is typically used when fitting models with normally distrib-
uted data. The growth of partial least squares path modeling (PLS-PM), including consistent partial 
least squares (PLSc), has also been noticed by researchers in the SEM fields. The PLSc has elevated 
interest in the scholastic setting in measuring the performance of various estimation methods in 
structural equation modeling. The choice of estimation methods has substantial impact in yielding 
parameter estimates. There could be a trade-off among the estimation methods’ ability to deal with 
different types of data based on the model tested. Accordingly, this study aims to compare the per-
formance of ML, generalized least squares (GLS), and scale-free least squares (SFLS) for CB-SEM 
as well as partial least squares (PLS) and consistent partial least squares (PLSc). Multivariate normal 
data were generated using Monte Carlo simulation with pre-determined population parameters and 
sample sizes using R Programming packages. To produce the estimated values, data analysis was 
performed using AMOS and SmartPLS for CB-SEM and PLS-SEM, respectively. The findings il-
lustrate notable similarities between CB-SEM (ML) and PLS-SEM results when the true indicator 
loading is certainly high. 
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1. Introduction 
 
The second-generation statistical analysis technique, structural equation modeling (SEM), is established for evaluating the 
inter-relationships among numerous variables in a model (Awang, 2015; Ainur et al., 2017). The covariance-based SEM (CB-
SEM) and variance-based SEM (VB-SEM) are the two most widely used methods in SEM (Henseler et al., 2016). PLS-SEM 
is presently the most fully developed of the VB-SEM approaches, commonly employed for fitting and testing hypotheses 
(McDonald, 1996; Schamberger et al., 2020). PLS-SEM has also been widely used in most social science fields (Hair et al., 
2018). While CB-SEM is generally developed for confirmatory research, VB-SEM is known as a prediction-based approach 
to SEM that is mostly utilized for exploratory research (Sarstedt et al., 2014). The goal of CB-SEM is to estimate model 
parameters that minimize the discrepancies between the observed sample covariance matrix once the improved theoretical 
model has been validated (Awang, 2015). The normality of data distributions is necessary for several estimators in CB-SEM, 
which is rarely encountered in social sciences study. PLS-SEM, on the other hand, not only functions well with non-normal 
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data but also has very few limitations when it comes to the application of ordinal and binary scales (Hair et al., 2017). 
 
Apart from ML, several other estimators in CB-SEM have been developed to deal with different data characteristics, such as 
generalized least squares (GLS) and scale-free least squares SFLS (Hair. et al., 2017; Takane & Hwang, 2018). Despite per-
forming less well, the GLS fit function is able to minimize the disparities between a sample covariance matrix and the covar-
iance matrix of a theoretical model like ML. Meanwhile, the SFLS fit function, which is derived from the GLS, is rarely used 
in past studies. Despite the widespread use of SEM in various fields, little has been researched on its estimation techniques 
(Andreassen et al., 2006). Thus, we think it is important to study the accuracy of estimation methods when fitting SEM models 
of different data characteristics. The development of PLSc by Dijkstra in 2010 was claimed to have resolved many SEM 
issues. The method is said to mimic the ML estimator in CB-SEM (Dijkstra & Henseler, 2015) since it applies an attenuation 
adjustment to estimate factor loadings and path coefficients consistently (Schamberger et al., 2020). Therefore, we intend to 
examine whether PLSc performs better than the conventional PLS-PM and CB-SEM methods in measuring the parameter 
estimates. Towards this end, we used the comparative bias index (CBI) developed by Aimran et al. (2017b) and compared the 
indicator loadings estimations between ML, GLS, SFLS, PLS, and PLSc.  
 

2. Methodology 

2.1 Research model for simulation 

In this study, we used the Monte Carlo Markov Chain (MCMC) simulation procedures to generate normally distributed data. 
We created three population models with different specifications of true indicator loadings. Each model had four latent con-
structs consisting of homogenous true indicator loading of 0.7, 0.8, and 0.9 and correlation of 0.7, respectively. High indicator 
loading was set to avoid underestimation when using small sample sizes. Relationships between the constructs of the popula-
tion were characterized as homogeneous. Sample sizes of 50, 100, 200, and 500 were opted, since PLS is commonly employed 
for small sample size (Dijkstra & Henseler, 2015) and that a starting point of 100 to 200 is normally used as a sample size in 
path modeling (Awang, 2015). CB-SEM and PLS-SEM were employed to estimate the indicator loading using IBM AMOS 
version 24.0 and SmartPLS 3.0 respectively. Meanwhile, the R statistical programming environment was used to conduct the 
simulation procedure. The “psych” package, “MASS” package, “foreign” package, and the “semTools” package were used to 
generate multivariate normal data. Fig. 1, Fig. 2, and Fig. 3 present the population models that were tested with several esti-
mation methods in CB-SEM and PLS-SEM.  
 

