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 The use of cement concrete as a stronger and more durable material than asphalt concrete in 
construction of the pavements has been increased during the past decades. This review paper 
investigates the effect of various input variables for the design of continuously reinforced 
concrete pavements. A literature review is prepared based on the efforts performed by many 
researchers to investigate the effect of different factors including temperature change, 
shrinkage, material properties of the concrete, and concrete slab/ subbase bond properties on 
the displacements and stresses in the concrete slab. It is found that the important role of 
concrete slab/ subbase bond strength has not been investigated properly as compared to other 
input variables. 
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1. Introduction 
 

      Based on the structural performance, pavements can be classified into two categories: flexible 
pavements and rigid pavements. In flexible pavements, wheel loads are transferred by grain-to-grain 
contact of the aggregate through the granular structure. Since they are made of bituminous materials 
and aggregates, the flexural strength of the flexible pavements is less and they behave like a flexible 
plate. On the contrary, in rigid pavements which are made of cementitious materials and aggregates, 
wheel loads are transferred to sub-grade soil by flexural strength of the pavement and the pavement 
behaves like a rigid sheet. This review paper is aimed to address developments performed by the 
researchers on investigation of the different factors influencing stresses and displacements in rigid 
pavements which are used in many countries all around the world, especially the United States of 
America. 
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      Rigid pavements are made up of Portland cement concrete, and may or may not have a base course 
between the pavement and the subgrade. Rigid pavements tend to distribute the load over a relatively 
wide area of subgrade, and as a result, the major portion of the structural capacity is supplied by the 
concrete slab itself. They can be used for heavier traffic loads and can be constructed over relatively 
poor subgrade. There are four types of rigid pavements: Jointed plain concrete (JPC) pavement, jointed 
reinforced concrete (JRC) pavement, continuously reinforced concrete (CRC) pavement, and pre-
stressed (PC) concrete pavement. JPC pavements are plain cement concrete pavements constructed 
with closely spaced contraction joints. Dowel bars or aggregate interlocks are usually employed for 
load transfer across pavement joints (joint spacing usually varies from 5 to 10m). In JRC, the 
reinforcements do not significantly improve the structural capacity, but can drastically increase the joint 
spacing (10 to 30m). Dowel bars are also used as load transfer in JRC pavements. CRC pavements are 
Portland cement concrete pavement with continuous longitudinal steel reinforcement and no 
intermediate transverse expansion or contraction joints. Instead, the pavement is allowed to crack in a 
random pattern and the cracks are held tightly closed by the steel reinforcement. In this review, it is 
particularly focused on models for prediction of the displacements in CRC pavements (Fig.1) rather 
than other rigid pavement types.  

Fig. 1. General configuration of CRC pavement. 
 

      The first use of CRC pavements was in 1921 by the Bureau of Public Roads on Columbia Pike in 
Arlington, Virginia. Then, the first significant length of CRC pavements was constructed in the State 
of Indiana in 1938 (Highway Research Board, 1973). After that, a good performance of such projects 
(like the one in Illinois, California, and New Jersey around 1949) led to an increased interest in this 
design (AASHTO design guide, 1993). The use of CRC pavements was increased in the 1960s, 1970s, 
and 1980s during construction of the Interstate Highway System in the U.S. The use of CRC pavements 
in the U.S. was increased for more than 15,000 kilometers of equivalent two-lane pavement were in 
use or under contract at the end of 1971(Highway Research Board, 1973) and this amount is still 
increasing. Texas and Illinois, with dissimilar weather and environmental conditions, lead the nation in 
CRCP usage. Texas constructed its first section in Ft. Worth in 1951. From the 1960s on, Texas has 
constructed more CRC pavements than any other state, possibly more than all other states combined. 
Approximately 80 percent of current concrete paving projects let in Texas are CRC pavements. Illinois 
constructed its first CRC pavement in 1947 on U.S. 40 west of Vandalia. Based on the performance of 
this experimental project, Illinois began extensive construction of CRC pavements. Approximately 
two-thirds of the Illinois Interstate system was constructed with CRC pavements (Nam, 2005). 
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2. Factors affecting displacements in concrete slabs 
 
     There are many factors influencing displacements in concrete pavements. Among them we can 
mention temperature, moisture, material properties of the slab and subbase, and bond behavior between 
slab and subbase layer. 
 
