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 This paper focuses on the impact of fear emotion upon technology adoption by educators and 
students during Covid-19 pandemic. Mobile learning (m-learning) has been applied as the educa-
tional social platform within higher education institutes, public as well as private. The research 
hypotheses were associated with the Covid-19 influence on m-learning adoption with the rise of 
the coronavirus increasing types of fear. Such fears include fear caused by the education failure, 
family lockdown, and loss of social relationships. Teachers and students are mostly fearful of 
these aspects of the situation. An integrated model was established within the research, using 
theoretical models; the Planned Behavior theory, the Technology Acceptance Model, and the Ex-
pectation-Confirmation Model. The proposed integrated model (using PLS-SEM software) was 
analyzed using an online survey data, with 420 respondents from Zayed University, UAE. The 
findings indicated that attitude was the best predictor for using the m-learning system, followed 
by continuous intention, expectation confirmation, perceived usefulness, ease-of-use, perceived 
fear, behavioral control, and satisfaction. According to the research, during the coronavirus pan-
demic, if the m-learning system is adopted for educational reasons, the learning and teaching out-
come proves quite promising. Yet there is a fear of the family being stressed, or of loss of friends, 
and also a fear of the results of future schooling. It is therefore necessary to assess the students 
efficiently during this pandemic so that the situation can be managed emotionally.  
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1. Background 
 
Several efforts have been made by universities and colleges to establish a virtual teaching environment using appropriate 
platforms and resources (Salloum & Shaalan, 2021; Alhashmi, Salloum, & Abdallah, 2020; Alshurideh, Salloum, Al Kurdi, 
Monem, et al., 2019; Hantoobi et al., 2021; Salloum, Mhamdi, et al., 2018; Sultan et al. 2021). These educational institutions 
are constantly struggling to attain specific outcomes. Yet, due to COVID-19, the institutions are challenged (Alameeri, 
Alshurideh, & Al Kurdi, 2021; Amarneh et al., 2021; Al Khasawneh et al., 2021; Leo et al., 2021). Negative emotions have 
taken rise in the form of fears, worries and apprehension among students worldwide (Alameeri et al., 2020; Alshurideh et al., 
2021; Alyammahi et al., 2020; Al Kurdi et al., 2021). The psychological well-being of students is influenced by fear of 
situations arising that will cause stigma. Covid-19 period has deteriorated and various psycho-social issues that have arisen 
e.g., discrimination and loss (Ahorsu et al., 2020; Al-Maroof, Alhumaid, Akour, et al., 2021; Lin, 2020; Pappas et al., 2009). 
Educational institutions have also been affected by fear, creating a hindrance to the learning and teaching process which 
deeply influences the e-learning process (Al-Maroof et al., 2021; Bettayeb, Alshurideh, & Al Kurdi, 2020; Turki, 2020). There 
are various forms of fear such as insecurity, missing out, failure and risk taking (Alt and Boniel-Nissim, 2018; Ellahi, 2017; 
Machů and Morysová, 2016; Morchid n.d.). Keeping the above-mentioned aspects in mind, it has been observed that fear 
could affect technology adoption. Various institutions have implemented online learning systems so that the dangerous and 
malicious influence of coronavirus can be reduced. Yet various colleges and universities are facing challenges related to 
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teachers’ knowledge of technology and their implementation ability. The ability of students to understand and the inability to 
convert from a normal class to a virtual class are also issues (Chen & Li, 2011; Li et al., 2018; Liang, Zheng, & Wang, 2011). 
The technology-effectiveness endorsement and the virtual classes depend mostly on technology adoption, considering this as 
an online learning resource (Akour et al., 2021; Alshamsi et al., 2020; Alshraideh, Al-Lozi, & Alshurideh, 2017; Alshurideh 
et al., 2015; Al Kurdi et al., 2020).  
  
Some adoption research indicates that the adoption procedure is not easy as several aspects are affected, such as strategy, 
context (Salloum, Al-Emran, & Shaalan, 2016) and learning technology (Alshurideh, Salloum, Al Kurdi, & Al-Emran, 2019; 
Salloum et al., 2020; Salloum, Maqableh, et al., 2018). Since technology adoption has been researched by various researchers, 
it has been observed that, within extraordinary circumstances, innovative teaching methods are adopted, such as the m-learn-
ing application (AlSuwaidi et al., 2021; Nuseir et al., 2021; Suleman et al., 2021). However, until now, the coronavirus pan-
demic has not been assessed. M-learning platforms have been provided by Apple Store and Google Play for users and, through 
the Store, it is possible to download and update the application. The App Store extends a freemium strategy which positively 
influences the number of users (Liu, Au, & Choi, 2014; McIlroy, Ali, & Hassan, 2016). Much attention must be given to the 
psychological stance of teachers and learners in relation to the importance of using m-learning in unforeseen time. In Covid-
19 situation, such a platform has been developed recently, which is why there has been little focus on the domain of higher 
education. Much research has examined the technology adoption. Yet, little is known about fear of the application adoption 
during this pandemic. Several studies have considered the technological developments, but not the psychological aspects. The 
role played by fear has not been understood clearly, which is why the opportunities to make use of technology in terms of 
education has not been completely understood (Agha, Alzoubi, & Alshurideh, 2021; Alzoubi, Alshurideh, and Ghazal, 2021; 
Naqvi et al., 2021). Considering the limitations mentioned above, the present research aims to establish an effective educa-
tional assessment of the type of technology that is most suitable even if fear is a dominant part of students’ and teachers’ lives. 
The new application is being followed by teachers and students for the first time, so that they may enhance their learning 
outcomes at this difficult time.  
  
