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 This paper presents a numerical analysis of free vibration of thin circular and annular plate 
using finite element method. The first five natural frequencies are presented for uniform 
annular plates of various inner-to-outer radius ratios, with nine possible combinations of free, 
clamped and simply supported boundary conditions at the inner and outer edges of plates. The 
accuracy of the method is established by comparing the results available in the literature. 
Results show that natural frequency parameter increases as the inner-to-outer radius ratio 
increases except in case of free boundary condition, for which it decreases with the inner-to-
outer radius ratio. This result provides benchmark values that can be used to validate result 
obtained by other approximate approaches such as finite difference method, differential 
quadrature method and boundary element method. 
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1. Introduction         
 
      Circular and annular plates are the fundamental structural elements used in various engineering 
fields. The lateral vibration of such plates has been the subject of numerous studies. Yuan and 
Dickinson (1996) studied the natural frequency parameters for the free vibration of annular, circular 
and sectorial plates using a Ritz solution. Vera et al. (1998, 1999) studied free vibration of annular 
plates with four combinations of boundary conditions Case (i) clamped at both edges, Case (ii) clamped 
at outer edge and simply supported at inner edge, Case (iii) simply supported at outer edge and clamped 
at inner edge and Case (iv) simply supported at both edges and also the free-free edge conditions.  
 
     Chakraverty and Petyt (1999) studied elliptical and circular plates with seven types of orthotropic 
material properties for all the classical free, simply supported and clamped boundary conditions using 
the Rayleigh–Ritz method with two-dimensional boundary characteristic orthogonal polynomials as 
the admissible functions. They presented an exhaustive graphical result of the first five frequencies for 
various aspect ratios. Chakraverty et al. (2000, 2001) also studied the orthotropic annular elliptic plates. 
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Their study contains results for the first eight frequency parameters for various values of aspect ratios 
of the outer and inner ellipse. Wu et al. (2002) studied the free vibration of solid circular plates using 
the generalized differential quadrature rule (GDQR). Kim (2003) analyzed natural frequency 
parameters for isotropic elliptical and circular plates using the Rayleigh–Ritz method. Farag and Pan 
(2003) used the assumed method to thoroughly investigate the in-plane modal characteristics of a solid 
circular disk with clamped outer boundary.  
 

      Wang (2003) studied the vibration of an annular membrane attached to a free rigid core.  Wang et 
al. (2005) studied the effect of core on the fundamental frequencies of annular plates with four different 
types of ideal boundary conditions. Bashmal et al. (2009) used the Rayleigh-Ritz method with boundary 
characteristic orthogonal polynomials (BCOP) to study the free in-plane vibrations of annular plates 
for different combinations of inner/outer edge conditions. The latter authors subsequently derived the 
exact frequency equations, based on the 2D linear plane stress theory, in terms of Bessel functions 
(2010). Hassani et al. (2010) employed a Rayleigh-Ritz approach with two-dimensional BCOP and 
linear plane stress theory to investigate the in-plane modal characteristics of annular circular and elliptic 
plates of non-uniform thickness for all classical boundary conditions.  

     Komur et al. (2010) carried out a buckling analysis for laminated composite plates with an 
elliptical/circular hole centered in the plate using finite element method (FEM) using ANSYS finite 
element software. Chen and Ren (1998) studied the lateral vibration of thin annular and circular plates 
with variable thickness using finite element analysis. Liang et al. (2007) extended a new method using 
the limited finite element method (FEM) for the analysis of the natural frequencies of circular/annular 
plates of polar orthotropy, stepped and variable thickness. Moreover, free vibration analysis of different 
geometries and materials have also been studied numericaly or theoretically in recent years (Torabi et 
al. 2013; Nia et al. 2014; Vimal et al. 2014; Yadav et al. 2015; Bhardwaj et al. 2015; Samaei et al. 
2015). In this paper, the effects of different radii ratio, with nine possible combinations of free, clamped 
and simply supported boundary conditions at the inner and outer edges of plates on the free vibration 
responses are discussed in detail. 