2.1. Temperature of the concrete slab 
 
      One of the primary sources of the stress in concrete slabs is thermal stress. In CRC pavements, the 
thermal stress depends on (1) the thermal properties in early ages which can be often characterized as 
heat of hydration and coefficient of thermal expansion; (2) the conditions at placement; (3) the 
environmental effects (ambient air temperature and solar radiations); (4) geometry of the structure. 
 
      The thermal stress field in concrete slabs is influenced by the boundary conditions of the slab. If a 
concrete slab is unrestrained, it expands and contracts during the early-age heating and the subsequent 
cooling process without stress development. However, concrete slabs are always restrained to some 
degree, either externally by adjoining structures or internally by different temperature in the 
components of the structure itself. Therefore, due to such imposed restraint conditions, temperature 
change results in compressive and/or tensile stresses in the concrete. Thus, a primary question would 
be, whether the induced thermal stresses lead to cracking or not (Cha, 1999). 
 
      Due to the hydration of the fresh concrete, energy releases in the form of heat. Mixing Portland 
cement compounds with water leads to a rapid release of heat initially, which then drops down within 
about 10 to 20 minutes. This reaction probably represents the heat of the solution of sulfates and 
aluminates in the mixture (Mehta & Monteiro, 1993). The primary heat generation cycle starts a couple 
of hours after the cement compounds are mixed with water. Before that, concrete is in a plastic state 
and is relatively inactive chemically. A couple of hours after concrete is mixed with water, the peak of 
the primary cycle reaches its peak value. At this step, the major portion of the hydration products 
crystallizes from the solution of the mixture. This step includes the time of initial and/or final set of the 
concrete. As hydration products grow, they form a barrier to the infiltration of additional water; and 
when there is no room for further growth of crystals, or when hydration is theoretically completed the 
reaction drops down and may eventually stop (Mindess & Young, 1981; Nam, 2005). The rate of 
hydration is very sensitive to temperature, especially during the primary cycle (Mindess & Young, 
1981; Nam, 2005). Therefore, the temperature condition during construction is an important factor 
affecting the rate of hydration.  
 
       The coefficient of thermal expansion (COTE) is also a key parameter affecting on the thermal 
stress distribution in concrete slabs. Like all composite materials, the COTE of concrete is influenced 
by a large number of factors that can be generally related to its major components: cement paste and 
aggregate. Primarily affected by the moisture content of the paste, the COTE of the paste varies 
significantly during the hydration process and will be stabilized thereafter. The thermal characteristics 
of concrete obviously affect the crack pattern in concrete slabs since thermally induced dimensional 
changes in the Portland cement concrete influence the formation of transverse cracks. The type of 
coarse aggregate also directly influences on COTE of concrete, because coarse aggregates form a large 
part of concrete by volume (McCullough et al., 1999). 
 
       The COTE of concrete is approximately equal to the volumetrically weighted average of the 
coefficients of its ingredients (Nam, 2005). In order to calculate the thermal strains and stresses of 
concrete slabs, the COTE of concrete is needed. The COTE of concrete is measured by many 
researchers so far (Nam et al., 2006; Byfors, 1980; ACI Committee. 517, 1980; Emborg, 1989). The 
COTE of concrete varies within 2.78 – 8.33×106/ºF, depending on aggregates, constituents and the 
moisture state of concrete (Byfors, 1980). It also has been reported in the literature that the COTE of 
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concrete is slightly greater during heating than cooling and its value at early-ages is higher than that of 
mature concrete (Byfors, 1980; ACI Committee. 517, 1980; Emborg, 1989). 
 
      Environmental conditions also leads to temperature gradients in concrete slabs. High temperature 
in fresh concrete due to ambient air temperature and solar radiation may induce such undesirable effects 
as increased water demand, increased rate of setting, increased rate of slump loss, difficulties in 
controlling entrained air, increased tendency for plastic shrinkage cracking, and critical need for prompt 
curing (Nam, 2005). In hardened concrete, high temperature may lead to decreased strength, increased 
shrinkage, increased creep, decreased durability, and non-uniformity of surface (Kosmatka & Panarese, 
1988; Samarai et al., 1983). Also, because the hydration of cement is a chemical process, a high ambient 
temperature will increase the rate at which the concrete hydrates. High solar radiation during 
construction may also significantly influence on increasing the concrete temperature as well as the rate 
of hydration. This expedited rate of hydration results in a higher and earlier peak concrete temperature 
during the construction day (Suh et al., 1992). 

