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 The computer numerical control (CNC) machines are chiefly used for the production of jobs with 
high accuracy and high speed. The CNC machining centers perform the machining operations 
according to the given program instructions which are commonly programmed by a CNC pro-
grammer. In this paper, a procedure to develop an automatic CNC program for machining of dif-
ferent types of holes by using different machine learning algorithms is developed. The machine 
learning algorithms namely support vector machine (SVM) and restricted boltzmann machine al-
gorithm (RBM) with deep belief network (DBN) are used for the automatic development of CNC 
machining programs of different types of holes. Initially, the position and other parameters of 
machining operations are identified and thereafter the CNC machining program is developed by 
using the MATLAB application. The automatically developed CNC programs are tested on a CNC 
simulator. It is found that the application of RBM machine learning algorithm with DBN outper-
forms the SVM machine learning algorithm for the development of automatic CNC machining 
program for the machining of blind holes, through holes, counterbores and countersink operations. 
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1. Introduction 
 

 

In the present era of technology, the infusion of machine learning algorithms into different machine tools 
has emerged as an innovative way to minimize the human involvement for different machining opera-
tions and also to improve accuracy and productivity in various machining operations. The use of machine 
learning algorithms into the machine tools promotes the development of artificial intelligence into the 
different machines by experienced-based learning (Sadjadi & Makui, 2002; Sadrabadi & Sadjadi, 2009; 
Moghaddam et al., 2012; Angra et al., 2018; Balic et al., 2006; Chanda et al., 2018; Deb et al., 2006; 
Chawla et al., 2017; Chawla et al., 2018a, 2018b, 2018c, 2018d, 2019a, 2019b, 2019c, 2019d, 2019e). 
Commonly the machine learning algorithm is provided with some data sets or machining programs which 
are used for training of the algorithm (Warwick, 2013; Russell & Norvig, 2016). After having sufficient 
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training with some machining program, the algorithm uses its training and evolves to develop new ma-
chining program itself for different machining scenarios. Therefore, the use of machine learning algo-
rithms for real-time machining operations can yield considerable reduction in human involvement and 
also increase accuracy and productivity in the machining operations. The CNC machining centers are 
advance machine tools which are commonly used for highly precise, accurate and fast machining opera-
tions. The CNC machining centers are capable of machining undercuts, angular holes, machining of an-
gular surfaces and can also perform machining operations in any axial direction within the accuracy of 1 
micron. These features of CNC machining centers offer high versatility, productivity, precision, and ac-
curacy in complex machining operations and make them a very popular choice among the users. In order 
to use CNC machine tools for machining operations, machine programming is carried out on the basis of 
the job specifications and required jobs dimensions within the tolerances. Commonly the CNC program-
ming is carried out by a CNC programmer which uses its skills, knowledge, and experience for the de-
velopment of machining programs. The machine learning algorithms namely support vector machines 
(SVM) and RBM along with DBN can also be used for the automatic development of CNC machine 
programs. Initially, the machine learning algorithms are trained with sets of machining programs and 
tested for their accuracy and effectiveness, Thereafter the algorithms, by their self evolving and learning 
capabilities observed to develop machining programs by their own for different machining requirements 
of jobs automatically. Therefore, in this paper we demonstrate the use of machine learning algorithms 
namely support vector machines (SVM) and RBM along with DBN for the automatic development of 
CNC machining programs for different hole operations namely for the machining of blind holes,  through 
holes, counterbores and countersink operations in a job also portrayed in figure1 and anatomy of coun-
terbore holes and countersink holes is shown in Fig. 2 and Fig. 3 respectively. 

 

 

 

 

 

 

 

     Fig.1. Drawing of different types of holes                       Fig.2. Anatomy of a counter-bore hole 

 

 

 

 

 

 

 

Fig.3. Anatomy of a counter-sink hole 
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2 Literature review 
 
