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 In this paper, a simplified method is proposed for deriving equilibrium equations in continuous 
systems. The new method is indeed the direct applying of Newton’s laws on free body diagram 
of point. First, by describing the concept of equilibrium equations and investigating the 
differences between concentrated masses and continuous systems, the physical basis of new 
method is introduced. It is shown that, using intensive properties simplifies the analysis of 
continuous systems. For verifying the new method, the governing equations in Cartesian, polar 
and spherical coordinates systems are derived. We have to consider nonlinear terms due to 
developing large slopes in system. Hence, nonlinear governing equations in Cartesian system 
are derived too. Finally by noting to the simplicity of new method and its independency from 
complicated differential and vector analysis in other methods such as Hamiltonian and classic 
methods, the interests of new method are emphasized. By knowing concept of physical point, a 
united process is accessible which is extendable to other governing equations of continuous 
systems.  
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1. Introduction         

 
      The study of moving objects and their behavior analysis under external factors such as forces and 
moments is simply possible by using the triple laws of Newton. However, all of the problems in 
mechanical science are not including the concentrated masses. For investigating the behavior of 
mechanical structures and fluids motion, it is necessary to consider separately all of the constituent 
particles of material. On the other hand, the mathematical model of each particle is considered as a 
point and any continuous system includes infinite number of points. Herein, the simplest method that 
can be applied is writing of equations of motion for each particle separately. The most important 
problem in this way is that, point is a mathematical definition and has no physical interpretation. 
Although, the dimensions of each particle is so many infinitesimal, but it cannot be assumed as a 
point. Because, a physical particle has mass and occupies a certain volume, while, the point has not 
any dimension. So, modeling of a particle as a point seems to be impossible from physical point of 
view. 
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       On the other hand, a continuous system never can be analyzed by writing the equation of motions 
for the particles with specified volume. In such case, two major problems will occur. The first is that 
in study of continuous systems we investigate all particles in the system. While, a physical particle 
has dimensions and is made by smaller particles. So, study of the internal points in considered 
particle is impossible. The second problem is arisen from the first one. In such case, the response of 
system will be modeled as a discrete function which involving discontinuity in the boundary of 
considered particle. Both of mentioned problems have been overcome by the aid of mathematics. If a 
particle with specified dimensions be studied, by tending its dimensions to zero the point is achieved. 
While as mentioned, the point is a mathematical definition and finding a physical imagination for 
point is a complicated matter and has been remained an unresolved issue yet. 
 
      In this paper, the governing equations in continuous systems are investigated from a conceptual 
point of view. For this, the principle and basics of a simple method has been expressed. Firstly to this 
end, it is shown that having a suitable understanding about concept of governing equations in 
continuous systems can simplify the investigation of these systems. Thus using intensive properties is 
proposed. Finally, the equilibrium equations are derived by using the new method in rectilinear and 
curvilinear coordinates systems. Beside simplicity of new method, this method has made possible the 
understanding of governing equations concept for any researcher due to its conceptual point of view. 
The method has also a general interpretation for point, and is extendable to other equations in 
continuous systems. This matter is leaded to a united form be achieved, for extraction of governing 
equations in continuous systems from their corresponding model of solid objects. 
 
2. Formulation 
 
      For review of the systems which involving concentrated masses (mass-spring), governing 
equations are extracted by considering applied forces in free body diagram. While, when we 
investigate motion of solid continuous systems, governing equations are versus stress components. 
On the other hand, Hook’s law for concentrated masses is the relationship between force and 
deformation, while this law for solid continuous systems is the relationship between stresses and 
strains. 
 
      The note which here we are going to explain is that, in continuous systems equations cannot be 
achieved versus forces with unite of “N” (Kg. m/s2). Hook’s law in these systems is not explainable 
as a relationship between force and deformation too. Both of these limitations have a common reason 
which can be found in the difference of physical element and mathematical point as reviewed in 
pervious section. Consider a concentrated force (with unite of “N”) which is applied on a specified 
area. To finding effect of this force on mentioned area, this effect should be studied on all of its 
constituent points. While force is an extensive property, cannot be applied on a point. But if an 
intensive property be accessible, it is simply extensible to all points. Surface force or stress is same as 
extensive force which has been converted to an intensive property by writing it per unite area. 
Consequently, Hook’s law also in continuous systems is indeed versus forces, which are converted to 
intensive properties. Thus, in solid continuous systems there are some extensive forces which are the 
potential of stress components. These forces can be defined as: ߪ ൌ  ൯. In this equationݔݔ൫ܣ߲/ܨ߲

݅ is outward normal unite vector direction of surface ܣ, ݆ is force direction and ݔ and ݔare in-plane 
directions of ܣ.  
 