 
2.2. Concrete shrinkage 
 
      Since concrete is largely composed of water, the water transport and change in amount of water 
significantly influence in volume change of concrete. In other words, water-related shrinkage is a 
volumetric change caused by loss and movement of the water (i.e., change in the internal pore pressure 
caused by drying or self-desiccation). Drying of concrete is affected by the environmental conditions 
in which the relative humidity of the concrete attempts to equilibrate with the humidity of the 
surrounding environment. As the internal humidity strives to equilibrate with a lower environmental 
humidity, water is evacuated from the capillary pores which results in the development of tensile 
stresses. This tensile stress is attributed to the compressing the rigid skeleton of concrete which provides 
a partial explanation for the effect we commonly refer to as drying shrinkage. Shrinkage in concrete 
can be classified into the following types: 
 
      Plastic shrinkage is a term used for freshly poured concrete and manifests itself soon after the 
concrete is placed in the forms while the concrete is still in the plastic state. This type of shrinkage 
occurs when the rate of loss of water from the surface exceeds the rate at which the bleeding water is 
available. Environmental considerations including wind speed, solar effects, low relative humidity, and 
high temperature significantly influence the potential of plastic shrinkage cracking (Schaels & Hover, 
1988). There are several ways suggested by researchers to prevent plastic shrinkage cracking such as 
limiting early-age evaporation through the use of plastic sheeting, mono-molecular films, water 
fogging, or wind breaks in conjunction with properly designed concrete mixtures. If proper curing is 
not provided, plastic shrinkage cracks could occur at a very early age of CRC pavements (Nam, 2005). 
 
     Drying shrinkage is by far the most common cause of shrinkage. The drying shrinkage of concrete 
is analogous to the mechanism of drying of timber specimen. The loss of free water contained in 
hardened concrete, does not result in any appreciable dimension change. It is the loss of water held in 
gel pores that causes the change in the volume. Under drying conditions, the gel water is lost 
progressively over a long time, as long as the concrete is kept in drying conditions. One of the most 
substantial factors influencing free shrinkage is the water to cement ratio (w/c). The w/c required for 
complete hydration is typically assumed to be approximately 0.42 depending on the amount of gel 
porosity that is assumed (Bažant & Najjar, 1971). The amount of water has a direct influence on the 
size and magnitude of the porosity (i.e., higher w/c pastes have higher porosity). Therefore, specimens 
with a lower w/c have a lower amount of pore water and consequently exhibit lower drying shrinkage. 
Currently, Texas Department of Transportation (TxDOT) limits the water-to-cement ratio to a 
maximum 0.45 for paving concrete (Nam, 2005). Gradation of the aggregates probably may not directly 
influence shrinkage (Neville, 1996), however, we may conclude that the use of larger aggregates might 
indirectly lead to a higher aggregate volume which exhibits lower free shrinkage since the aggregate is 



M. M. Mirsayar and D. G. Zollinger / Engineering Solid Mechanics 6 (2018) 
 

71

generally dimensionally stable. Aggregates with higher stiffness exhibit lower free shrinkage based on 
the same reasoning. The use of high porosity lightweight aggregate (LWA) has also been suggested as 
one method to minimize autogenous shrinkage (Lura et al., 2002; Zhutovsky et al., 2002). For this 
purpose, the LWA is saturated to various degrees before using and the aggregate acts as a water 
reservoir to supply water that counteracts the self-desiccation of the paste. 
 
     Autogenous shrinkage occurs in a conservative system, like sealed concrete (i.e., no moisture loss) 
without temperature change. This type of shrinkage primarily occurs as a result of chemical shrinkage 
which causes volume reduction due to the hydration reaction and self-desiccation. 
 
     Carbonation Shrinkage occurs when Carbon dioxide present in the atmosphere reacts in the 
presence of water with hydrated cement. Calcium hydroxide gets converted to calcium carbonate and 
also some other cement compounds are decomposed. Such a complete decomposition of calcium 
compound in hydrated cement is chemically possible even at the low pressure of carbon dioxide in 
normal atmosphere. Carbonation penetrates beyond the exposed surface of concrete very slowly. 
 
