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 The study of structures in engineering solid mechanics is very often requires the modeling of 
complexes structures composed of two parts of thin and thick structure elements. As examples is 
associated with the case of stiffener under a dome and the cooling tower of the nuclear power 
which is supported on massive supports. In the numerical analysis, this imposes the connection 
between two different types of finite elements, two dimensional element for thin structures and 
three-dimensional elements for solid structures. Knowing that solid finite elements contain only 
translational degrees of freedom, whereas the finite elements of thin shells includes nodal variables 
of rotations, and then the number of degrees of freedom are not compatible in the junction zone 
between these two types of structures. This obviously causes great difficulty in solving the problem 
numerically. The objective of this work is to present the development of a shell finite element with 
no degree of freedom of rotation that can be used for the modeling of these two different types of 
structures and can then easily solve the shell-solid junction problem. Validation tests of the 
developed element are presented and the results obtained are very encouraging. 
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1. Introduction 
 

 
     Among the modeling problems existing in the study of structures using finite elements, we find the 
question relating to the connection of finite elements of the shell type with solid elements, indeed the 
number of degrees of freedom in the connection zone of the elements is not identical. The solid element 
has three translations while the shell element has three translations plus three rotations. In the literature 
there exist a some number of finites elements which are conceived to solve this type of problems, as an 
example the solid-shell element type which have shell behavior; but with a three-dimensional geometry. 
These elements allow combining characteristics of solid elements such as the geometrical description 
and the degrees of freedom to the mechanical models which uses the theories of the shells. Among these 
elements, the three dimensional shell elements developed by Ahmad et al. (1970), these models named 
degenerated three-dimensional finite elements and are based on isoparametric solid elements and having 
only two nodes according to the thickness direction. Another shell element with hexahedral geometry 
named SHB8PS developed by Abed-Meraim and Combescure (2002), this solid element is derived from 
a purely three-dimensional formulation and can be used to model thick shells.  Hamadi (2006) developed 
a parallelepiped element named SBP8C and based on the strain approach formulations, it can be used for 
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modeling the three dimensional structures and also for the problems of bending of the thin and thick 
plates, the results are very acceptable. 

     Contrary to solid-shell element which can be used for analyzing thin and thick structures, there are 
two dimensional shell elements without degrees of freedom of rotation and can be used to model only 
the thin parts of the structure for connection in the zone of junction between thin and thick structures. In 
addition to the advantage of the coherence of the degrees of freedom between the shell elements and 
solids, these elements have less number of degrees of freedom than other solid elements and do not suffer 
from locking shear–bending phenomenon. These elements also present the advantageous conditioning of 
stiffeners matrix which improves as the thickness decreases. As an example of these type of elements, 
the DKTRF element (Guo et al., 2002) which is obtained by derivation from the triangular element 
DKT12 (Batoz & Dhatt, 1992) where the rotations of the inside nodes are expressed in the terms of the 
eighteen translation degrees of per node. Another element called S3 formulated by Crisfield and Peng 
(1992) and then is more improved by Sabourin and Brunet (2006), it constructed starting from the 
triangular element of Morley (1971) and Oñate et al. (1989)  is introduced the Bending into a triangular 
element of membrane without addition the rotation degree of freedom. This strategy was developed and 
used by Rio et al. (1993) like Brunet and Sabourin (1994, 1995). Mercier (1998) used the triangular 
element DKT12 obtained by superposition of elements CST and DKT6, the obtained element takes into 
account both membrane and bending effects without degrees of rotations. , i.e. the three medium side 
rotations of the element DKT6 are eliminated. Finally, we should mention that other finite elements of 
shells types without rotations are published by Oñate and Flores (2005) and Oñate et al. (2007).  