 
 

Fig. 1. Model 1 Fig. 2. Model 2 

Fig. 3. Model 3 
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2.2 Estimation Methods 

a. Maximum Likelihood (ML) 

For predicting fit and coefficients in CB-SEM, the Maximum Likelihood (ML) estimation approach is often used. ML utilizes 
derivatives to minimize the following fit function: 

 𝐹ெ௅ = log|Σ (𝜃)| + 𝑡𝑟 ൫𝑆Σିଵ(𝜃)൯ − log|𝑆| − (𝑝 + 𝑞)  
(1) 

where the covariance matrix of the theoretical model denoted as Σ, and the sample covariance matrix defined as S. For a 
square matrix B, |B| implies the determinant of B; tr(B) defines the sum of the diagonal elements of B; and (𝑝 + 𝑞) is the total 
numbers of manifest variables indicators. The derivation of fitting function of ML assumes that the observed variables are 
distributed normally (Newsom, 2018). 

b. Generalized Least Squares (GLS) 

According to Newsom (2018), generalized least squares is an additional fitting function. It reduces the disparity between 
sample covariance matrix, S and covariance matrix, Σ. However, the GLS fit function uses a weight matrix for the residuals, 
defined as W. The fitting function is 

 𝐹 ௅ௌ = ൬12൰ 𝑡𝑟 (ሼሾ𝑆 − Σ(𝜃)𝑊ିଵሿሽଶ)  
(2) 

 

The simplicity of the function indicates that other weight matrixes could be applied to correct for the violations of distribu-
tional assumptions. 

c. Scale-free Least Squares (SFLS) 

The scale-free least squares estimation (SFLS) fitting function is 

 𝐹ௌி௅ௌ = ൬12൰ 𝑡𝑟 (ሼሾ𝐷 − Σ(𝜃)𝑊ିଵሿሽଶ)  
(3) 

where D is the diagonal of sample covariance; S, the covariance matrix of the theoretical model, is denoted as Σ; and the 
weight matrix for the residuals is defined as W (Arbuckle, 2011). 

d. Partial Least Squares (PLS) 

The PLS algorithm, according to Henseler et al. (2009), is a series of weight vectors regressions. 

The iterative estimation of latent variable scores process is repeated until the maximum number of iterations has been reached. 
This step includes the following procedure: 

By applying the factor weighting scheme inner weights were obtained: 𝑉௝௜ =  ൜𝑐𝑜𝑣 ൫𝑌௝;𝑌௜൯ 𝑖𝑓 𝑌௝  𝑎𝑛𝑑 𝑌௜ 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
(4) 

where 𝑌௝ is the latent variable (the dependent variable) and 𝑌௜ is the latent variable (the independent variable) in the structural 
model. 

Inside approximation: 

 𝑌෨௝ ∶=  ෍  ௜ 𝑏௝௜𝑌௜  
(5) 

where 𝑌෨௝ is the computation for all constructs by utilizing the weighted sum of its adjacent constructs scores, 𝑌௜; and 𝑏௝௜ refers 
to the inner weights. 