Academically, the literature suggests that the Technology Acceptance Model (TAM), Expectation-Confirmation Model 
(ECM) and Theory of Planned Behavior (TPB) are successfully applied as the technology adoption model to measure the 
motivation of users to understand (Liu, Geertshuis, & Grainger, 2020; Sami Alkalha et al., 2012; Tsai et al., 2020). Therefore, 
this current research is based on the TAM, TPB and ECM and adding two external elements: subjective norms and fear. This 
would help to assess the willingness of students to use m-learning systems. Two groups, students and teachers, maintain 
perceptions related to m-learning use during the pandemic, which would be analyzed using the TAM.  
  
Previously, there has been no research carried out on the aspect of fear during the COVID-19 predicament and its association 
with the hybrid model (TAM, TPB, and ECM). The current model would analyze the various kinds of fear experienced by 
teachers and students during the period of the pandemic. Thus, we expect that our study will enhance the educational and 
technological input for teachers and application developers to understand the implementation method and to establish new 
technologies during the pandemic lockdown time.  
  
The m-learning adoption conditions during the pandemic need to be understood as this would help to extract various educa-
tional aspects that are extraordinary in nature, and which would arise during such unique circumstances. The technology 
adoption field would be contributed, practically and theoretically.  
 
2. Literature review  
 
Earlier adoption research has analyzed the various kinds of fear. For example, anxiety is an essential factor within a certain 
section of research assessing technology adoption and anxiety. In the educational sector, anxiety is considered as an extraor-
dinary aspect, which influences technology acceptance amongst students. Furthermore, apart from anxiety, if experience and 
skills are lacking, then this would limit interest in technology usage even further. Another factor present is fear of the actual 
use of technology. This integrates with literacy and anxiety to decrease technology adoption effectively. Hence, it is essential 
for educators and teachers to assess the psychological context and make sure that the students are well prepared to accept 
technology. In the educational sector, another cause of fear is limited preparedness and limited technical abilities. These two 
factors negatively influence the adoption / acceptance of technology (Callum & Jeffrey, 2014; Nchunge, Sakwa, & Mwangi, 
2012; Thatcher & Perrewe, 2002). The fear of technology adoption is limited not only in the educational sector but also within 
the rest of the (Al-Dhuhouri et al., 2021; Al-Maroof, Alshurideh, et al., 2021; Alkitbi et al., 2021; Almazrouei et al., 2021; 
AlShehhi et al., 2021; Mehrez et al., 2021). In the health sector, health anxiety is present amongst patients, which leads to fear 
or apprehension of outcomes that show significant illness. The medical-sector research, therefore, stresses the negative influ-
ences of anxiety and perceived risk when technology is being used (Aburayya et al., 2020; Alhashmi, Salloum, and Mhamdi, 
2019; Almansoori et al., 2021; Kamal, Shafiq, & Kakria, 2020; Meng et al., 2020; Mouzaek et al., 2021; Salloum et al., 2017). 
In the banking sector (Al-Khayyal et al. 2020; Alsuwaidi et al. 2021), various kinds of fear arise from attitudes towards, as 
well as perceptions of, technology (Al-Maroof, Alfaisal, & Salloum, 2020; Alsharhan, Salloum, & Shaalan, n.d.; Gaid & 
Salloum, 2021). Within the context of mobile payments (Alshurideh, Al Kurdi, & Salloum, 2021; Salloum et al., 2019; Sal-
loum & Al-Emran, 2018), numerous consumers are afraid to present their data. Research also indicates that customers fear 
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they may be subject to fraud. In any household, it is found that when technology is feared, there is also a lack of interest in 
technology use, giving rise to family tasks. Lastly, mobile banking technology is also negatively influenced by lack of trust 
and experience (Ahmed et al., 2021; AlGhanem et al., 2020; Bailey et al., 2020; Makttoofa, Khalidb, & Abdullahc, n.d.). 
  
Several studies have assessed technology acceptance and the fear issue. Many of these studies have relied on the TAM model 
(Alshurideh, Al Kurdi, & Salloum, 2020; Bailey et al., 2020; Bhattacherjee & Hikmet, 2007; Callum & Jeffrey, 2014; Kamal, 
Shafiq, & Kakria, 2020; Makttoofa, Khalidb, & Abdullahc, n.d.; Mhamdi, Al-Emran, & Salloum, 2018; Nchunge, Sakwa, & 
Mwangi, 2012; Al Suwaidi et al., 2021)  and on other models (Aburayya et al., 2020; Al-Maroof et al., 2020; Al-Maroof, 
Alhumaid, Alhamad, et al., 2021; Al-Maroof et al., 2019; Alghizzawi et al., 2018; Alshurideh, 2018; Brown and Venkatesh, 
2005; Elbasir et al., 2021; Habes et al., 2019; Johnston and Warkentin, 2010; Al Kurdi, Alshurideh, and Salloum, 2020; Meng 
et al., 2020; Salloum et al., 2021; Thatcher and Perrewe, 2002). The objective of these studies is to assess the influence of 
technology acceptance based on the fear of technology. There are various justifications provided by people as to why they 
fear using technology. Some stated that it was a lack of confidence. When a human functions, it is possible that he will make 
mistakes, which is why the fear factor is amplified (Gresham, 2020). On the other hand, some claim that when technology has 
not been used, the process consumes more time and tasks remain unaccomplished within the allotted time (Appavoo, 2020). 
Some acceptance studies state that there is a fear that data privacy will be breached, which is why so much focus is placed on 
privacy and on security awareness (Distler, Lallemand, & Koenig, 2020). 
 