In the literature, the research for the development of automatic programs for CNC machine is continu-
ously evolving. The application of different machine learning algorithms for the automatic learning and 
development of CNC programs is for different machining operations on different jobs is also observed. 
The artificial intelligence methods were used by the Preiss and Kaplansky (1985) for the automatic de-
velopment of machining codes for a 3 axis milling machine tool. Authors used computer-aided drawing, 
cutting tool parameters, and type of material as an input for the development of the program. The pro-
gramming is carried out on the Fortran language. The developed program found initially identified the 
required machine tool movements and thereafter, offers the part program. In order to search an optimum 
tool path for machining of holes in a job Onwubolu and Clerc (2004) applied a particle swarm optimiza-
tion (PSO) algorithm. The authors considered traveling salesman problem and applied it into drilling 
operation so as to find an optimum path for machining of holes. The genetic algorithm (GA) for the 
development of an automatic turning program was developed by Balic et al. (2006). The algorithm ini-
tially identifies the dimensional specifications in the job and then it classifies the required machining 
specifications according to the required dimensional specifications.  The GA also applies functions such 
as reproduction - crossover – mutation etc. to find optimum sequences for the cutting tools. A back-
propagation based neural network is proposed by Deb et al. (2006) for the turning of jobs by computer-
aided process planning. Similarly, a dimensional featured based computer aided process planning by 
using the fuzzy logic and neural network for the jobs with prismatic specifications are developed by 
Amaitik and Kiliç (2007). A GA based RSM approach is used by Kilickap et al. (2011) for optimizing 
the hole drilling parameters. Authors performed mathematical modeling for drilled hole surface finish by 
application of RSM. The drill operation parameters namely cutting speed, feed, and job specifications 
are given as input to the algorithm and model observed to yield good results. Tsagaris et al. (2012) re-
duced tool movement time in a CNC machine tool by using a GA based intelligent computer-aided design 
system for the machining of jobs. Authors used visual C++ to identify the various dimensional features 
from a DFX file and supplied as an input to the algorithm for optimizing the tool path movements. A 
numerical control program by using a feature extraction program is proposed by Rao et al. (2012).   
 
Different hole drilling parameters namely cutting speed, drill diameter, job thickness, feed rate torque, 
etc. are used by Tiwari (2013) for calculation of optimum parameters by using a multi-objective genetic 
algorithm. The authors analyzed the interaction effect of different parameters by using the analysis of 
variance. Authors also performed a sensitivity analysis to find a change in output by carrying out changes 
in the weights assigned in the genetic algorithm. Authors observed that the accuracy of results to be 
highly dependent on the calculation and assignment of weights in the algorithm. The automatic develop-
ment of CNC program for milling machining centers is carried out by the Klancnik et al. (2013). The 
dimensional specifications of the job are extracted by the algorithm and on the basis of extracted infor-
mation, the algorithm develops milling machining center codes. Similarly, a particle swarm optimization 
algorithm (PSO) is used by Chitsaart et al. (2013) to develop an automatic CNC machining program for 
milling machining centers. Authors used MATLAB for the development of the extraction of features, 
their conversion, calculation, and development of automatic machining programs for the milling opera-
tions. Klancnik et al. (2016) proposed milling machine center programming by using the NSGAII algo-
rithm. A model for CNC machine learning on the basis of mechanical contact and binary information on 
the basis of cutting tool physical contact is proposed by Balavignesh et al. (2017). Authors proposed a 
model on the basis of tool contact by generating a pulse of one during contact and pulse of zero if no 
contact is observed. In the literature, the artificial intelligence algorithms are found to be used for devel-
opment and optimization of automatic CNC machining programs but use of machine learning algorithms 
namely restricted boltzmann machine (RBM) algorithm and support vector machines (SVM) is not ob-
served in the literature. Therefore, in light of the aforesaid research gap in this paper, we propose the use 
of SVM and RBM algorithms for the development of automatic CNC machine programs for machining 
of holes and also compared their results. 
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3. Problem description 

In this paper, the automatic machining program is developed by using RBM method and SVM method. 
The machine learning algorithms will learn from the one-time program which will be used as input for 
the training of the algorithms so as to develop CNC machining program automatically for any new ma-
chining operations. The objective is to propose the application of machine learning algorithms namely 
RBM method and SVM method to find the hole position, hole dimensions and optimum tool movement 
for the machining of holes in the job. Thereafter, results yield of SVM and RBM are compared with 
others. 