Outer weights; solve for Mode A block (reflective): 
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 𝑌෨௝௡ =  ෍  ௞௝ 𝑊෩௞௝𝑋௞௝௡ + 𝑑௝௡ 

 
Outer weights; solve for Mode B block (formative): 
 

 
(6) 

 𝑋௞௝௡ =  𝑊෩௞௝𝑌෨௝௡ +  𝑒௞௝௡ 
 

 
  (7) 

Outside approximation: 

 𝑌௝௡ ∶=  ෍  ௞௝ 𝑊෩௞௝𝑋௞௝௡ 

 

 
(8) 

where 𝑋௞௝௡ denotes the raw data for item k (k = 1,..., K) of construct j ( j = 1,...,J); and observations n (n = 1,...,N), 𝑌෨௝௡ is the 
construct scores from the inside; 𝑊෩௞௝ is the outer weights; 𝑑௝௡ is the error term from a bivariate regression; and 𝑒௞௝௡ is the 
error term from a multiple regression. Under this , the updated weights (i.e., 𝑊෩௞௝) and the items (i.e., 𝑋௞௝௡) are linearly com-
bined to renew the constructs scores (i.e., 𝑌௝௡). 

e. Consistent Partial Least Squares (PLSc) 

Dijkstra and Henseler (2015) developed consistent PLS (PLSc) to ensure that the PLS-SEM is adaptable while dealing with 
complicated models and distributional assumptions. In the correlation between two latent variables, the purpose is to correct 
for measurement error. To produce the deattenuated (i.e., consistent) correlation, PLSc refines the initial estimate.  𝑟௜௝∗ = 𝑐𝑜𝑟(𝜉ప෩ , 𝜉ఫ෩) (9) 

where 𝜉 is the latent variable scores. The new reliability coefficient must be utilized to assess the reliability of the construct 
scores, 𝜌஺, for each reflective construct, as presented in the following equation: 𝜌஺ =  (𝑤ෝᇱ𝑤ෝ)ଶ. 𝑤ෝᇱ (𝑆 − 𝑑𝑖𝑎𝑔 (𝑆))𝑤ෝ𝑤ෝᇱ(𝑤ෝ𝑤ෝᇱ − 𝑑𝑖𝑎𝑔 (𝑤ෝ𝑤ෝᇱ))𝑤ෝ  (10) 

where 𝑤ෝ  denotes the outer weights estimates and 𝑆 is the sample covariance matrix. The correlation for attenuation is also 
needed if one of the constructs, 𝜉ప෩  or 𝜉ప෩ , is formative. If both latent variables are formative, no modification is required.  𝑟௜௝ =  𝑟௜௝∗ට𝜌஺ ൫𝜉ప෩൯.𝜌஺ ൫𝜉ఫ෩൯ (11) 

For standardized coefficients based on correlations, the conventional OLS equation is expressed as follows: 𝛽 =  𝑅௑ିଵ 𝑟௑௬  (12) 

A vector of path coefficients denotes 𝛽; 𝑅௑ is the correlation matrix of the indepedent variables of the structural equation; and 
the vector of correlations between the dependent variable and the independent variables denotes  𝑟௑௬. 

2.3 Comparative Bias Index (CBI) 

As previously mentioned, the population data was generated based on prespecified parameters and different sample sizes. The 
population value was identified to be the actual model parameter (e.g., true indicator loading) values, which are required to 
create the simulation data. Hence, the CBI values for each item in the model were compared using the CBI described to 
evaluate the bias of simulation data parameter estimates as follows: 𝐶𝐵𝐼 = 1 − ห𝜃෠ − 𝜃ห𝜃   

(13) 
where 𝜃  denotes the true value of the model parameter of interest and 𝜃෠ is its estimate. A CBI value of > 0.9 denotes unbiased 
or low bias of estimate, while a CBI value of > 0.8 denotes acceptable bias of estimate. Otherwise, it is an unacceptable bias 
estimate. 
 

3. Result 

Table 1 to 3 summarize the performance of CB-SEM’s and PLS-SEM’s CBI values for all indicator loadings across the three 
prespecified models.  