2.1 Knowledge gap  
 
The current research carries out a bibliometric mapping analysis on the mobile learning technology literature so that the 
research gap presented in Fig. 1 can be addressed.  
 

 
Fig. 1. Most used author keywords in mobile learning adoption/acceptance 

 
The database has been searched as follows: “ACM Digital Library, Google Scholar, IEEE, SAGE Pub, ScienceDirect, and 
Springer”. This was during the time period 2015-2020 in which nearly 1,393 papers made use of the keywords “mobile 
learning”, “mobile learning adoption”, and “mobile learning acceptance”. The numbers were distributed in the following 
manner: ACM Digital Library engine search with 99 papers on mobile learning; 708 papers found in a Google Scholar engine 
search; 210 papers found in IEEE; SAGE Pub engine with about 65 articles; ScienceDirect with 147 papers; and 164 articles 
in the Springer engine. It is necessary to consider that various studies have assessed mobile learning adoption or acceptance. 
However, a few studies have addressed m-learning usage during the COVID-19 outbreak. There are 25 articles in total. Within 
the field, the earliest paper found was in the 2020 databases (Raza et al., 2020). This paper is the earliest and has then provided 
an entirely new procedure to create real information in m-learning during COVID-19. This was the first step in m-learning 
technology development in which scientists remained focused on those mobile devices which have an earphone, a front cam-
era and signal processing units. Some earlier research studies have focused on mobile devices, as well as on mobile learning 
platforms. Out of these research studies, one considered mobile learning technology adoption and extracted the specific fea-
tures motivating individuals to adopt smartphones. For functionality, the hands-free phone is highly influential (Adapa et al., 
2018). The users become quite involved in using the smartphones. Furthermore, using the internet, the information can be 
quickly accessed, which is why time is saved and the adoption level rises. The adoption issue was considered by using a 
personal perspective. According to the research, if personal features, such as readiness and openness, are present, new expe-
riences may happen and it is quite possible that the device may be adopted since there is a high perceived-usefulness level 
present for the device. Finally, the research by (Gasaymeh &Waswas, 2019) indicates that users positively consider the use 
of smartphones because of its ease of use and usefulness. However, fear has been raised by the research, along with the health 
concern brought forward by the users. Details of the research studies focusing on mobile technology acceptance are mentioned 
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below and the coronavirus, or COVID-19 pandemic, is included. The research has considered mobile learning acceptance 
since mobile learning is believed to be a technology that is unfamiliar in the Middle East. There are some students who 
consider its importance within the educational context. Hence, the current research would motivate educators, teachers and 
students in the future to use it within various educational environments.  
 
3. Research model  
 
The research model that has been developed is based upon integration of the subjective norm and the fear construct with three 
kinds of theoretical models: TAM, TPB, and ECM. The proposal made is that the subjective norm (SBJ) and perceived fear 
(PF) would significantly influence the m-learning system’s perceived ease of use (PEU) and usefulness (PU). Additionally, 
regarding attitude (ATD), subjective norm (SBJ), and perceived behavioral control (PBC), they would affect the continuous 
intention (CON) to use m-learning systems (CON). It must also consider that CON influences the actual use (ACU) of m-
learning perception (Fig. 2).  
 
3.1 Perceived Fear (PF) 
 
Some studies suggest that fear can also be perceived positively if there is some sort of real danger, which COVID-19 has. 
Different forms of fear related to COVID-19 can be highlighted such as uncertainty, health anxiety, and fear of losing loved 
ones. That is why there are two aspects which need consideration: worrying to a high degree and possibility that are affected 
by this disease (Ahorsu et al., 2020; Gerhold, 2020). The current research aims to analyze the association with technology 
adoption using TAM and perceived fear (PF) as an external factor. Hence, the research will try to resolve the issue of TAM-
model limitation (Tarhini, Hone, and Liu, 2015). The influence of PF on the TAM model would be analyzed in terms of PU 
and PEU, in addition to the SBJ which is also an external factor. Keeping this assumption in mind, the following has been 
hypothesized: 
 
H1: PF positively affects the PEU of m-learning. 
H2: PF positively affects the PU of m-learning. 
 
3.2 The Expectation confirmation (EXP) 
EXP refers to someone's perceptions of the congruence in relation to the actual performance as the EXP is linked to actual 
performance (Bhattacherjee, 2001). Earlier research states that EXP significantly influences satisfaction (SAT) and the PU of 
the various mobile technologies (Al-Emran, Arpaci, and Salloum, 2020; Muhammad Alshurideh et al., 2020; Le et al. 2020; 
Nascimento, Oliveira, and Tam, 2018). 
 