      Regarding to above context, our propose is that, for deriving motion equations in continuous 
systems, the most appropriate way is using from intensive properties. As any extensive property 
depends on dimensions but each point has no dimension; so, extensive properties and point are 
inconsistent with each other. Thus, using from intensive properties lead to overcoming the problem. 
In order to achieving equations versus intensive properties, they can be written per unit volume.        
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Consider the Newton’s second law as a governing equation versus extensive properties which is a 
function of dimensions: ∑ܨ െ݉ܽ ൌ ሺܸሻܩ ൌ 0. To converting this equation versus intensive 
properties it can be divided per volume and for generalizing it to each arbitrary point, the considered 
volume should approaches to zero: 
 

lim
∆→

ሺܸሻܩ∆

∆ܸ
ൌ
ሺܸሻܩ݀

ܸ݀
ൌ 0 

(1) 

where ∆ܩሺܸሻ is same as ܩሺܸሻ which describes the motion of a particle with dimensions ∆ܸ. For 
converting governing equations to functions versus intensive properties it is sufficient that extensive 
properties be differentiated with respect to triple orthogonal directions in any arbitrary coordinates 
system. In Cartesian coordinates systems, derivative with respect to orthogonal directions is equal to 
volume derivative as is shown in Eq. (1). But in curvilinear coordinates systems, ܸ݀ ൌ  ,ݔ݀ݔ݀ݔ݀߰
where, ߰ is equal by ݎ and ݎଶ sin  .in polar and spherical coordinates, respectively ߠ
 
        Here our purpose is the review of equilibrium equations, so ܩሺܸሻ is the second law of Newton. 
Eq. (1) can cover other governing equations in continuous systems too. We note that, in a solid 
continuous system, existent forces are resultant of body forces due to acceleration and potential forces 
which give the stress components൫∑ܨ ൌ ܨ   .൯. Thus Newton’s second law can be replaced in Eqܨ
(1) which gives: 
 
,ܨ  ,ܨ െ ߰ܽߩ ൌ 0 (2) 
 
where, as mentioned ܨ are the available forces in any arbitrary point of solid continuous systems 
which give the components of ߪ. ߩ is density, ܽ is acceleration and ܨ are body forces. The 
components of ݅, ݆ and ݇ are the orthogonal directions in any arbitrary coordinates system. As in Eq. 
(2) is seen, derivative with respect to direction of ݅ (direction of surface normal unite vector) should 
be the last one operator which is applied. Because, available governing equations are versus stress 
components (Saad, 2005), for verifying the method; Eq. (2) should be arranged in a way that give the 
governing equations versus stress components too. Thus, the derivative operator should be applied in 
that way which, the components of ܨ can be converted to stress components, then the third operator 
be applied. Whereas Eq. (2) itself is the general form of governing equations in solid continuous 
systems. No matter to be either as a function of stress components or potential forces.  In Eq. (2) 
available forces in each point are converted to body forces and their effects is proportional by extent 
of considered body. So, their effects on each point are exactly proportional with its dimensionless 
nature. 
 
3. Derivation of governing equations in continuous systems 
 
      In this section for verifying Eq. (2), the governing equations of solid continuous systems in 
Cartesian, polar and spherical coordinates will be derived. 
 