2. Material and Methods 
 
        A finite element analysis was made for obtaining the first five natural frequencies using ANSYS. 
The free vibration is computed using Block-Lanczos algorithm. In addition SHELL 181 is suitable for 
analyzing thin to moderately-thick shell structures. As demonstrated in Fig. 1, the element contains 
four-node with six degree of freedom at each node. SHELL 181 is well suited for linear, large rotation, 
and/or large strain nonlinear applications.  

 
Fig. 1. Four noded SHELL 181 element 
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       Consider an isotropic, homogeneous annular plate with uniform thickness h in cylindrical 
coordinate (r, θ, z) with the z-axis along the longitudinal direction R1 and R2 are the inner radius and 
outer radius as shown in Fig. 2. 
 

R1
r

R2

0=

 

Case :1 C-C Plate Case :2 C-S Plate Case :3 C-F Plate

Case :4 S-C Plate Case :5 S-S Plate Case :6 S-F Plate

Case :7 F-C Plate Case :8 F-S Plate Case :9 F-F Plate

 
Fig. 2.  Geometry and coordinate system 
of the annular plate 

Fig. 3. The boundary conditions of the annular plates 
analyzed 

 
     In this study, isotropic plates made of steel were used. The thickness of plate remains uniform 
throughout the study. The mechanical properties of steel are listed in Table 1. 
 

Table 1. Mechanical properties of the steel (Reddy 2004) 
E1 E2 G12 G13 G23 μ 
30 30 11.24 11.24 11.24 0.29 

Moduli are in msi=million psi ; 1 psi = 6.895 kN/m2 

 
3. Results and discussion  
 
3.1 Circular plate 
 
      The present study is first validated by carrying out convergence study of non-dimensional 
frequency parameter Ω defined by Ω= ωR2�𝜌𝜌ℎ/𝐷𝐷 , with respect to mesh dimensions (M × N) and by 
comparison with results available in the literature. The rates of convergence of the first five frequency 
parameter for free, clamped and simply supported boundary conditions are presented in Tables 2 to 4. 
It can be seen that M=12, N=12, is sufficient for converged result. The first five natural modes of 
flexural vibrations for free, clamped and simply plates are shown in Fig. 4. It can be noted that for free 
plate mode (1, 0) has higher frequency than mode (1, 2), as well as mode (1, 1) than (1, 3). 
 
Table 2. Value of frequency parameter Ω= ωR2�𝜌𝜌ℎ/𝐷𝐷 for circular plate with clamped boundary 
condition. 

NxM   Mode Number 
    1 2 3 4 5 

6x6   10.424 22.443 38.613 48.544 58.704 
7x7  10.310 22.191 37.554 45.416 57.600 
8x8  10.293 21.772 36.900 45.104 55.240 
9x9  10.253 21.78 36.318 43.808 54.116 

10x10  10.192 21.408 35.504 42.636 52.976 
11x11  10.186 21.396 35.469 42.100 52.364 
12x12  10.148 21.454 35.694 41.136 52.952 

Chakraverty et al. (2001)  10.220 21.260 34.880 39.770 51.030 
Zhou et al. (2011)   10.2158 21.260 34.877 39.7711 51.0306 
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Table 3. Value of frequency parameter Ω= ωR2�𝜌𝜌ℎ/𝐷𝐷 for circular plate with simply supported 
boundary condition 

NxM   Mode Number 
    1 2 3 4 5 

6×6   4.9228 14.31 27.297 34.354 44.16 
7×7  4.9028 14.216 26.823 32.656 43.364 
8×8  4.8936 14.002 26.411 32.51 42.176 
9×9  4.8852 13.984 26.138 31.807 41.38 

10×10  4.8696 13.842 25.718 31.127 40.812 
11×11  4.8708 13.83 25.66 30.846 40.392 
12×12  4.8664 13.864 25.792 30.285 40.7 

Chakraverty et al. (2001)  4.984 13.94 25.65 29.76 34.00* 
Zhou et al. (2011)   4.9352 13.8983 25.6148 29.7193 39.9574 

 
Table 4. Value of frequency parameter Ω= ωR2�𝜌𝜌ℎ/𝐷𝐷 for circular plate with free boundary condition 

NxM   Mode Number 
    1 2 3 4 5 

6×6   5.4088 9.2032 12.911 21.484 23.684 
7×7  5.3628 9.0912 12.691 21.242 23.009 
8×8  5.3408 9.0768 12.592 20.867 22.643 
9×9  5.32 9.0404 12.515 20.833 22.358 