H3: EXP positively affects the PU of m-learning. 
H4: EXP positively affects SAT with m-learning. 
 
3.3 The TAM 
 
The external factor validation of personal belief is measured by one fixed goal that is part of the TAM model. This is quite a 
powerful model which explains that individuals would accept technology if it was present in educational institutions (Al-
Maroof & Al-Emran, 2018; Davis, 1989; Teo, 2012; Venkatesh & Bala, 2008). PU and PEU are dominant features according 
to TAM which can measure two kinds of perception. Based on the TAM, using a particular system (e.g., m-learning) in our 
life would be related to the PU that would enhance our job performance (Davis, 1989). Accordingly, PU maintains a significant 
influence upon the CON to use several mobile technologies (Alshurideh et al., 2020; Joo, Kim, and Kim, 2016; Le et al., 
2020; Nascimento, Oliveira, & Tam, 2018). whereas PEU refers to someone’s uses a particular system that needs little effort 
to use (Davis, 1989). Earlier research indicated that PEU significantly influences the CON to use m-learning (Alshurideh et 
al., 2020; Joo, Kim, and Kim ,2016; Le et al., 2020; Nascimento, Oliveira, & Tam, 2018). Keeping the earlier assumption in 
mind, if users think that technology can be used easily, they will develop positive attitudes towards m-learning. Therefore, 
their perceptions of this PU are observed. In this way, if technology is perceived as useful, then there is a higher probability 
that a positive attitude will be maintained towards adopting this technology, highlighting our hypotheses: 
 

H5: PEU positively affects the PU of m-learning. 
H6: PU positively affects SAT with m-learning. 
H7: PEU positively affects the CON to use m-learning. 
H8: PU positively affects the CON to use m-learning. 
 

3.4 Satisfaction (SAT) 
 

SAT refers to the users’ attitude of using a particular system (e.g., m-learning) which they feel satisfied with such a system 
after usage (Doll, Hendrickson, & Deng, 1998). Earlier research stated that SAT significantly influenced the CON to use 
mobile technologies (Alshurideh et al., 2020; Le et al., 2020; Nascimento, Oliveira, & Tam, 2018; Tam, Santos, & Oliveira, 
2018). 
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H9: SAT positively affects the CON to use m-learning. 
 
3.5 Attitude (ATD) 
 
ATD refers to someone’s perception towards a particular system (Karjaluoto, Mattila, and Pento, 2002). Earlier m-learning 
studies stated that ATD maintained a relationship with CON. Research stated that ATD have a high influence on CON to 
adopting m-learning (Al-Emran, Arpaci, & Salloum, 2020; Cheon et al., 2012; Khanh & Gim, 2014; Prieto, Migueláñez & 
García-Peñalvo, 2014). 
 
 H10: ATD positively affects the CON to use m-learning. 
 
3.6 Perceived Behavioral Control (PBC) 
 
The PBC refers to someone’s perception and experience of using a particular system in terms of ease or difficulty of perform-
ing the behavior of interest (Ajzen, 1991). Research shows that PBC significantly influences the CON to use m-learning (Al-
Emran, Arpaci, and Salloum, 2020; Cheon et al., 2012; Cheong et al., 2012; Kim, 2010). Hence, the following is attained.  
 
H11: PBC positively affects the CON to use m-learning. 
 
3.7 Subjective norm (SBJ) 
 
SBJ is a means that helps measure someone’s perception in the presence of other individuals who share a similar attitude and 
who would (not) exhibit similar behavior towards technology. Socially, the TAM model has been strengthened by the SBJ 
since it helps the TAM to account for users’ behavior when looking at various users (Fishbein & Ajzen, 1975). We perceive 
SBJ as the external factor that manages students’ CON to accepting the m-learning system. Furthermore, PBC is influenced 
by SBJ, especially in the case of PU or PEU, which are applied in the literature research in an extensive manner regarding 
technology adoption or acceptance (Song & Kong, 2017; Venkatesh & Bala, 2008; Viswanath Venkatesh & Davis, 2000; 
Wong, Teo, & Russo, 2012). One item of recent research by (Huang, Teo, and Zhou 2020) used external factors TAM and 
SBJ, in which emphasis was placed on the association between the external factors and the rest of the included TAM factors 
for various earlier items of research. Yet it has been observed that the external SBJ factor would not be implemented in an 
effective or a deep manner within the research. Research shows that CON is linked to someone using m-learning platforms 
(Al-Emran, Arpaci, & Salloum, 2020; Cheon et al., 2012; Liu & Chen, 2008; Mtebe & Raisamo, 2014; Park, Nam, & Cha, 
2012).  
 
 H12: SBJ positively affects the CON to use m-learning. 
 
3.8 The Continuous intention (CON)  
 
CON refers to a person’s intention to continue using a particular system if they benefit to some extent from it (Bhattacherjee, 
2001). Research indicates that CON significantly influences the ACU of m-learning systems (Al-Emran, Arpaci, & Salloum, 
2020; Alshurideh et al., 2020; Joo, Kim, & Kim, 2016). 
 
H13: CON positively affects the ACU of m-learning. 
 
Fig. 2 revealed our proposed model. The theoretical model has been presented as the structural equation model and would be 
analyzed with the help of machine learning methods. 
 