This paper presents the formulation of a triangular finite element called DKT18RF, is a shell type 
element without rotation degree of freedom and is obtained by derivation from the flat shell element 
DKT18 developed by Batoz and Dhatt (1992). This element is the result of the superposition of the 
triangular element of membrane CST which contains two degrees of freedom per node and the plate 
bending element DKT which contains three degree of freedom per node, two rotations and one vertical 
deflection. The principal idea in this work consists of modifying the deformation matrix expresses the 
bending effects of DKT element; so that it does only contain the terms represent the bending effect. The 
superposition of element DKT modified with the membrane CST element gives the called DKT18RF 
finite element with only three translations per node. This element is programmed under MATLAB in 
order to test its performance and efficiency through the different test available in the literature.         

2. Formulation of DKT18RF element   

      While basing on the triangular element of type flat shell element DKT18, which is constructed by 
superposition of membrane element CST includes two in plane degrees of freedom (U, V) as nodal 
variables, and the discrete Kirchhoff element DKT which has three nodal variables (W, θx, θy). By 
addition of a fictitious in plane rotation θz, and after  assembling these two elements to obtains a  flat 
shell element with the three translation displacements  (U, V, W)  and three nodal rotations (θX,θY,θZ) 
around the  axes X, Y and Z, respectively, we will formulate the triangular element called DKT18RF. 
Following the same procedure of superposition procedure, the membrane part is represented by the linear 
element CST which contains the nodal variables (U, V), and the bending part by the element DKT 
contains only lateral nodal variable (W). This superposition is illustrated in Fig. 1. 

 

 

 

 



B. Labiodh et al.  / Engineering Solid Mechanics 8 (2020) 
 

153

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig. 1. Construction of DKT18RF element after elimination of rotations 

2.1 Definition of the local system reference coordinates 

The surface of reference of the element is defined by  
 

x =
X
Y
Z

= N
X
Y
Z

 (1) 

 
The interpolation functions Ni are given by 
 

N1=λ=1-ξ-η   ,   N2=ξ   ,   N3=η (2) 
  

The basic vectors a1 and a2 are 
 

{a } = x , =
X
Y
Z

 , {a } = x , =

X
Y
Z

 (3) 

 
The local axes reference can be defined as    
  

[Q] = [t t n] (4) 
    

n =
a ∧  a

|a ∧  a |
   ,    t =

a

L
   ,   t = n ∧ t  (5) 

 

L = (X + Y + Z )  (6) 
 
Where 
 

X = X − X    , Y = Y − Y  , Z = Z − Z  (7) 
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{n} =

n
n
n

=
1

2A

Y Z − Y Z
Z X − Z X
X Y − X Y

 (8) 

 
The surface of element A 
 

2A = ((Y Z − Y Z ) + (Z X − Z X ) + (X Y − X Y ) )  (9) 

 
t1 and t2 can be also calculated by 
  

〈t 〉 = 〈n +
n

a

−n n  

a
−n 〉 (10) 

 

〈t 〉 = 〈
−n n  

a
n +

n

a
−n 〉 (11) 

 
where 
 

a = 1 + n  (12) 
 
The point q in the thickness is defined by 
 

x = x + Z{n} (13) 
 
The coordinates of nodes 1, 2, 3 in the local system at original 1 are 
  

x
y =

0
0

   ,
x
y =  [t t ]

X
Y
Z

   ,   
x
y = [t t ]

X
Y
Z

 (14) 

 
The coordinates of a point p at middle surface are 
 

x =
x
y = N

x
y  (15) 

 
Expression of virtual internal work We results from the membrane and bending effect in the local 
reference system 
  

W = W + W = 〈e∗〉NdA + 〈χ∗〉MdA (16) 

2.2 Kinematic variables 

The displacement field of a point q is defined by 
 

u∗ = u∗ + zβ∗      ,      
−h

2
≤ z ≤

h

2
 (17) 

 
Where h is the thickness of the shell, and β the rotation 
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u∗

v∗

w∗
=

u∗

v∗

w∗
+ z

β
β

0

 (18) 

 
Displacements of membrane obtained by CST element 
  

u∗ = 〈N 〉{u∗ }    ,      v∗ = 〈N 〉{u∗ } (19) 
 