3.1 Assumptions 

1. The center point of the job is also its zero points. 
2. The absolute programming system is used. 
3. All dimensions of the job are in millimeters unit. 
4. The feed rate, cutting speed, cutting tool material, job material, and other machining parameters 

are known. 
5. No time loss is considered in a job setting and tool setting. 
6. The Fanuc based programming system is used. 
7. Job dimension has a dimensional range of 50X50X5 mm to 2000X2000X200 mm.  
8. Cutting tool diameter has a diameter range of 2 mm to 50 mm. 
9. The CNC machine tool spindle speed has a range of 0 to 4000 rpm. 

 
3.2 General procedure 
 
General steps for the development of automatic CNC program by using machine learning algorithms: 

1. Development of a CAD file according to the job dimensions. 
2. Input CAD file to image processing algorithm so as to read and extract the required information 

from the CAD file. 
3. Training and learning of machine learning algorithms 
4. Use machine learning algorithms (RBM and SVM) to search the exact position and dimensions 

of holes in the job. 
5. Calculation by algorithm and development of CNC program. 
6. Simulation runs of CNC program by using the CNC simulator.  

 

4. Methodology 
 

4.1 Restricted boltzmann machine algorithm (RBM) with Deep belief network (DBN) 
 

The restricted boltzmann machine algorithm (RBM) is considered as a graphical model having an energy 
function which takes the negative energy to convert the graphical model into the probability distribution. 
A visible layer (S) is used for defining the probability distribution in the algorithm. Thereafter, the latent 
variables in the form of the hidden layer (T) are used to define the energy function (En) also written as  

where, 
x = binary unit of the visible layer (S)  
y = binary unit of the hidden layer (T) 
d = biases in the visible layer (S)  

( , ) T T T
nE x y y Gx d x b y     (1) 

,  j k
j k k k j j

j k k j

G y x d x b y      (2) 
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b = biases in the hidden layer (T) 
( , ) exp( ( , )) / Qnp x y E x y   (3) 
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p y x p y x  (4) 
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The probability distribution over x and y is given by as 
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The stochastic gradient descent is given by equation (13) 
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4.2 Restricted boltzmann machines training 
 
The training of restricted boltzmann machines is performed in two steps namely Gibbs sampling and 
contrastive divergence step. Both steps are discussed below. 
 

1. Gibbs sampling: Gibbs sampling is carried out as the first step of training. An input vector V 
uses the p (H|V) for prediction of the hidden values for H. After yield of the hidden values the p 
(V|H) is used for the prediction of the new input values for input vector V by using Eq. (14) and 
(15). Thereafter, the process is repeated for the c number of iterations for obtaining the values for 
the input vector V. 
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2. Contrastive divergence step: The revised weight matrix (G) is obtained in the second step, i.e. 

from the contrastive divergence step Agarwalla et al. (2016). In this step, the probabilities for the 
hidden values of H0 and Hk are calculated by using V0 and Vk from equation number (16) and 
(17). 
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Revised weight equation:  
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The new values of weights are computed with the gradient from Eq. (18) :  

new oldG G G    (18) 

The RBM algorithm can identify and extract specific data features. The RBM algorithm used with DBN 
can remove the gradient issues effectively. This reduces the training time of RBM significantly. The 
graphic process units are specialized tools which are used in deep learning so as to reduce the time re-
quired in the training process of the machine learning algorithms. The use of DBN with RBM offers an 
advantage that every RBM layer considers and learns all input data at a time and thereafter, it works as 
one unit. The DBN works effectively by using the small data sets which are further used in for training 
and learning of the real-time applications. The application of the RBM algorithm, when used with the 
DBN, found to be highly precise, accurate and effective in comparison to the other methods. The DBN 
training flow chart with RBM and the Automated CNC programming by using RBM with DBN is shown 
in figure 4 and figure 5 respectively. 
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            Fig. 5. Automated CNC programming by using RBM with DBN 
 