 

Fig. 2. The study model 
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4. Method 
 
4.1 Data collection  

Data were collected between October 25th and December 25th 2020 (fall semester), after carrying out online surveys which 
helped to target UAE university students. Target universities provided ethical clearance for this research. The research objec-
tive and survey links were emailed to the related students. The response rate was maximized by sending the survey link 
through the university’s social media platforms. 500 questionnaires were handed out randomly by the student department and 
420 questionnaires were replied, indicating an 84 percent response rate. There were some missing values, which is why 80 
completed questionnaires were rejected. Hence, 420 questionnaires were considered by the survey team since these were 
complete and effective. Only students were included since it is believed that it is the students who are highly influenced by 
the research effectiveness. If the technology is insufficient to support the students, the colleges and universities can replace 
the tool. If the teachers have significant experience, they can easily adopt these technologies, unlike the students. Even though 
the students have knowledge regarding the application through social media, they have not had the chance to use it on their 
own. Krejcie & Morgan (Krejcie & Morgan, 1970) stated that the sample size estimated for the 1500 is 306 respondents. As 
compared with the trivial criteria, the 420-sample size is considerably higher. 

4.2 Demographic data 

Table 1 presents the sample demographic feature. The ratio of female to male students is 61%. A total of 62% of respondents 
were aged between 18 and 29 and 38% were aged over 29. Most respondents have an academic history with university degrees. 
A total of 77% have BA, 21% have MA and 2% have PhD. (Al-Emran and Salloum, 2017) suggests that a “purpose sampling 
approach” be applied and the respondents were interested in voluntarily participating in the research. Students from different 
colleges were included in the sample and their age groups are also diverse.  
 
Table 1  
The sample demographic feature  

Criterion Indictor  n %  
Gender Female 255       61% 

Male 165 39 % 
Age 18-29 261 62% 

30-39 97 23% 
40-49 62 15% 
50-59 0 2% 

Education qualification BA 322 77% 
MA 88 21% 
PhD 10 2% 

 
4.3 The instrument  
 
The research instrument is divided into two parts. First, the participant demographic data. Second, responses related to the 
conceptual model variables (29 items) were collected. Items from (Al-Emran, Arpaci, & Salloum, 2020; Davis, 1989) were 
used to assess the PEU and PU. Items from (Al-Emran, Arpaci, & Salloum, 2020; Bhattacherjee, 2001) were used to extract 
the items for analysis of EXP, SAT, and CON. SBJ items were used from (Al-Emran, Arpaci, &  Salloum, 2020; Viswanath 
Venkatesh et al., 2003), but the actual-use indicators have been adopted using (Al-Emran, Arpaci, & Salloum, 2020; 
Mohammadi, 2015). Table 2 illustrates the constructs and its related items.  
 

Table 2  
Constructs and their sources 

Constructs Number of 
items 

Source 

Actual use (ACU) 2 (Al-Emran, Arpaci, and Salloum 2020; Mohammadi 2015) 
Attitude (ATD) 3 (Al-Emran, Arpaci, and Salloum 2020; Cheon et al. 2012; Khanh and Gim 2014; Prieto, 

Migueláñez, and García-Peñalvo 2014) 
Continuous intention (CON) 3 (Al-Emran, Arpaci, and Salloum 2020; Bhattacherjee 2001) 

Expectation confirmation (EXP) 3 (Al-Emran, Arpaci, and Salloum 2020; Bhattacherjee 2001) 
Perceived usefulness (PU) 3 (Al-Emran, Arpaci, and Salloum 2020; Davis 1989) 

Perceived ease of use (PEU) 3 (Al-Emran, Arpaci, and Salloum 2020; Davis 1989) 
Perceived behavioral control (PBC) 3 (Al-Emran, Arpaci, and Salloum 2020) 

Perceived fear (PF) 3 (R.S. Al-Maroof et al. 2020) 
Subjective norm (SBJ) 3 (Ahmad Aburayya and Salloum n.d.; Al-Emran, Arpaci, and Salloum 2020; Viswanath 

Venkatesh et al. 2003) 
Satisfaction (SAT) 3 (Al-Emran, Arpaci, and Salloum 2020; Bhattacherjee 2001) 
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4.4  Pre-testing the questionnaire   
 
Questionnaire-item reliability was tested through a pilot study. There were nearly 50 students out of 500 taking part in the 
pilot research, randomly picked from the population decided upon. The main results include the pilot research, in which pilot 
participants have been included within the main research; however, new data was extracted from these individuals. The pilot 
study’s internal reliability was tested through the Cronbach alpha test and this showed acceptable results related to the meas-
urement items. When such an analysis trend is observed within the research studies (Al-Maroof et al., 2021; Nunnally, 1978; 
Salloum, n.d.), it is acceptable to have 0.7 as the reliability coefficient. The Cronbach alpha values are presented in Table 3 
for the next stated seven measurement scales. 
 
Table 3  
Cronbach’s alpha test 

Items CA (≥ 0.70) Items CA (≥ 0.70) 
ACU 0.847 PEU 0.798 
ATD 0.879 PBC 0.715 
CON 0.775 PF 0.847 
EXP 0.769 SBJ 0.868 
PU 0.758 SAT 0.786 

 
4.5 Common method bias (CMB) 
 
To ensure that there was no CMB in the collected data, the Harman’s single-factor is applied, using 10 variables (ACU, ATD, 
CON, EXP, PU, PEU, PBC, PF, SBJ, SAT) (Podsakoff et al., 2003). One factor was loaded with the 10 factors. Accordingly, 
the largest variance present (23.21%) is lower than the 50% threshold value (Podsakoff et al., 2003). Therefore, there are zero 
concerns present regarding collected-data CMB. 
 