3.1 Equilibrium equations in Cartesian coordinates system 
 
      Stress component in Cartesian coordinates systems, which are induced by applied potential forces 
are as following (Fig. 1): 

௫௫ߪ ൌ
߲ଶܨ௫௫
ݖ߲ݕ߲

௬௫ߪ  ൌ
߲ଶܨ௬௫
ݖ߲ݔ߲

௭௫ߪ  ൌ
߲ଶܨ௭௫
ݔ߲ݕ߲

 ௫݂ ൌ
߲ଷܨ௫

ݖ߲ݕ߲ݔ߲
 

 

௫௬ߪ ൌ
߲ଶܨ௫௬
ݖ߲ݕ߲

௬௬ߪ  ൌ
߲ଶܨ௬௬
ݖ߲ݔ߲

௭௬ߪ  ൌ
߲ଶܨ௭௬
ݔ߲ݕ߲

 ௬݂ ൌ
߲ଷܨ௬

ݖ߲ݕ߲ݔ߲
 

(3) 



  324

௫௭ߪ ൌ
߲ଶܨ௫௭
ݖ߲ݕ߲

௬௭ߪ  ൌ
߲ଶܨ௬௭
ݖ߲ݔ߲

௭௭ߪ  ൌ
߲ଶܨ௭௭
ݔ߲ݕ߲

 ௭݂ ൌ
߲ଷܨ௭

ݖ߲ݕ߲ݔ߲
 

 

 
     By considering Fig. 1, the equilibrium equations in three directions based on Newton’s first law 
are: 

 
Fig. 1. The operator potential forces of solid continuous systems in Cartesian coordinates systems 

 
 ௫ܲሬሬሬԦ ൌ 0 ௫௫ܨ⟹  ௬௫ܨ  ௭௫ܨ  ௫ܨ ൌ 0  

 ௬ܲሬሬሬԦ ൌ 0 ௫௬ܨ⟹  ௬௬ܨ  ௭௬ܨ  ௬ܨ ൌ 0 (4) 

 ௭ܲሬሬሬԦ ൌ 0 ௫௭ܨ⟹  ௬௭ܨ  ௭௭ܨ  ௭ܨ ൌ 0  

 
       The important note in Eq. (4) is that, the components of ܨ are the available forces in any 
arbitrary point as a function of volume. This equation is indeed arranged for review of a point. 
Consequently, due to dimensionless nature of a point, it is unnecessary to be considered operating 
forces in all six faces of element for applying Newton’s first law. Eq. (4) describes the relative motion 
of volume ܸ with respect to its environment. But the analysis of its internal points by this equation is 
impossible due to extensive nature of this equation. Hence, by replacing it in Eq. (2), the governing 
equations for all points are achieved: 
 
߲
ݔ߲

ቆ
߲ଶܨ௫௫
ݖ߲ݕ߲

ቇ 
߲
ݕ߲

ቆ
߲ଶܨ௬௫
ݖ߲ݔ߲

ቇ 
߲
ݖ߲
ቆ
߲ଶܨ௭௫
ݕ߲ݔ߲

ቇ  ቆ
߲ଷܨ௫

ݖ߲ݕ߲ݔ߲
ቇ ൌ 0 

 

߲
ݔ߲

ቆ
߲ଶܨ௫௬
ݖ߲ݕ߲

ቇ 
߲
ݕ߲

ቆ
߲ଶܨ௬௬
ݖ߲ݔ߲

ቇ 
߲
ݖ߲
ቆ
߲ଶܨ௭௬
ݕ߲ݔ߲

ቇ  ቆ
߲ଷܨ௬

ݖ߲ݕ߲ݔ߲
ቇ ൌ 0 

(5) 

߲
ݔ߲

ቆ
߲ଶܨ௫௭
ݖ߲ݕ߲

ቇ 
߲
ݕ߲

ቆ
߲ଶܨ௬௭
ݖ߲ݔ߲

ቇ 
߲
ݖ߲
ቆ
߲ଶܨ௭௭
ݕ߲ݔ߲

ቇ  ቆ
߲ଷܨ௭

ݖ߲ݕ߲ݔ߲
ቇ ൌ 0 

 

 
       By inserting Eq. (3) into Eq. (5), the equilibrium equations in Cartesian coordinates system is 
achieved: 
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௫௫ߪ߲
ݔ߲


௬௫ߪ߲
ݕ߲


௭௫ߪ
ݖ߲

 ௫݂ ൌ 0 
 

௫௬ߪ߲
ݔ߲


௬௬ߪ߲
ݕ߲


௭௬ߪ
ݖ߲

 ௬݂ ൌ 0 
(6) 

௫௭ߪ߲
ݔ߲


௬௭ߪ߲
ݕ߲


௭௭ߪ
ݖ߲

 ௭݂ ൌ 0 
 

 
3.2 Equilibrium equation in polar coordinates system 
 
    The stress components in polar coordinates as depicted in Fig. 2 are as follows: 
 