4.3 Support vector machines 
 
The Support vector machine (SVM) which can be defined as a supervised machine learning models with 
learning algorithms which can be used for both classification analysis and regression analysis. The Su-
pervised learning can be explained as learning from the examples; training set of data is given which is 
considered as an example for the defined classes. The classification finds the explanation of each defined 
class and formulated explanation is used to forecast the class of earlier hidden objects. On the other hand, 
unsupervised learning can be explained is as learning from examination and invention. In unsupervised 
learning, a training set of the classes is absent. The system examines the defined set of data to study the 
similar budding out of the subsets of the data. The Support vector machines are core machine learning 
technique and are increasingly become useful in data mining. SVM has been applied to various tasks 
such as text classification, object recognition and so on. It is observed that SVM typically used in sorting 
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problems. Support vector machines majorly concentrate only on the points that are the most difficult to 
tell apart, whereas other classifiers pay attention to all of the points. The Support vector machine algo-
rithm evolved as one of the significant machine learning algorithms. In the learning process, the unit 
layer provides a simpler and effective learning algorithm. However, the unit layer works efficiently only 
for linear decision input space. On the other hand, more than one layer of learning is highly expressive 
and can also work with non-linear functions. However, the learning and training in multilayer are ob-
served to be difficult in comparison to the unit layer learning. This difficulty is overcome by the support 
vector machine (SVM) algorithm also known as kernel machines algorithm. This applies an efficient 
learning and training algorithm and can also work with highly complex and nonlinear functions etc. The 
SVMs search for an optimum linear separator with the largest margin in between. The Kernal function 
in the SVM algorithm can be of linear, polynomial, radial basis (RBF) and sigmoid type.  
The SVM implementation steps and equations are given below: 
 

1. The SVM algorithm will generate, classify and select the hyper-planes so as to make separate 
classes of them. 

2. The classification and selection of a specific hyper-plane are based on the maximum distance of 
margin, between margin line and the nearest data points. The margin distance, which separates 
the classes of data-sets must be maximized. The classes of data sets also referred to as support 
vectors, due to their support in the determination of the decision boundary. The optimum or max-
imal hyper-plane separates the classes effectively and ensures high accuracy in classifications of 
the data sets. 

3. In case the data sets are not separated linearly at the input stage, then some work on data or data 
conversion is carried out to convert data sets from initial input space to the high dimensional 
space. For this, a kernel function can be used so as to covert original space to higher dimensional 
feature space. From high dimensional space, the linear classification and separation of data be-
come easy and fitting of margin or decision line can be carried out conveniently so as to segregate 
the data-sets and predict them with the required accuracy.   

 

The norm of support vector a is calculated by using the Euclidean formula 

1 2( , ,.......... )na a a a  (19) 
2 2 2
1 2 ......... na a a a     (20) 

The direction of the support vector a = (a1, a2) is written as v     

1 2,
a a

v
a a

 
   
 

 
(21) 

The direction of a vector can be written in terms of angles also, as mentioned.  
(cos( ),cos( ))v    (22) 

Hyperplane equation for linear separable data line function is given by m = a.n + c 
1 2 0an n c    (23) 

For n = (n1,n2) and v = (a,-1) 
. 0v n c   (24) 

The Eq. (24) can be used for any number of dimensions. The Hypothesis function hp is given by 

 1 . 0( )
1 . 0i

ifv n chp n
ifv n c

         (25) 

In case the training data points are found to be positioned above of the separating hyper-plane then those 
will be classified as +1, and if the points are observed below separating hyper-plane then those will be 
classified as -1. The main work in the SVM algorithm is to identify and separate the optimum hyper-
plane out of the available hyper-planes, and further classify the data on the basis of the data accuracy. 
Find the value of v and c of the optimum hyper-plane. 

1

0
x

i i i
i

v m n


   (26) 
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where λ is the Lagrangian multiplier 

1

x

i i i
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( . ) 1 0im a n c     (28) 

Multiplying by mi on R.H.S. and L.H.S. 

.ic m a n   (29) 

where w is the number of support vectors 
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Fig.6. SVM for automatic CNC programming 
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5. Experiment and Results 
 

The CAD model for machining of counter-bore and counter-sink holes is portrayed in Fig. 7 and Fig., 8 
respectively. The algorithm search for dimension and position of holes that to be machined and yield an 
automatic program for CNC machining on the job. In order to yield the automatic program for CNC 
machining, the algorithm is simulated on the MATLAB application. 

 
                Fig.7.CAD model (holes)                                    Fig.8.CAD model (countersinking) 
 

This CAD file in .dxf extension is imported wherein features of the CAD model are recognized by the 
iteration of the algorithm in the MATLAB application. The DXF files are then trained with DBN in 
MATLAB application thereafter, the CNC machining program is developed automatically for the CAD 
file. 
 