5. Findings  
 
The PLS-SEM was used to analyze the data. It was accompanied by the SmartPLS V.3.2.7 program (Ringle, Wende, and 
Becker, 2015). A two-stage assessment approach was implemented for collected data evaluation, along with the structural 
model and the measurement model (Hair et al., 2017). There are various explanations for the PLS-SEM within the analysis. 
 
First, PLS-SEM has been used since it is most appropriate for the research if it has been based on an earlier one (Urbach 
&Ahlemann, 2010). Second, exploratory research that includes complex models should make use of PLS-SEM (Hair Jr et al., 
2016). Third, the entire model is analyzed by PLS-SEM as a single unit and is not broken into parts (Goodhue, Lewis, 
&Thompson, 2012). Measurement is carried out through a concurrent analysis with the help of PLS-SEM, along with the 
structural model, which is why calculations are expected to be accurate (Barclay, Higgins, & Thompson, 1995). 
 
5.1  Convergent validity   
 
Hair et al. (2017) considers that construct reliability and validity must be observed for the measurement model evaluation. In 
this case, it includes composite reliability (CR), Dijkstra-Henseler’s rho (pA), and Cronbach’s alpha (CA) and validity in-
cludes convergent and discriminant validity (DV). According to Table 4, CA values were higher than the 0.7 threshold value 
and would lie within the 0.730 to 0.887 range, helping to state the construct's reliability. The CR ranges 0.734 to 0.890 and 
these are higher than the recommended 0.7 (Nunnally and Bernstein, 1994). CR can also be computed using the pA reliability 
coefficient (Kline 2015). Similar to CA and CR, for the reliability coefficient ρA, 0.7 or a greater value should be presented 
for the exploratory research. Values higher than 0.80 or 0.90 should be attained for the ρA if the research is carried out at an 
advanced level (Hair, Ringle, and Sarstedt, 2011; Henseler, Ringle, and Sinkovics, 2009; Nunnally and Bernstein, 1994). The 
measurement construct is able to present the reliability coefficient value or the ρA which is higher than 0.70. Based on these 
tests, verification of construct reliability is possible, stating that there is an accurate construct. After testing the Average 
Variance Extracted (AVE), convergent validity can be measured and factor loading (Hair et al., 2017). The 0.7 suggested 
value is lower as compared with the factor-loadings values. Apart from this, the values generated from AVE, 0.594 to 0.796, 
are higher than the 0.5 threshold value as stated in Table 4. Keeping these outcomes in mind, for each construct, it would be 
efficiently possible to evaluate convergent validity.  
 
5.2  Discriminant validity   

For the DV measurement (Hair et al., 2017), two parameters should be measured: Fornell-Larker and the Heterotrait-Monotrait 
ratio (HTMT) factors. The conditions are supported by the Fornell-Larker factor, according to the Table 5 findings, since each 
AVE value, added to the square root, would exceed the correlation value present with other constructs (Fornell & Larcker, 
1981). The HTMT ratio attained values are shown in Table 6 and these show that 0.85, the threshold value, is higher than 
each construct value (Henseler, Ringle, & Sarstedt, 2015). Hence, there is confirmation for the HTMT ratio. Keeping these 
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findings in mind, it is possible to calculate discriminant validity. The data analysis showed that reliability and validity of the 
measurement model are smoothly assessed. Hence, collected data would be used further and testing done for the structural 
model. 
 
Table 4  
The convergent validity outcomes 

Constructs Items Factor loading CA CR PA AVE 
ACU ACU1 0.726 0.887 0.834 0.845 0.661 

ACU2 0.886 
ATD ATD1 0.846 0.840 0.890 0.886 0.789 

ATD2 0.805 
ATD3 0.805 

CON CON1 0.819 0.869 0.822 0.837 0.700 
CON2 0.795 
CON3 0.883 

EXP EXP1 0.822 0.730 0.883 0.879 0.663 
EXP2 0.873 
EXP3 0.778 

PU PU1 0.808 0.880 0.819 0.823 0.594 
PU2 0.845 
PU3 0.866 

PEU PEU1 0.872 0.870 0.857 0.850 0.644 
PEU2 0.832 
PEU3 0.857 

PBC PBC1 0.878 0.856 0.861 0.836 
 

0.796 
PBC2 0.906 
PBC3 0.848 

PF PF1 0.795 0.845 0.803 0.815 0.756 
PF2 0.778 
PF3 0.846 

SBJ SBJ1 0.805 0.801 0.734 0.746 0.771 
SBJ2 0.819 
SBJ3 0.795 

SAT SAT1 0.883 0.806 0.834 0.839 0.772 
SAT2 0.805 
SAT3 0.819 

 
 

Table 5 
Fornell-Larcker scale 

 ACU ATD CON EXP PU PEU PBC PF SBJ SAT 
ACU 0.844          
ATD 0.452 0.840         
CON 0.355 0.529 0.867        
EXP 0.536 0.452 0.503 0.838       
PU 0.457 0.429 0.241 0.160 0.885      