{un

*} vector of the nodal variables of the element 
 

{u∗ } = 〈⋯ (u∗ v∗ w∗) ⋯ i vary from 1 to 3〉 (20) 
 
Rotations βx and βy relating to element DKT are 
 

β = 〈N 〉{u∗ }     ,      β = 〈N 〉{u∗ } (21) 

2.3 Membrane deformations   

The virtual membrane deformations in terms of nodal displacements are given by 
 

{e∗} = [B ]{u∗ } (22) 
 

{e∗} =

u,
∗

v,
∗

u,
∗ + v,

∗
 (23) 

 
Where 
  

[B ] =
1

2A

y 〈N , 〉 − y 〈N , 〉

−x 〈N , 〉 + x 〈N , 〉

−x 〈N , 〉 + x 〈N , 〉 + y 〈N , 〉 − y 〈N , 〉

 (24) 

 
N = 〈⋯ N 0 0 … i vary from 1 to 3〉 (25) 

 
N = 〈⋯ 0 N 0 … i vary from 1 to 3〉 (26) 
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1

2A

−y + y
0

x − x

 0
 x − x

 −y + y

 0
 0
 0
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 0
−x
  y

 0
 0
 0
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 (27) 

 

2.4 Bending deformation 

Virtual curvatures 
  

{χ∗} = [B ]{u∗ } (28) 
 

{χ∗} =

β ,
∗

β ,
∗

β ,
∗ + β ,

∗
 , [B ] =

1

2A

y 〈N, 〉 − y 〈N, 〉

−x 〈N,
〉 + x 〈N, 〉

−x 〈N, 〉 + x 〈N, 〉 + y 〈N,
〉 − y 〈N, 〉

 (29) 
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In the vectors N only the terms of the bending are considered (the terms of rotation are null) 
 

N = 〈0 0 N     0 0 N     0 0 N 〉 (30) 
 

N = 〈0 0 N     0 0 N     0 0 N 〉 (31) 
 
Nx

11 Nx
21 Nx

31 and Ny
11 Ny

21 Ny
31 are given by 

 

N =
3

2L
P C −

3

2L
P C    ,    N =

3

2L
P S −

3

2L
P S  (32) 

 
The indices of k and m are relative to the two sides having the summit i common point are given by Table 
1, Pk and Pm are defined by Table 2.  

Table 1. Indices k and m 

 Summit Nodes  i Side  k (i-j) Side m (i-j) 

 1 4 (1-2) 6 (3-1) 

 2 5 (2-3) 4 (1-2) 

 3 6 (3-1) 5 (2-3) 

Table 2. Values of PK and Pm  

 Pk 

 (k= 4 to 6) 

 P4=4 ξ  

 P5=4 ξ η 

 P6= 4  η 

 

C =
x

L
   ,   S =

y

L
   ,   L = x + y  (33) 

2.5 The internal work 

W = 〈u 〉[K]{u } (34) 
 
The stiffness matrix is 
 

[K] = [K ] + [K ] (35) 
 

[K ] = A[B ] [H ][B ] (36) 
 

[K ] = A[B ] [H ][B ] (37) 
 

η 
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 1  

4

6
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2
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where Hm and Hf  : matrix of homogenized behavior of membrane and bending effects  
 

[H ] =
Eh

12(1 − ν )

1 ν 0
ν 1 0

0 0
1 − ν

2

 (38) 

 

[H ] =
Eh

(1 − ν )

1 ν 0
ν 1 0

0 0
1 − ν

2

 (39) 

 
E and ν are respectively the Young modulus and the Poisson's ratio, the resulting normal force and 
bending moment are 
 

[N] = [H ]{e}    ,   [M] = [H ]{χ} (40) 

3. Results and Discussion 

     To test the efficiency and the performance of the developed element DKT18RF, the following various 
cases of applications in the field of the structures are performed. 