Fig.9. Screenshots of execution of code in MATLAB (holes) 
 

Fig.10.Screenshots of execution of code in MATLAB (counter-
boring) 

 

 
 

Fig.11. Screenshots of execution of code in MATLAB 
(counter-sinking) 

Fig.12. Screenshots of Automatic program for CNC ma-
chine 
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The performance and estimated time required for the automatic development of CNC machining program 
in the MATLAB application are shown in Fig. 9, Fig. 10 and Fig. 11. The training epoch number is kept 
for 200 iterations. The simulation experiments were carried out on an Intel(R) Core (TM) i5 processor. 
The yield of an automatic program for the CNC machine is also shown in Fig. 12. 
 
5.1 Comparison between the output results of RBM and SVM  
 
A comparison of the results for automatic programming of CNC machine for machining of work-piece 
by using the machine learning algorithms namely SVM and RBM with DBN has been carried out. In 
order to yield an automatic program for the CNC machine on work-piece by SVM algorithm, the selec-
tion of decision boundary is observed to be one of the significant criteria. The Margin is also an important 
parameter which separates and classify the two types of datasets with the required accuracy. The kernel 
function used in SVM also plays a significant role in the performance of SVM. The SVM has been 
observed to be less effective if numbers of features are more than the number of samples and then it lacks 
in the appropriate fitting of the kernel function. The application of SVM is observed to be less effective 
for the large data sets as it takes more time for training of algorithm. The RBM algorithm with deep belief 
architecture observed to yield better results in comparison the SVM for a yield of automatic programming 
for the CNC machine centers. The RBM algorithm used with DBN algorithm offers high accuracy in the 
training of algorithm in comparison to the SVM algorithm. However, the SVM algorithm found to be 
more suitable for the development of training and learning of small data-sets. On the other hand, the 
RBM with DBN offers good accuracy and better classification in the training of the large data-sets. The 
RBM with DBN is also capable in the fine-tuning that leading to significantly better results in the classi-
fication. The comparison between SVM and RBM is also mentioned in Table 1. 
 
Table1  
Comparison of the SVM and RBM  

 
From the results, it is found that the RBM with DBN yields better results for the development of auto-
matic programming of CNC machine in comparison to the SVM algorithm. The training and learning of 
RBM with DBN is carried out with 96.96% of accuracy. On the other hand, the training and learning of 
SVM are carried out with 89.44 % of accuracy and 10.56% of error. The results are also mentioned in 
Table 2.  
 
Table2  
Comparison of the SVM and deep learning results for machining of holes in terms of accuracy and error 

S. No. Methodology Accuracy (%) Error (%) 

1 Deep Learning 96.9667 3.033 
2 Support Vector Machine 89.442 10.558 

 

6. Conclusion  
 

In this work, comparison of machine learning algorithms namely SVM and RBM with DBN for the 
development of the automatic program for CNC machining centers is carried out. Different operations 
on jobs were considered while applying the proposed methods were applied for the development of an 

S. No. Restricted Boltzmann Machines (RBM)  Support Vector Machines (SVM) 
1 RBM is an unsupervised learning model SVM is a supervised learning model 
2 The RBM minimize the loss function by using 

back-propagation for classification. 
The SVM maximize the marginal width for classifica-
tion. 

3 RBM can be fine-tuned by using the back-propaga-
tion. 

SVM can’t be fine-tuned 

4 RBM is most suitable for large data sets. SVM is suitable for small data sets. 
5 The weights are used for classification Partial derivatives and the Lagrangian multiplier are 

used for sampling the data. 
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automatic program for CNC machines. The only CAD file was given as input and output was yield in the 
form of a CNC program. The results were validated by comparing it with data extracted from the CAD 
model and run the auto-generated CNC program file of the respective CAD drawing file on CNC TRAIN 
simulation software. The use of RBM with DBN was found to be more efficient in comparison to the 
SVM. The future research work can be extended to use different machine learning algorithms for the 
development of automatic CNC programs for different machining centers such as vertical machining 
centers or horizontal machining centers and compare their performances under different experimental 
conditions. The effectiveness of machine learning algorithms can also be gauged in the context of indus-
try 4.0. 
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