PEU 0.518 0.455 0.363 0.288 0.256 0.887     
PBC 0.326 0.399 0.454 0.428 0.476 0.521 0.838    
PF 0.266 0.469 0.445 0.208 0.566 0.401 0.422 0.809   
SBJ 0.445 0.561 0.230 0.638 0.455 0.452 0.477 0.403 0.811  
SAT 0.408 0.400 0.319 0.588 0.250 0.608 0.257 0.428 0.466 0.888 

 
Table 6 
Heterotrait-Monotrait ratio (HTMT) 

 ACU ATD CON EXP PU PEU PBC PF SBJ SAT 
ACU           
ATD 0.430          
CON 0.433 0.651         
EXP 0.408 0.523 0.590        
PU 0.119 0.309 0.432 0.502       

PEU 0.169 0.218 0.334 0.504 0.150      
PBC 0.280 0.202 0.205 0.329 0.150 0.219     
PF 0.216 0.180 0.293 0.202 0.150 0.226 0.303    
SBJ 0.268 0.339 0.432 0.403 0.150 0.382 0.290 0.501   
SAT 0.123 0.240 0.600 0.505 0.150 0.200 0.133 0.404 0.269  
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5.3 Model fit 

The model fit measures for the SmartPLS are the following. The standard root means square residual (SRMR), exact fit 
criteria, d_ULS, d_G, Chi-Square, NFI, and RMS_theta indicate the model fit in PLS-SEM (Trial n.d.). The observed corre-
lations and model implied correlation matrix (Hair Jr et al., 2016) is stated by the SRMR and values lower than 0.08 are found 
to be good model-fit measures (Hu and Bentler, 1998). A good model fit is present if the NFI values are over 0.90 (Bentler 
and Bonett, 1980). For the proposed model, the NFI is a ratio of Chi2 value to the null model or benchmark model (Lohmöller, 
1989). If the parameters are large, the NFI would be large, which is why the NPI has not been recommended as the model-fit 
indicator (Hair Jr et al., 2016). Two metrics squared Euclidean distance d_ULS, and geodesic distance d_G indicate a dis-
crepancy between the empirical covariance matrix and covariance matrix as stated by the composite factor model (Dijkstra 
and Henseler, 2015; Hair Jr et al., 2016). For reflective models, the RMS theta is applicable and assesses the degree of outer-
model residuals correlation (Lohmöller, 1989). If the RMS theta is close to the zero value, the PLS-SEM model is better and 
there is a good fit if the value remains less than 0.12. If there is anything else, then the fit is lacking (Henseler et al., 2014). 
According to Hair Jr et al. (2016), a correlation between all constructs can be evaluated through the saturated model and the 
total effects and model structure are accounted for in the estimated model. 

The RMS Theta value was 0.081 indicating that the related goodness-of-fit for the PLS-SEM model was enough to indicate 
the global PLS-model validity. 
 

Table 7 
Model-fit indicators 

 Complete Model 
Saturated model Estimated model 

SRMR 0.033 0.042 
d_ULS 0.764 1.328 

d_G 0.518 0.548 
Chi-Square 454.647 463.476 

NFI 0.839 0.827 
Rms Theta 0.081 

5.4 Testing the Hypotheses 

Our 13 hypotheses were verified using the PLS-SEM approach (Davis, Bagozzi, & Warshaw, 1992). The R2 value for each 
path and each hypothesized connection’s path significance within the research model was analyzed (Figure 3 and Table 8). 
The R2 values for adoption of m-learning, ACU, CON, PEU, and PU ranged between 0.496 and 0.681. Hence, there is mod-
erate predictive power present within these constructs (Liu, Liao, & Peng, 2005). 
 
Table 8  
The R2 values 

Constructs  R2 
ACU 0.668 
CON 0.497 
PEU 0.574 
PU 0.496 

SAT 0.681 

 
The empirical data supports all our hypotheses (Table 9).  
 
Table 9  
The hypotheses tests 

H Relationship Path t-value p-value Direction Decision 
H1 PF -> PEU 0.867 23.280 0.000 Positive Supported** 
H2 PF -> PU 0.375 14.314 0.000 Positive Supported** 
H3 EXP -> PU 0.712 18.104 0.001 Positive Supported** 
H4 EXP -> SAT 0.469 5.825 0.023 Positive Supported* 
H5 PEU -> PU 0.438 5.551 0.016 Positive Supported* 
H6 PU -> SAT 0.591 4.703 0.032 Positive Supported* 
H7 PEU -> CON 0.688 20.448 0.000 Positive Supported** 
H8 PU -> CON 0.642 15.598 0.000 Positive Supported** 
H9 SAT -> CON 0.759 12.190 0.002 Positive Supported** 
H10 ATD -> CON 0.523 7.328 0.029 Positive Supported* 
H11 PBC -> CON 0.419 5.328 0.025 Positive Supported* 
H12 SBJ -> CON 0.653 16.698 0.000 Positive Supported** 
H13 CON -> ACU 0.742 18.478 0.000 Positive Supported** 