10×10  5.3132 8.9792 12.467 20.547 22.232 
11×11  5.298 8.9688 12.408 20.556 22.092 
12×12  5.2936 8.9288 12.38 20.587 21.985 

Chakraverty et al. (2001)  5.251 9.076 12.22 20.52 21.49 
Zhou et al. (2011)   5.3583 9.0031 12.439 20.4745 21.8352 

 
C     
 
 
 
 
 
 

    

Mode 1(1, 0) Mode 2(1, 1) Mode 3(1, 2) Mode 4(2, 0) Mode 5(1, 3) 
F     
 
 
 
 
 
 

    

Mode 1 (1, 2) Mode 2 (1, 0) Mode 3 (1, 3) Mode 4 (1,1) Mode 5 (1, 4) 
SS     
 
 
 
 
 
 

    

Mode 1 (1, 0) Mode 2(1, 1) Mode 3 (1, 2) Mode 4 (2, 0) Mode 5 (1, 3) 
 
Fig. 4. The first five natural modes of clamped (C), free (F) and simply supported (SS) circular plate 
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3.2 Annular Plate  
 
     The first five non-dimensional frequency parameters, for uniform annular plates of various inner-
to-outer radius ratios varying from 0.1 to 0.8 at interval of 0.1 are computed and presented in Tables 5-
13. Result are provided for nine cases of boundary conditions (C-S, C-F; S-C, S-S, S-F; F-C, F-S, F-F) 
at both the inner and outer edges of plates (Fig. 3). Here, the designation C-S identifies a plate with the 
outer edge clamped and the inner edge simply supported and F-C corresponds to a free outer edge. 
 

Table 5. Value of frequency parameter Ω for C-C plate  Table 6. Value of frequency parameter Ω for C-S plate 
  Mode number    Mode number   
R1/R2 1 2 3 4 5  R1/R2 1 2 3 4 5 

0.1 27.252 28.882 36.607 51.328 70.044  0.1 10.106 21.154 34.549 39.387 51.104 
0.2 34.613 36.109 41.828 53.448 70.468  0.2 10.319 20.46 33.751 42.816 50.576 
0.3 45.48 46.776 51.26 60.196 74.236  0.3 11.305 19.364 32.556 49.18 51.648 
0.4 61.864 62.948 66.552 73.42 84.372  0.4 13.24 19.612 30.924 46.408 65.632 
0.5 89.62 90.592 93.66 99.268 107.9  0.5 17.546 21.73 31.7224 45.456 62.8 
0.6 139.596 140.452 143.088 147.736 154.664  0.6 25.468 28.42 36.326 47.928 62.812 
0.7 248.528 249.28 251.576 255.536 261.268  0.7 42.86 44.952 50.972 60.416 72.92 
0.8 559.16 559.8 561.84 565.32 570.16  0.8 92.556 94.052 98.504 105.816 115.864 

 
Table 7. Value of frequency parameter Ω for C-S plate  Table 8. Value of frequency parameter Ω for F-C plate 
  Mode number    Mode number   
R1/R2 1 2 3 4 5  R1/R2 1 2 3 4 5 

0.1 22.551 25.098 35.330 51.168 65.696  0.1 3.47096 4.2524 5.506 12.2316 21.5396 
0.2 26.595 29.138 37.567 51.736 69.996  0.2 4.808 5.2016 6.3324 12.3832 21.5248 
0.3 33.683 35.840 42.708 54.676 71.312  0.3 6.550 6.6884 7.8444 13.0412 21.7496 
0.4 44.628 46.400 51.956 61.700 75.836  0.4 8.926 8.9864 10.2048 14.5104 22.366 
0.5 63.964 65.476 70.128 78.200 89.912  0.5 13.0636 13.2884 14.582 18.2792 25.1664 
0.6 98.640 99.972 103.884 110.588 120.248  0.6 20.5544 20.9228 22.3584 25.652 31.540 
0.7 174.144 175.248 178.588 184.248 192.316  0.7 36.9756 37.472 39.110 42.276 47.448 
0.8 389.128 390.08 392.968 397.824 404.640  0.8 84.456 85.064 86.944 90.232 95.128 