ߪ ൌ
߲ଶܨ
ݖ߲ߠ߲ݎ

ఏߪ  ൌ
߲ଶܨఏ
ݖ߲ݎ߲

௭ߪ  ൌ
߲ଶܨ௭
ݎ߲ߠ߲ݎ

 ݂ ൌ
߲ଷܨ

ݎ ݖ߲ߠ߲ݎ߲
 

 

ఏߪ ൌ
߲ଶܨఏ
ݖ߲ߠ߲ݎ

ఏఏߪ  ൌ
߲ଶܨఏఏ
ݖ߲ݎ߲

௭ఏߪ  ൌ
߲ଶܨ௭ఏ
ݎ߲ߠ߲ݎ

 ఏ݂ ൌ
߲ଷܨఏ

ݎ ݖ߲ߠ߲ݎ߲
 

(7) 

௭ߪ ൌ
߲ଶܨ௭
ݖ߲ߠ߲ݎ

ఏ௭ߪ  ൌ
߲ଶܨఏ௭
ݖ߲ݎ߲

௭௭ߪ  ൌ
߲ଶܨ௭௭
ݎ߲ߠ߲ݎ

 ௭݂ ൌ
߲ଷܨ௭

ݎ ݖ߲ߠ߲ݎ߲
 

 

 
Fig. 2. The operator forces of solid continuous systems in polar coordinates systems 

By considering Fig. 2 the equilibrium equations are: 
 

 ܲሬሬሬԦ ൌ 0 ݁̂ܨ⟹  ఏ݁̂ܨ  ௭݁̂ܨ  ఏఏܨ
߲݁̂ఏ
ߠ߲

 ܨ ൌ 0 
 

 ఏܲሬሬሬሬԦ ൌ 0 ఏ݁̂ఏܨ⟹  ఏఏ݁̂ఏܨ  ௭ఏ݁̂ఏܨ  ఏܨ
߲݁̂
ߠ߲

 ఏܨ ൌ 0 
(8) 

 ௭ܲሬሬሬԦ ൌ 0 ௭݁̂௭ܨ⟹  ఏ௭݁̂௭ܨ  ௭௭݁̂௭ܨ  ௭ܨ ൌ 0  

 
      The terms as ܨఏఏሺ߲݁̂ఏ/߲ߠሻ and ܨఏሺ߲݁̂/߲ߠሻ in this equation are due to the relationship between 
orthogonal directions in polar coordinates (i.e. ߲݁̂ఏ/߲ߠ ൌ െ݁̂ and ߲݁̂/߲ߠ ൌ ݁̂ఏ). By eliminating݁̂, 
݁̂ఏ and ݁̂௭ from Eq. (8), we have: 
 
ܨ  ఏܨ  ௭ܨ െ ఏఏܨ  ܨ ൌ 0  
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ఏܨ  ఏఏܨ  ௭ఏܨ  ఏܨ  ఏܨ ൌ 0 (9) 
௭ܨ  ఏ௭ܨ  ௭௭ܨ  ௭ܨ ൌ 0  
 
Using Eq. (9) in Eq. (2) leads to following equations be achieved: 
 
߲
ݎ߲
ቆ
߲ଶܨ
ݖ߲ߠ߲

ቇ 
߲
ߠ߲

ቆ
߲ଶܨఏ
ݖ߲ݎ߲

ቇ 
߲
ݖ߲
ቆ
߲ଶܨ௭
ݎ߲ߠ߲

ቇ െ ቆ
߲ଶܨఏఏ
ݖ߲ݎ߲

ቇ 
߲ଷܨ

ݖ߲ߠ߲ݎ߲
ൌ 0 

 

߲
ݎ߲
ቆ
߲ଶܨఏ
ݖ߲ߠ߲

ቇ 
߲
ߠ߲

ቆ
߲ଶܨఏఏ
ݖ߲ݎ߲

ቇ 
߲
ݖ߲
ቆ
߲ଶܨ௭ఏ
ݎ߲ߠ߲

ቇ  ቆ
߲ଶܨఏ
ݖ߲ݎ߲

ቇ 
߲ଷܨఏ
ݖ߲ߠ߲ݎ߲

ൌ 0 
(10) 