R. Zulkifli et al.  / International Journal of Data and Network Science 6 (2022) 395

Table 1  
The Comparative Bias Index (CBI) - Model 1 

Sample size Items Comparative Bias Index  
CB-SEM 

Comparative Bias Index 
PLS-SEM 

ML GLS SFLS PLS PLSc 
50 A1 .886 .971 .814 .963 .637 

A2 .986 .729 .957 .836 .903 
A3 1.000 .986 .843 .927 .681 

A4 .914 .943 .757 .824 .626 

B1 .771 .943 .757 .857 .600 

B2 .914 .429 .986 .977 .923 
B3 .814 .843 .800 .990 .744 

B4 .929 .857 .900 .983 .939 
C1 .943 .057 .986 .931 .959 
C2 .757 -.257 .800 .917 .780 

C3 .843 -.729 .714 .893 .553 

C4 .886 -.029 .843 .810 .796 

Y1 .543 .371 .586 .841 .534 

Y2 .543 .114 .529 .741 .559 

Y3 .829 .571 .871 .907 .851 
Y4 .829 .800 .843 .801 .810 

100 A1 .743 .786 .686 .934 .573 

A2 .943 .971 .971 .829 .947 
A3 .914 .900 .986 .869 .967 
A4 .814 .800 .757 .786 .687 

B1 .871 .900 .871 .909 .859 
B2 .914 .986 .943 .954 .949 
B3 .971 .900 1.000 .856 .983 
B4 .971 .971 .971 .947 .990 
C1 .843 .857 .843 .983 .843 
C2 .986 .929 .957 .916 .946 
C3 .900 .971 .786 .870 .671 

C4 .886 .986 .943 .976 .981 
Y1 .843 .900 .843 .984 .837 
Y2 .857 .857 .857 .979 .867 
Y3 .986 .986 .986 .859 .977 
Y4 .900 .929 .929 .946 .931 

200 A1 .900 .886 .871 .929 .831 
A2 .986 .986 .986 .869 .980 
A3 .986 1.000 1.000 .896 .997 
A4 .971 .929 .957 .864 .926 
B1 .914 .929 .943 .906 .950 
B2 .900 .943 .886 .971 .880 
B3 .986 .971 .971 .859 .943 
B4 .871 .886 .900 .983 .920 
C1 .943 .971 .943 .934 .953 
C2 .986 .929 .971 .873 .954 
C3 .843 .929 .771 .921 .699 

C4 .986 .986 .986 .916 .953 
Y1 .971 .986 .971 .920 .994 
Y2 .957 1.000 .914 .904 .890 
Y3 .943 .929 .914 .847 .897 
Y4 .957 .957 .929 .906 .901 

500 A1 .929 .943 .914 .920 .890 
A2 1.000 1.000 .986 .880 .983 
A3 .986 .986 .986 .883 .989 
A4 .943 .943 .929 .843 .923 
B1 .914 .929 .914 .933 .913 
B2 .957 .957 .943 .911 .927 
B3 1.000 1.000 1.000 .880 .994 
B4 .943 .957 .957 .911 .977 
C1 .943 .971 .929 .916 .923 
C2 .971 .957 .957 .876 .956 
C3 .943 .957 .914 .894 .901 
C4 .929 .929 .943 .937 .957 
Y1 .971 .971 .971 .903 .979 
Y2 .971 1.000 .971 .891 .970 
Y3 .986 .986 1.000 .889 .980 
Y4 1.000 .986 .986 .869 .966 

Note: Values in bold indicate unacceptable bias estimate 
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Table 2 
The Comparative Bias Index (CBI) - Model 2 

Sample size Items Comparative Bias Index  
CB-SEM 

Comparative Bias Index  
PLS-SEM 

ML GLS SLS PLS PLSc 
50 A1 .950 .963 .900 .964 .893 

A2 1.000 .975 .925 .918 .890 
A3 .950 .813 .925 .913 .880 
A4 1.000 .988 .913 .928 .913 
B1 .988 .925 .988 .935 .973 
B2 .913 .750 .913 .995 .904 
B3 .938 .850 .900 .904 .880 
B4 .963 .763 .938 .945 .930 
C1 .938 .838 .900 .909 .875 
C2 .863 .938 .913 .990 .936 
C3 .975 .975 .913 .955 .865 
C4 .963 .988 .988 .900 .998 
Y1 .763 .788 .750 .874 .744 

Y2 .988 .800 .975 .931 .958 
Y3 .950 .988 .975 .888 .928 
Y4 .938 .750 .963 .983 .913 

100 A1 .925 .938 .925 .978 .924 
A2 .975 1.000 .950 .943 .923 
A3 .963 .963 .963 .963 .971 
A4 1.000 .988 .975 .945 .965 
B1 1.000 .975 .988 .931 .966 
B2 .938 .950 .950 .980 .953 
B3 .988 .988 .975 .935 .960 
B4 .875 .863 .863 .993 .861 
C1 .988 .938 .913 .935 .873 
C2 .975 .988 .963 .953 .956 
C3 .975 .963 .963 .915 .934 
C4 .950 .913 .975 .894 .984 
Y1 .863 .975 .888 .971 .889 
Y2 .975 .963 .988 .913 .990 
Y3 1.000 .988 .975 .928 .959 
Y4 .975 .950 .988 .964 .999 