2.3. Material properties 
 
      The material properties of the concrete slab, subbase layer and reinforcing steel significantly 
influences displacements in pavement structures. For concrete slab, the material properties of the 
concrete ingredients (cement past and aggregates) represents the effective modulus of the concrete. The 
stiffness and strength of each component influences crack pattern in a concrete slab and therefore are 
essential to be studied. The stiffness of each layer in a concrete pavement structure directly relates to 
the displacements in the structure. The effect of stiffness of layers on the displacement field in concrete 
slabs has been investigated by the researchers in the past (Polak & Vecchio 1993; Polak 1996; Zhang 
& Li, 2001). In the previous researches, the concrete slab and base layer are modelled as linear elastic 
plates connected by springs (Winkler foundation) and the displacements in the pavement is evaluated 
by plate theories (like Mindlin plate theory). However, the concept of using springs as interface 
elements brings many problems since such spring models does not represent de-bonding mechanism 
between layers in a sophisticated manner. The displacements in concrete slab are developed in either 
elastic deformations or de-bonding (permanent deformations). However, due to the complexity, a 
sophisticated model representing both de-bonding and deflections has not been developed yet. 

 
2.4. Bond behavior between concrete slab and subbase 
 
      The bond behavior between the Portland cement concrete slabs and the subbase layer significantly 
influences on the displacements in concrete slabs caused by environmental loading as well as the traffic 
loading. In addition, the bond behavior directly affects the cracking patterns in concrete slabs. 
Therefore, the study of bond behavior at the interface of the concrete slab and subbase layer is essential 
to improve our pavement design. In other words, an extension in the service life of rigid pavements, 
which represents a significant portion of the construction industry’s efforts, can lead to enormous 
improvements in the life cycle costs and sustainability of our transportation system.  
 
     The bond strength of the Portland cement concrete/subbase has rarely been investigated by some 
researchers. A limited number of published works can be found in the literature for the shear strength 
and tensile strength of the Portland-cement concrete/asphalt concrete bonded joints, with and without 
interface cracks (Delcourt & Jasenski, 1994; Petersson & Silfwerbrand, 1993; Mack et al., 1997; 
Rasmussen & Rozycki, 2004; Sadd et al., 2008; Chabot et al., 2013; Tschegg et al., 2007; Jung et al., 
2010; Pouteau et al., 20014; Mirsayar et al., 2016a; Tozzo et al., 2015). Chabot et al. (2013) conducted 
a set of experiments to investigate mixed mode interfacial fracture in asphalt concrete/ Portland cement 
concrete bonded joints. They used four point bend specimens for their fracture tests and obtained strain 
energy release rate under different loading and boundary conditions. Tschegg et al. (2007) dealt with 
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the testing and assessment of the bond behavior and the crack resistance of asphalt-concrete interfaces 
tested at different temperatures. They conducted their tests at different pretreatments of the interface: 
without any treatment, using cement grout, using a combination of cement grout and synthetic 
dispersion, or using only synthetic dispersion. Pouteau et al. (2004) studied the fatigue life of a concrete 
layer bonded to an asphalt subbase. They presented an in situ experiment aiming to evaluate the growth 
of a defect at the interface of a CRC pavement bonded to an asphalt subbase under traffic loads. They 
also suggested a new laboratory test to study the initiation and the propagation of the crack at the 
interface. However, all previous works failed to obtain fracture toughness under different mixed mode 
conditions because of the limitations on the specimen geometry. The finite element simulation of the 
crack propagation at the interface of concrete slab and subbase has also rarely been investigated by the 
researchers (Mirsayar et al., 2016a; Tozzo et al., 2015). For instance, Mirsayar et al. (2016a) conducted 
a series of finite element simulations to investigate effect of subbase modulus and environmental 
loadings on the interface crack propagation between plain Portland cement concrete slabs and the 
subbase. However, they used a two dimensional model and did not considered the bond strength effects. 
Kim et al. (2003) conducted a series of finite element simulations to study bond behavior between the 
concrete slab and the base. They also performed a sensitivity analysis to investigate the effects of 
overlay and CRC pavement parameters, such as elastic modulus, thickness, coefficient of thermal 
expansion and percent reinforcement, on the interfacial shear and normal stresses. They have 
incorporated their mechanistic model into the HIPERBOND software developed for the FHWA. Totsky 
(1981) developed a model in which a multilayered system resting on subgrade was modelled as series 
of springs and plates where curling was analyzed iteratively. In this model, the springs that were in 
tension are removed as the pavement section curls allowing for the system to be reanalyzed for 
determining the equilibrium condition. The removal of the interfacial springs during the solution 
process represented the layer separation. 
  