p**=<0.01, p* <0.05 
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The findings revealed that PF had impact on PEU (β= 0.867, P<0.001) supporting hypothesis H1, while PU significantly 
affected PF (β= 0.375, P<0.001); EXP (β= 0.712, P<0.001); PEU (β= 0.438, P<0.05); SAT (β= 0.591, P<0.05), supporting 
our H2, H3, H5 and H6 respectively. EXP had impact on SAT (β= 0.469, P<0.001) indicating H4 is supported. CON was 
affected by PEU (β= 0.688, P<0.001); PU (β= 0.642, P<0.001); SAT (β= 0.759, P<0.001); ATD (β= 0.523, P<0.05); PBC (β= 
0.419, P<0.05); and SBJ (β= 0.653, P<0.05), supporting H7, H8, H9, H10, H11, and H12 respectively. Finally, CON to use 
m-learning platform significantly influenced ACU (β= 0.742, P<0.001), supporting H13. 
 

 
Fig. 3. Hypotheses testing results  

 
6. Conclusion  
 
The current research is consistent with early studies in terms of the TAM, TPB and ECM variables’ importance (Davis, 1989; 
Teo, 2012; Venkatesh and Bala, 2008). The PU and PEU present and earlier results are also consistent since it is observed 
that the PU and PEU highly have impact on the m-learning acceptance of our respondents and place emphasis on the variables 
related to respondents’ intention to use m-learning during the present extraordinary circumstances caused (COVID-19) (Habes 
et al., 2020). Likewise, the PU was highly affected by the PEU indicating that if someone perceived technology to be easy, 
then they would adopt it. 
  
For SBJ, our results indicate a significant association between the SBJ and students’ acceptance of m-learning, suggesting 
that students’ acceptance of m-learning is highly affected by the behavior, existence, and reaction of classmates within the 
class using the m-learning. Earlier research (Song and Kong, 2017; Venkatesh and Bala, 2008; Viswanath Venkatesh and 
Davis, 2000; Wong, Teo, and Russo, 2012) have presented the same kind of relationship between the SBJ and students’ 
acceptance of m-learning. Our respondents were significantly influenced by classmate behavior, which would increase their 
sense of security and comfort when in classes. This is why their sense of security is higher and their comfort is necessary 
during the pandemic. Respondents were found to be intrinsically motivated to make use of the m-learning if the same class is 
shared with other colleagues. Additionally, the PU and PEU variables highly influence the SBJ. Results indicate that m-
learning use is promoted by the availability and attitude of instructors and peers. Since it is a tool used for learning during the 
pandemic, it is perceived as useful and enjoyable, as well as effort-free. The findings are like those in the earlier research (El-
Gayar, Moran, & Hawkes, 2011) in which it was stated that peer and instructor feedback significantly affects students’ atti-
tudes towards perceived technology effectiveness.  
  
After the spread of COVID-19, the fear factors that took rise indicate that one of these hypotheses is essential. The human 
population has been significantly influenced by the COVID-19 pandemic and there is a high transmission probability, which 
is why the lockdown and stay-at-home policies are applied (Zhang et al., 2020). A model has been adopted by the research 
which may be useful for research in the future after the COVID-19 influence during the pandemic is assessed. Keeping in 
mind the research results attained, the time of the fear factor is quite evident; however, with the help of the ML, it has been 
possible to reduce peer and instructor fears. Furthermore, the PF highly influences the PU and PEU. According to the research 
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responses, the PF can be seen at the time of the pandemic; however, the m-learning has a high PU and PEU degree which 
decreased the fear factor and helped respondents to attain their classes on schedule.  
 
6.1. Research implications 
 
Our study focused fear on three aspects: Theoretically, using the TAM, TPB and ECM; empirically testing the COVID-19 
effect on mobile application users; and analyzing the COVID-19 influence on users’ ability to use mobile application and on 
users’ attitudes towards the usefulness of the m-earning platform. Within earlier research, fear has been analyzed from differ-
ent perspectives such as technology (Bhattacherjee & Hikmet, 2007). There is an implication that a negative perception would 
influence PEU and PU in a direct or indirect manner. In this manner, the current implications, and the ones presented by 
Bhattacherjee and Hikmet, are similar in saying that fear would negatively influence technology use (Bhattacherjee & Hikmet, 
2007). Hence, it is empirically stated that perceived fear during the pandemic would be a significant variable for any model 
being adopted.  
 
6.2 Limitations and future research  
 
Several limitations can be highlighted here. Initially, generalizing the results for the rest of the UAE’s higher educational 
institutions, or for other countries, should be done with caution. This is due to two aspects: 1. The sample is based on a specific 
institution; 2. The convenience sampling technique has been applied for the participant selection. For results to be generalized, 
it is necessary to take these aspects into account. Second, the research sample was only students, suggesting the actual use of 
m-learning by others should be analyzed. 
 
6.3 Recommendations 
 
Based on our results m-learning system is highly recommended in unforeseen time and seen as a potential solution. M-learning 
availability allows teachers, peers, a sense of security, as well as an instant communication tool considering the contamination 
status of the city of Abu Dhabi. Compared with other means of communication, there are various advantages to the mobile 
learning platform. First, the application can be used on any mobile device and smartphones. Second, the links given during 
each class can be used several times and this allows easy student-teacher communication throughout the day. Finally, students 
gain higher confidence and minimum fear is experienced. 
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