200 A1 .975 .988 .988 .941 .983 
A2 .963 .988 .938 .955 .921 
A3 .975 1.000 .963 .954 .955 
A4 .988 1.000 .988 .938 .981 
B1 .975 .975 1.000 .916 .993 
B2 .975 .988 .988 .956 .999 
B3 .950 .950 .950 .970 .960 
B4 .938 .925 .925 .971 .926 
C1 .988 .988 1.000 .940 .989 
C2 .963 .988 .963 .963 .975 
C3 .975 .988 .950 .946 .939 
C4 1.000 .988 1.000 .934 .998 
Y1 .938 .988 .925 .970 .914 
Y2 .988 .975 .975 .925 .970 
Y3 .963 .975 .950 .951 .948 
Y4 .963 .963 .975 .964 .990 

500 A1 .938 .950 .925 .965 .921 
A2 .950 .950 .938 .973 .940 
A3 .950 .950 .950 .966 .958 
A4 .975 .975 1.000 .949 .998 
B1 .950 .938 .925 .966 .913 
B2 .938 .938 .950 .984 .955 
B3 .938 .938 .938 .973 .929 
B4 .963 .975 .963 .965 .970 
C1 .950 .963 .950 .965 .954 
C2 .888 .900 .900 .994 .905 
C3 .975 .975 .950 .953 .931 
C4 .925 .938 .938 .985 .948 
Y1 .963 .988 .975 .956 .979 
Y2 .963 .975 .950 .956 .936 
Y3 .963 .963 .925 .960 .908 
Y4 .950 .975 1.000 .964 .983 

Note: Values in bold indicate unacceptable bias estimate 
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Table 3 
The Comparative Bias Index (CBI) - Model 3 

Sample size Items Comparative Bias Index  
PLS-SEM 

Comparative Bias Index  
PLS-SEM 

ML GLS SLS PLS PLSc 
50 A1 .956 .989 .967 .921 .793 

A2 .922 .911 .922 .962 .791 

A3 .956 .956 .944 .967 .996 
A4 .978 .956 .978 .953 .967 
B1 .844 .922 .789 .947 .864 
B2 .867 .844 .856 .893 .803 
B3 .878 .900 .956 .974 .996 
B4 .967 .989 .967 .938 .827 
C1 .911 .878 .889 .970 1.000 
C2 .911 .922 .889 .880 .832 
C3 .967 .811 .978 .929 .769 

C4 .933 .811 .911 .978 .891 
Y1 .878 .944 .833 .777 .661 

Y2 .956 .811 .956 .950 .851 
Y3 .933 .900 .856 .989 .824 
Y4 .822 .778 .933 .904 .967 

100 A1 .911 .933 .956 .979 .972 
A2 .867 .889 .833 .931 .809 
A3 .978 .978 .978 .996 .984 
A4 .956 .978 .944 .994 .947 
B1 .856 .878 .833 .933 .812 
B2 .789 .789 .778 .859 .796 

B3 .878 .878 .900 .958 .908 
B4 .989 1.000 1.000 .993 .994 
C1 .922 .967 .922 .977 .917 
C2 .889 .967 .867 .931 .857 
C3 .900 .911 .911 .957 .911 
C4 .922 .944 .933 .979 .941 
Y1 .911 .911 .933 .971 .941 
Y2 .989 .978 .967 .988 .961 
Y3 .967 1.000 .944 .999 .919 
Y4 .944 .944 .967 .988 .980 

200 A1 .978 .989 .989 .983 .974 
A2 .956 .967 .933 .994 .931 
A3 .978 .989 .978 .989 .986 
A4 .989 1.000 .967 .982 .951 
B1 .911 .922 .889 .962 .892 
B2 .900 .911 .867 .952 .856 
B3 .900 .922 .933 .966 .952 
B4 .967 .967 .978 1.000 .972 
C1 .967 .978 .956 1.000 .951 
C2 .911 .956 .900 .954 .889 
C3 .911 .922 .922 .971 .927 
C4 .944 .967 .956 .989 .958 
Y1 .922 .933 .944 .979 .956 
Y2 .978 .967 .978 .989 .972 
Y3 .967 .967 .944 .998 .927 
Y4 .956 .956 .967 .996 .969 