3. Slab movements 
 
     All Portland cement concrete slabs undergo shrinkage as the concrete ages. This volume change in 
concrete is very important to the engineer in the design of a concrete slab. This volume change is 
controlled by expansion joints and is restricted by the slab’s boundary conditions. Therefore, the 
evaluation of slab’s end movement is very important for design purposes.  
 
      In addition to the horizontal shrinkage of the concrete slab, the edges of the slab lift upwards due 
to the temperature and moisture gradient throughout the slab (Fig. 2). In a pavement structure, with 
respect to temperature, when the slab surface is cooler than the slab bottom, the surface tends to contract 
and curling the slab edges (or corners) upward as a result of negative temperature gradient through the 
slab thickness. On the other hand, the moisture gradient through the thickness induces an additional 
deformation in the concrete slab, called warping. Such factors are particularly prevalent during the 
curing stages of a concrete pavement affecting the potential for lift-off (the separation of slab from the 
subbase layer).  

 

Fig. 2. 2D scheme of the end movement in a reinforced concrete slab due to shrinkage and 
temperature gradients 
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      Lift-off is the first step towards erosion damage which is a distress type that threatens the 
sustainability of a concrete pavement. In a concrete slab, the lift-off is controlled by the net climatically 
induced contraction strain field, which takes into account both temperature and the moisture effects, 
the bond behavior between concrete slab and subbase, and the weight of the concrete slab. Such 
interaction causes a stress field throughout the slab which results in separation of the slab from the 
subbase. 
 
      In CRC pavement, the longitudinal reinforcement is continuous and each individual length of the 
reinforcing bar is welded end-to-end to each of its adjoining bars in the reinforcement grid. The steel 
keeps the cracks tightly closed maintaining the integrity of the aggregate interlock across the cracks. 
Over the years, the mechanism of the slab deformation due to such environmental effects has been 
investigated by many researchers. Palmer (1988) studied stress, strain and displacement field in CRCP. 
He calculated relative displacements between concrete slab and subgrade, and between concrete slab 
and reinforcing steel bar. However, he did not consider effect of lift-off on the slab end movement and 
did not take into account the effect of interface crack propagation.  
 
      McCullough and his colleagues (McCullough & Elkins, 1979; Mendoza-Diaz & McCullough, 
1979) developed CRCP-11 program to design concrete pavement under different climatic conditions. 
The software was a sophisticated tool for pavement design considering predicted minimum concrete 
temperatures for the medium and long terms which allows a reasonable economical designs. Zhang 
(2012) studied the effects of base characteristics on curling stresses of CRCP under different types of 
base materials. He studied the effects of six typical bases on curling stresses of CRCP subjected to 
temperature variations using a 2D finite-element method. However, he used a simple friction model 
which is not a realistic bond behavior between the slab and base layer.  
 
       The lift-off in concrete slabs has been investigated by many researchers so far, by taking into 
consideration effects of curling and warping, together and separately (Westergaard, 1927; Tang et al., 
1993; Bari & Zollinger, 2016; Jeong & Zollinger, 2006; Jeong et al., 2006; Bissonnette et al., 2007; 
Mohamed & Hansen, 1997; Rao & Roesler, 2005; Yu et al., 1998; Rao et al., 2001). A pioneering work 
has been done by Westergaard (1927) on the thermal stress field analysis in rigid slabs due to their 
curling. He presented a linear elastic solution for the slab curling assuming a linear temperature gradient 
through the slab thickness and an elastic Winkler foundation for the subgrade. Tang et al. (1993) 
suggested an analytical approach to evaluate stress and displacement distribution in a semi-infinite slab 
and in an infinitely-long slab of a finite width. They also considered the effect of gap that may occur 
under the concrete slab resulting from curling and proposed an approximate formula for the maximum 
stress in a finite slab. However, the net effects of curling and warping causes the lift-off in concrete 
slab pavements. In this regard, Bari and Zollinger (2016) proposed a new framework to model the 
effects of the concrete slab/subgrade interface for design purposes considering short- and long-term 
performance. They studied the effect of interfacial adhesion as well as the sliding friction on the 
interfacial resistance and the slab lift-off. However, in practice, cracks propagate at the interface of the 
concrete slab and subbase and none of the above models can present a sophisticated method to describe 
interface crack propagation mechanism. 
 