 

Table 9. Value of frequency parameter Ω for F-F plate  Table 10. Value of frequency parameter Ω for F-S plate 
  Mode number    Mode number   
R1/R2 1 2 3 4 5  R1/R2 1 2 3 4 5 

0.1 5.1904 8.7956 12.2184 20.4072 21.5392  0.1 2.3690 3.4316 5.2996 12.222 20.820 
0.2 5.0408 8.4216 12.1760 19.6464 21.4972  0.2 2.8385 3.3052 5.5272 12.240 21.5048 
0.3 4.8132 8.2964 12.0552 18.1508 21.4724  0.3 3.3130 3.379 5.9456 12.3812 21.5576 
0.4 4.4596 8.3960 11.6068 16.7792 21.0590  0.4 3.5664 3.8638 6.5568 12.618 21.5056 
0.5 4.1980 9.2044 11.2432 16.9104 20.7572  0.5 4.060 4.760 7.7936 13.7384 22.3832 
0.6 3.8546 10.5164 10.5340 18.1472 19.7876  0.6 4.795 6.030 9.6940 15.755 24.2040 
0.7 3.5139 9.7088 12.9820 18.4272 21.4624  0.7 6.0924 8.1648 13.080 19.9432 28.7308 
0.8 3.1883 8.8480 16.8488 18.2100 27.1744  0.8 8.758 12.448 20.098 29.4356 40.1720 

 

Table 11. Value of frequency parameter Ω for S-C plate  Table 12. Value of frequency parameter Ω for S-F plate 
  Mode number    Mode number   
R1/R2 1 2 3 4 5  R1/R2 1 2 3 4 5 

0.1 17.814 19.4124 26.7436 40.180 57.164  0.1 4.8764 13.8896 25.4364 29.3612 40.060 
0.2 22.7524 24.3084 30.1192 41.392 57.320  0.2 4.7196 13.5604 24.9116 31.2440 39.7288 
0.3 30.076 31.498 36.330 45.572 59.492  0.3 4.6460 12.7552 24.1504 36.9076 38.8872 
0.4 41.028 42.284 46.372 53.928 65.516  0.4 4.6536 11.7168 22.7908 36.8832 36.8884 
0.5 60.020 61.180 64.808 71.276 80.968  0.5 5.0284 11.4416 22.1488 35.4844 51.988 
0.6 94.168 95.224 98.452 104.056 112.256  0.6 5.6472 11.6984 22.0988 34.6840 49.832 
0.7 168.560 169.516 172.424 177.224 184.488  0.7 6.8448 13.0548 23.8608 36.4640 50.968 
0.8 381.288 382.156 384.804 389.256 395.54  0.8 9.4284 16.7356 29.5732 43.9920 59.736 

 
Table 13. Value of frequency parameter Ω for S-S plate 
 Mode number   
R1/R2 1 2 3 4 5 

0.1 14.4144 16.6792 25.9192 40.092 51.78 
0.2 16.7048 19.1732 27.2332 40.36 57.068 
0.3 21.0264 23.2804 30.2704 41.976 57.748 
0.4 27.7664 29.7328 35.734 45.852 59.988 
0.5 40.008 41.764 47.056 55.944 68.400 
0.6 62.016 63.568 68.224 76.012 86.932 
0.7 109.872 111.248 115.38 122.28 131.94 
0.8 247.0716 248.28 251.996 258.158 266.790 
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Fig. 5. The first five natural modes, for uniform annular plates with nine possible combinations of 
free, clamped and simply supported boundary conditions at the inner and outer edges of plates 

 
4. Conclusion  

       In this paper, finite element method has been employed to solve free vibration of thin, isotropic 
circular and annular plates. The effects of boundary conditions and hole size on different modes of 
vibration has been fully investigated and it is found that the natural frequency increases as the hole size 
increases except when the inner and outer boundaries of the annular plates are free, for which they 
decrease with the hole size. It is also found that for free plate mode (1, 0) has higher frequency than 
mode (1, 2), as well as mode (1, 1) than (1, 3) in both circular and annular plates. The numerical results 
revel that the method is very accurate and can be extended to vibration problems of composite 
laminated plates which are subjects of investigation nowadays. 
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