3.1. Clamped cylindrical shell with rigid diaphragm  

      
The clamped cylindrical shell shown in Fig. 2 is subjected to two diametrically opposed concentrated 
loads, and supported by two rigid diaphragms. The details of the geometry, loadings, materials, the 
boundary and symmetry conditions are given in the same figure. This test case is frequently used to 
evaluate the behavior of the shell finite element for simulated complex membrane states with a significant 
share of bending without the extension of the average surface. One-eighth of the shell is modeled by the 
finite element DKT18RF by using a regular mesh elements N = 2, 4, 6.  The displacements WC and VD 
at points C and D are given in Tables 3 and 4 respectively. The results obtained are compared with the 
reference solution given by Lindberg et al. (1969) and those of elements DKT12 and DKT18 cited above. 
Fig. 3 shows the deformed shape of the cylinder under the applied loading.  

 

Fig. 2. Clamped cylindrical shell with rigid diaphragm 

 

Data : L=6m; R=3m; h=0,03m; ν=0,3; E=3x1010pa 
Boundary conditions: U=W=θY=0 with AD 

Symmetry conditions: W=θY= θX=0 with AB, V= θX= θZ=0 with BC, U= θY= θZ =0 with CD 
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Table 3. Value of the bending displacements W = −Eh W P⁄  
Meshes (elements) DKT18RF DKT18(Batoz & 

Dhatt, 1992) 
DKT12 
(Batoz & Dhatt, 1992) 

2×2 10,71 10,65 10,72 
4×4 125,34 80,86 114,03 
6×6 150,14 122,13 196,44 
Reference solution 
(Lindberg et al., 1969) 

                                  164,24 

 
Table 4. Value of V = Eh V P⁄  
Meshes DKT18RF DKT18(Batoz & 

Dhatt, 1992) 
DKT12 
(Batoz & Dhatt, 1992) 

2X2 1,02 1,01 1,02 
4X4 6,21 4,11 5,68 
6X6 4,37 4,17 6,06 
Reference solution 
(Lindberg et al., 1969) 

                                 4,11 

 

Fig. 3. Deformed shape of the clamped cylindrical shell (meshes 6x6) 

     The analysis of the results obtained by element DKT18RF for this case test shows a monotonous 
convergence of the vertical displacements at the point C. This result shows the good performance for this 
element.   

3.2 Pinched cylinder with free edges 

     Another test case widely used to study the shell finite elements is that of the pinched cylinder with 
free edge. This case test makes it possible to evaluate the convergence, performances and the 
representation of the rigid body mode. One-eighth of the shell is studied by the element DKT18RF with 
different types of mesh, the geometry, the characteristics of the material as well as the boundary 
conditions and symmetries are exposed in Fig. 4, where can distinguish two different cases of loading 
and thickness. The vertical displacement results Wc at point C are reported in Tables 5 and 6 are 
compared with the reference solution given by Macneal and Harder (1985) as well as the results obtained 
by other finite elements (Hamadi et al., 2016; Belarbi, 2000; Cantin & Clough, 1968; Bogner et al., 1967; 
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Ashwell & Sabir, 1972; Sabir & Lock, 1972). Fig. 5 shows the deformed shape of pinched cylinder with 
free edges.   

 
 

 

Fig. 4. Pinched cylinder with free edges 

Table. 5 Value of Wc 1st case: F1=100; h1=0,094 
Meshes (Bogner et 

al., 1967) 
(Cantin & 

Clough, 1968) 
with RBM 

(Cantin & 
Clough, 1968) 
Without RBM 

ACM_SBQ4 
(Belarbi, 

2000) 

ACM_RSBE5 
(Hamadi et al., 

2016) 

DKT18RF 

1 × 1      0.0025   –       –   0.0860   0.08763 2,7500 
1 × 3      0.1026  0.0297       0.0009   0.1041   0.1060 0,7255 
1 × 4      0.1087  –       –   –   0.1100 – 
1 × 5      –  0.0769       0.0021   0.1090   0.1116 0,4077 
1 × 7      –  0.0987       0.0035   0.1102   0.1129 0,2666 
1 × 8      –  –       –   –   0.1132 0,2209 
1 × 9      –  0.1057       0.0051   0.1115   0.1134 0,1852 
2 × 9      –  –       –   –   – 0,1449 
3 × 9      –  –       –   –   – 0,1153 
Reference solution (Macneal and Harder, 1985)                        0,1139                                                        