500 A1 .967 .978 .978 .992 .983 
A2 .967 .978 .944 .993 .941 
A3 .967 .967 .978 .993 .988 
A4 1.000 1.000 .989 .980 .983 
B1 .956 .967 .967 .998 .974 
B2 .956 .956 .944 .993 .939 
B3 .967 .967 .956 .998 .953 
B4 .978 .978 .978 .989 .980 
C1 .967 .978 .956 .992 .952 
C2 .922 .944 .911 .972 .913 
C3 .933 .933 .944 .986 .942 
C4 .956 .956 .967 .991 .973 
Y1 .956 .956 .967 .999 .973 
Y2 .978 .978 .978 .991 .978 
Y3 .978 .989 .956 .988 .949 
Y4 .956 .956 .956 .997 .964 

Note: Values in bold indicate unacceptable bias estimate 
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The loading for Model 1 was set as 0.7 for every item underlying the respective constructs. Table 1 shows the results for 
Model 1. Among the CB-SEM estimators, SFLS consists of 5 and ML consists of 4 low CBI values (< 0.8) indicators for a 
small sample size (n = 50). GLS consisted of 9 low CBI values (< 0.8) indicators. PLS generates better CBI values in most of 
the indicators, compared to PLSc and CB-SEM estimators when the sample size is small. This result implies that at a low 
sample size (n = 50), CB-SEM estimators (ML, GLS, SFLS) generated several biased indicators loading estimates similar to 
PLSc because the latter mimics a CB-SEM estimator (Dijkstra & Henseler, 2015). Contrarily, CB-SEM estimators comprised 
of only 1 to 3 low CBI values (< 0.8) indicator when the sample size increased (n = 100). This finding attests that CB-SEM 
estimators require at least 100 sample sizes to produce good estimates. This finding was also applicable to PLSc. At a large 
sample size (n ≥ 200), ML and GLS do not consist of any undesirable bias estimates (<0.8). Surprisingly, there seem to be no 
undesirable bias estimates (<0.8) in PLS. A thorough observation of CBI values show that GLS produces a better estimate 
compared to ML and PLS in most indicators, with CBI values closer to 1.0. As the sample size increases (i.e., n = 500), none 
of the estimators in CB-SEM and PLS-SEM generate any undesirable bias estimates (<0.8). A closer look at their CBI values 
reveals that for large sample sizes, the CB-SEM estimators produce a high value compared to PLS-SEM. This finding proves 
that PLSc requires a large sample (n ≥ 100) to generate a better estimate. The biasness of indicator loading estimates in ML, 
GLS, SFLS, and PLSc at a low sample size might be due to their underestimation compared to PLS. The indicator loadings 
estimated by the CBI for Model 2 is shown in Table 2. Every item loading underlying the respective constructs for Model 2 
was set as 0.8. Based on the results, CB-SEM estimators consist of merely 1 low CBI value (< 0.8) except GLS at a low 
sample size (n=50), similar to PLSc. Interestingly, PLS does not produce any undesirable bias estimates (<0.8) across all 
sample sizes (n=50, 100, 200, 500). In a large sample (n ≥ 200), the total number of low bias indicator estimates (CBI >0.9) 
in GLS and SFLS is higher than ML, indicating that the use of other estimation methods can be considered despite ML being 
appropriate for large sample sizes. Similarly, PLS and PLSc estimate indicator loadings with high CBI values (>0.9) across 
large sample sizes (n=200, 500). For Model 3, every item loading underlying the respective constructs was set as 0.9. The 
result is shown in Table 3. Among CB-SEM estimators, it is reported that ML does not produce any undesirable bias estimates 
(<0.8) for a low sample size. Having said that, at low sample size, ML shows a better CBI performance than PLS for Model 
3. Meanwhile, PLSc consists of 4 low CBI values (< 0.8) indicators, indicating that among other estimators, PLSc generates 
several unacceptable bias estimates (<0.8). For 100 sample sizes, we observed a contradictory finding where ML generates 1 
unacceptable bias estimate (<0.8) and conversely for PLS. At the same time, other estimators in CB-SEM and PLS-SEM 
consist of 1 low CBI values (< 0.8) indicator. In a large sample (n ≥ 200), ML and PLS produce low bias estimates (>0.9) in 
all indicators.  