4. Fracture criteria for bonded structures 
 
      The end movement of the concrete slab consists of both contraction shrinkage and slab lift – off. 
Such movement is accompanied with de-bonding of the slab from subgrade when the net induced 
climatically strain field in the concrete slab exceeds a critical value. In other words, this movement can 
be analyzed using an interfacial fracture model. The process of crack initiation and propagation at the 
interface of two dissimilar materials (He & Hutchinson, 1989; Hurd et al., 1995; Martin et al., 2001; 
Evans et al., 1990; Ayatollahi et al., 2010a; Mirsayar, 2014a; Fernlund & Spelt, 1994; Campilho et al., 
2011; Álvarez et al., 2014; Fernlund et al., 1994) and in different engineering materials (Arabi et al., 
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2013; Ayatollahi et al., 2010b, 2011, 2013; Ayatollahi & Mirsayar, 2011; Mirsayar, 2013, 2014b,c, 
2015a,b, 2017; Mirsayar & Samaei, 2013, 2014, 2015; Mousavi & Aliha 2016; Mohammad Aliha et 
al. 2017; Mirsayar et al., 2014, 2016b, 2017a,b; Mirsayar & Park, 2015, 2016a, 2016b; Mirsayar & 
Takabi, 2016; Razmi & Mirsayar, 2017) has widely been studied in the past. Depending on the bond 
strength, the mechanism of interfacial crack propagation can be classified into two types: strong 
interfaces, and weak interfaces. In strong interfaces, the crack kinks into the weaker material, and for 
weak bonds, the interface crack propagates through the interface. The fracture criteria for strong and 
weak interfaces are different from each other. For strong interfaces, fracture criteria deals with material 
properties of both bonded materials. However, for weak interfaces, the property of the bond is more 
important than mechanical properties of the each material. There are many published works in the 
literature by the previous researchers on the study of crack propagation at the strong interfaces. He and 
Hutchinson (1989), presented an energy based framework for crack propagation at the interface of two 
dissimilar elastic solids. Hurd et al. (1995) studied the mechanism of fracture at the strong interface of 
silicon and glass.  They measured the mode I fracture toughness and kinking angles using a compact 
tension test specimen. Martinet al. (2001) carried out an asymptotic analysis to model the mechanism 
of deflection of a crack at an interface in a brittle bi-material system. Using the energy release rate 
concept, they found that in the case of a stationary crack impinging perpendicularly on the interface 
and submitted to progressive loading, the energy criterion depends on the elastic mismatch of the bi-
material constituents and the ratio of the crack extensions in the deflected and the penetrated directions. 
Evans et al. (1990) studied fracture energy of a bi-material system and found that the fracture energy 
is not unique and usually exhibits values substantially larger than the thermodynamic work of adhesion. 
Mirsayar (2014a) recently proposed a new stress-based fracture criterion for crack kinking out of the 
interface which can be applied for bonded structures with strong interfaces. He found that not only the 
singular stress terms, but also the first non-singular stress term of the asymptotic series expansion 
influences on the fracture behavior of interface bonds.  
 
      One can also find a lot of published works in the literature for analysis of bond behavior of weak 
interfaces (Fernlund & Spelt, 1994; Campilho et al., 2011; Álvarez et al., 2014; Fernlund et al., 1994; 
Choupani, 2008; Nikbakht et al., 2009; Sharifi & Choupani, 2008). Fernlund and Spelt (1994) proposed 
a new jig for mixed mode fracture testing of adhesively bonded joints and conducted a set of fracture 
tests on different bonded structures to obtain their fracture toughness. Campilho et al. (2011) studied 
the ability of extended finite element method to predict the fracture behavior of thin layers of adhesive 
between stiff and compliant adherents. Choupani and his coworkers (Choupani, 2008; Nikbakht et al., 
2009; Sharifi & Choupani, 2008) investigated the mixed mode crack propagation in adhesively bonded 
joints, made of various combination of the materials, experimentally.  
 
      The type of the specimen has always been an important factor for conducting research on the 
fracture properties of different materials. There are some important factors which are needed to be 
considered for choosing a fracture test specimen. A fracture test specimen should be: (1) manufactured 
easily, (2) should be able to be loaded easily, and (3) cover all loading configurations from pure mode 
I (opening mode) to pure mode II (sliding mode). However, many of the fracture tests proposed by the 
previous researchers are not able to cover all mixed mode conditions.  
 