 

Table 6. Value of Wc 2nd case: F2=0,1; h2=0,01548 
Meshes (Ashwell & 

Sabir, 
1972) 

(Cantin & 
Clough, 1968) 

(Sabir & 
Lock, 
1972) 

ACM_SBQ4 
(Belarbi, 

2000) 

ACM_RSBE5 
(Hamadi et al., 

2016) 

DKT18RF 

1 × 1 0.02301 0.00001 0.00001 0.01922 0.0196 0,61673 
1 × 3 0.02302 0.00001 0.00001 0.02302 0.02343 0,16161 
1 × 4 0.02403 0.00074 0.00063 – – – 
1 × 5 – – – 0.02387 – 0,08830 
1 × 7 – – – 0.02418 – 0,05539 
2 × 4 0.02409 0.00070 0.00064 – – – 
3 × 4 0.02414 0.00068 0.00065 – – – 
2 × 7 – – – – – 0,03488 
3 × 7 – – – – – 0,02539 
Reference solution (Macneal & Harder, 1985)                    0.02439                                                       

 

Data: 
L=10,35 ; R=4,953; E=10,5x106 ; ν=0,3125 
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     The results obtained by the DKT18RF element can be considered satisfactory for both cases. The 
convergence of the element towards the reference solution can be guaranteed by refining the meshes. 
 

 

 

Fig. 5. Deformed shape of pinched cylinder with 
free edges (meshes 3×9) 

Fig. 6. Cantilever beam subjected to a point load 
its free end 

3.3 Cantilever beam  

     A cantilever beam is clamped at one end and charged at the other free end as shown in Fig. 6. The 
values of the load, Young modulus, Poisson's ratio and the thickness are given on the same figure. This 
case test is a standard problem to test the efficiency of the finite elements (Macneal & Harder, 1985). 
 
    Fig. 7 shows the results obtained for the deflection at point A. These values are calculated by the use 
of different meshes with the DKT18RF element and are compared with the reference solution (Macneal 
& Harder, 1985) and with other finite elements Q4 (the standard four-node isoparametric element), and 
Q4SBE1 (Hamadi, 2006), SBRIE (Sabir & Salhi, 1986) , SBRIE2 (Sabir & Sfendji, 1995). It can be 
observed that the convergence is monotone and the closed form solution can be obtained with the 
increased number of elements used. The deformed shape of the cantilever beam is represented in Fig. 8. 
 

 

Fig. 7. Curve of convergence of displacement at the point A 

     Fig. 7 shows the monotone convergence curve of the element DKT18RF and good results can be 
obtained with the increased number of meshes. 
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Fig. 8. Deformed shape of a cantilever beam (meshes 1x6) 

4. Conclusion  

     In this paper the developed rotation free shell finite element is presented. The formulated element is 
obtained by using superposition of the membrane element CST with constant deformations and the 
modified discrete Kirchhoff element DKT. The modified element  have only one translation nodal 
variable (w), which endow with a shell finite element with three translations per node (u, v, w). The good 
performance of formulated element DKT18RF is examined through the validation tests presented in part 
3 of this paper.  
      
     Monotonous convergence towards the reference solution was clearly observed. The absence of 
rotation does not affect on the quality of the results obtained, even so it is remarkable in case tests 2 and 
3 that it is required to refined meshes to obtain the closed form solution. Besides of convergence is slow, 
we can say that the element remains always effective considering it is conceive mainly to solve the 
problem of connection in the zone of junction between the thin and thick structures. 
 
      Finally, from this work we can see in perspective the idea of formulation a finite shell type element 
usable for thin and thick structures from the element DKT18RF. 
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