 

4. Discussion 

The current study examined the performance of several estimation methods in terms of CBI values. We used simulation to 
create data with various sample sizes employing a simple model following specific criteria (e.g., normal, complete data). 
Based on the findings, we derive some conclusions. As stated, the true loadings of indicators for the three models are homog-
enous between 0.7 to 0.9. At sample size 50, where the items’ true indicator loading was set as 0.7, PLS consists of only 1 
low CBI value and therefore performs markedly better than PLSc and CB-SEM estimators. However, at sample size 100, ML 
and GLS generate 1 unbiased indicator loading estimate while PLS shows consistent results. At sample size n ≥ 200, ML, 
GLS, and PLS do not consist of any low CBI values. Therefore, we infer that when data of true loading 0.7 is to be simulated, 
the study can be conducted by using GLS as an alternative fitting function in CB-SEM and PLS estimator. 

For Model 2, PLS is capable of providing accurate estimates for all the sample sizes. This finding suggests that PLS produces 
unbiased estimation across all sample sizes when the actual indicator loading is high (i.e. 0.8). In contrast, PLSc and CB-SEM 
estimators proved to perform notably better when the indicator loadings are high (i.e. 0.8) across large sample sizes (n = 100, 
200, 500). However, among all the estimators for Model 3, ML does not comprise low CBI values (<0.8) and PLSc produces 
several biased loading estimates at a low sample size. Meanwhile, GLS, SFLS, and PLS were observed to generate 1 biased 
loading estimate, suggesting that when a population indicator loading is high (e.g., 0.9), ML estimation’s performance is 
superior compared to others. Contrarily, at 100 samples, ML shows inconsistent results; it consists of 1 low CBI value (<0.8). 
However, the CBI for each loading indicator using PLS is high, with no low CBI values found over large sample sizes (n ≥ 
100). 

From the findings, we can conclude that when true indicator loadings are high (i.e. 0.9), the indicator loadings are underesti-
mated and therefore fall within the range of acceptable bias. At large sample sizes (n ≥ 200), we infer that when it refers to 
simulation study with the population indicator loadings greater than 0.8, one can consider using CB-SEM and PLS-SEM 
estimators to generate better parameter estimates. An indicator loading value of 0.8 indicates great internal consistency (Rahlin 
et al., 2019). If the true indicator loadings are 0.7, ML, GLS, and PLS are better alternatives for a large sample size (n ≥ 100). 
Consistent with Aimran et al. (2017a), when the actual indicator loadings are consistently high (e.g., ≥ 0.8), PLS can be 
considered as a good estimator. The biases of indicator loading estimates in ML, GLS, SFLS and PLSc at low sample size 
might be due to its underestimation compared to PLS. The findings of this study also prove that for the cases of 50 samples 
and the true indicator loading being extremely high (e.g., 0.9), PLSc clearly underestimates the true value of indicator loading, 
thus producing unacceptable bias estimates. This issue may have arisen due to the consequences of measurement error prop-
agation on parameter estimates (Afthanorhan et al., 2021). When estimating the indicator loadings for confirmatory purposes, 
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one should consider using CB-SEM rather than PLSc because the former produces more accurate estimates for indicator 
loadings (Afthanorhan et al., 2020).  

This study is not without limitations. The comparison of this model’s implementations to CB-SEM and PLS-SEM is not 
certainly expected to be generalized to all models because the conclusions are derived from the model within the scale of this 
study. However, such will raise scholars’ awareness of several critical issues that may emerge and should be pondered when 
choosing the relevant SEM technique for their research.  

 

5. Conclusion 

From this study, we conclude that PLS is a good estimator if the actual indicator loadings are consistently high (e.g., ≥ 0.8). 
The biases of indicator loading estimates in ML, GLS, SFLS, and PLSc at low sample size might be due to its underestimation 
compared to PLS. On the other hand, the indicator loadings are underestimated hence fall within the permissible bias range 
when true indicator loadings are high (i.e., 0.9). 
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