       One can find several fracture test specimens in the literature such as compact tension (CT) 
specimen (Wagoner et al. 2005, Kim et al. 2014), wedge splitting (WS) test (Brühwiler et al., 1990; 
Issa et al., 2003), three point bend (3PB) specimen (Korte et al., 2014; Seitl et al., 2017; Aliha et al. 
2017), four point bend (4PB) specimen (Munz et al., 1980; Razavi et al., 2017; Fakhri et al., 2017; 
Ayatollahi & Aliha 2011) , Brazilian disk (BD) specimen (Dai et al., 2015; Wei et al., 2015; Akbardoost 
et al., 2014; Ayatollahi & Aliha, 2009a), semicircular bend (SCB) specimen (Funatsu et al., 2014; Aliha 
et al., 2017; Wei et al., 2017ab; Ameri et al., 2012, 2016; Aliha & Fattahi Amirdehi, 2017), center 
cracked or notched ring specimen (Dehghany et al., 2017; Aliha et al., 2013), triangular bend (ECT) 
specimen (Aliha et al. 2013, 2016), edge notch disc bend (ENDB) specimen (Bahmani et al., 2017; 
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Tutluoglu & Keles, 2011; Aliha et al., 2015, 2016), Diagonally loaded square plate (DLSP) specimen 
(Ayatollahi & Aliha, 2009b), and double cantilever beam (DCB) specimen (Ranade et al., 2014; Lopes 
et al., 2016). Fig. 3 shows schematic representations for a number of aforementioned fracture test 
specimens. Some of them, like BD, DLSP and SCB specimens can cover form pure mode I to pure 
mode II conditions. However, for a bi-material system, we can rarely find a specimen in the literature 
satisfying all three conditions mentioned above for a proper fracture test specimen. To fill this gap, an 
effort has been performed recently by Mirsayar et al. (2017c). They proposed a new bi-material SCB 
specimen covering all mixed mode conditions on the interface bond from pure shear to pure tensile 
conditions as shown in Fig. 4. 

Fig. 3. Some test configurations proposed in the literature for fracture toughness study of 
different materials 

 
Fig. 4. Scheme of the developed SCB specimen made of asphalt concrete and Portland cement 
concrete, proposed by Mirsayar et al. (2017c) 
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5. Summary of the review 
 
      Among different factors affecting displacements and stress distribution in concrete slabs, the bond 
behavior between the concrete slab and the subbase layer has rarely been investigated. According to 
the field observations, a concrete slab on certain types of bases are bonded together and as a result, 
cracks initiate and propagate through the interface during the slab shrinkage. Edges and corners undergo 
interfacial sliding friction and possibly abrasive wearing due to each passing load which is a mechanism 
of erosive action leading to faulting.  In the central portions of a slab, the interface is likely fully bonded 
either due to chemical adhesion or high frictional restraint or both.  These conditions often exist in 
push-off or lab friction tests which have been common methods to measure the coefficient of friction 
but are frequently plagued by shear failure planes forming in the matrix of the subbase layer 
complicating the determination of the friction values (see Fig. 5a). The adhesive aspects of interfacial 
resistance have largely been thought to be a factor during construction where it has on occasion been 
the source of cracking problems. If the mechanical and/or adhesive resistance is too high initially, 
random cracking may be initiated at the bottom rather than the top of the slab during the early life of a 
jointed pavement – which is often a problem associated with the control of cracking during saw cutting 
operations since the notches are placed at the surface of the pavement.  High bond resistance can also 
be a problem in CRC pavement construction (see Fig. 5b) but in a sense opposite of what happens in 
jointed pavement construction where cracking development is inhibited too much.  

 
 (a) (b) 

Fig. 5. (a) Example of shear failure below the slab/sub base interface (b) Partial-depth cracking 
in a longitudinal segment of CRC pavement. 

 
       Depending on the material properties of the subbase layer, the interface crack may kink into one 
of the materials (strong interface) or propagate through the interface (weak interface). Both cases could 
happen depending on the degree of bond between subbase and concrete slab. Recent studies indicate 
that the possibility of crack propagation through the interface increases at lower temperatures for a 
given concrete Mirsayar et al. (2017c). Also, the fracture criteria for evaluation of the interfacial crack 
propagation are different for weak and strong interfaces. 
 
       The previous methods for bond behavior assumes that slab and subgrade are sliding with respect 
to each other and do not take into account the effect of interface crack in their bond model. However, 
the cracks developed at the interface of subbase layer and concrete slab cause to the stress concentration 
which influences on the delamination behavior, and can be addressed by the interfacial fracture 
mechanics.  
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