߲
ݎ߲
ቆ
߲ଶܨ௭
ݖ߲ߠ߲

ቇ 
߲
ߠ߲

ቆ
߲ଶܨఏ௭
ݖ߲ݎ߲

ቇ 
߲
ݖ߲
ቆ
߲ଶܨ௭௭
ݎ߲ߠ߲

ቇ 
߲ଷܨ௭

ݖ߲ߠ߲ݎ߲
ൌ 0 

 

 
Inserting Eq. (7) into Eq. (10) results: 
 
߲ሺߪݎሻ

ݎ߲

߲ሺߪఏሻ

ߠ߲

߲ሺߪݎ௭ሻ

ݖ߲
െ ఏఏߪ  ݎ ݂ ൌ 0 

 

߲ሺߪݎఏሻ

ݎ߲

߲ሺߪఏఏሻ

ߠ߲

߲ሺߪݎ௭ఏሻ

ݖ߲
 ఏߪ  ݎ ఏ݂ ൌ 0 

(11) 

߲ሺߪݎ௭ሻ
ݎ߲


߲ሺߪఏ௭ሻ
ߠ߲


߲ሺߪݎ௭௭ሻ
ݖ߲

 ݎ ௭݂ ൌ 0 
 

 
By applying derivative operator and some algebraic operations Eq. (11) is converted to below: 
 
ߪ߲
ݎ߲


1
ݎ
ఏߪ߲
ߠ߲


1
ݎ
ሺߪ െ ఏఏሻߪ 

௭ߪ߲
ݖ߲

 ݂ ൌ 0 
 

ఏߪ߲
ݎ߲


1
ݎ
ఏఏߪ߲
ߠ߲


2
ݎ
ఏߪ 

௭ఏߪ߲
ݖ߲

 ఏ݂ ൌ 0 
(12) 

௭ߪ߲
ݎ߲


1
ݎ
௭ߪ 

1
ݎ
ఏ௭ߪ߲
ߠ߲


௭௭ߪ߲
ݖ߲

 ௭݂ ൌ 0 
 

 
3.3 Equilibrium equations in spherical coordinates system 
 
The stress components in spherical coordinates with referring to Fig. 3 are: 
 

ߪ ൌ
1

ଶݎ sin ߠ
߲ଶܨ
߲߮ߠ߲

ఏߪ  ൌ
1

ݎ sin ߠ
߲ଶܨఏ
߲߮ݎ߲

ఝߪ  ൌ
1
ݎ
߲ଶܨఝ
ߠ߲ݎ߲

 ݂ ൌ
1

ଶݎ sin ߠ
߲ଷܨ

߲߮ߠ߲ݎ߲
 

 

ఝߪ ൌ
1

ଶݎ sin ߠ
߲ଶܨఝ
߲߮ߠ߲

ఏఝߪ  ൌ
1

ݎ sin ߠ
߲ଶܨఏఝ
߲߮ݎ߲

ఝఝߪ  ൌ
1
ݎ
߲ଶܨఝఝ
ߠ߲ݎ߲

 ఏ݂ ൌ
1

ଶݎ sin ߠ
߲ଷܨఏ

߲߮ߠ߲ݎ߲
 

(13) 

ఏߪ ൌ
1

ଶݎ sin ߠ
߲ଶܨఏ
߲߮ߠ߲

ఏఏߪ  ൌ
1

ݎ sin ߠ
߲ଶܨఏఏ
߲߮ݎ߲

ఝఏߪ  ൌ
1
ݎ
߲ଶܨఝఏ
ߠ߲ݎ߲

 ఝ݂ ൌ
1

ଶݎ sin ߠ
߲ଷܨఝ

߲߮ߠ߲ݎ߲
 

 

 
      Equilibrium equations of spherical coordinates in three orthogonal directions are achieved by 
considering Fig. 3. 
 

 ܲሬሬሬԦ ൌ 0 ݁̂ܨ⟹  ఏ݁̂ܨ  ఝ݁̂ܨ  ఏఏܨ
߲݁̂ఏ
ߠ߲

 ఝఝܨ
߲݁̂ఝ
߲߮

 ܨ ൌ 0 
 

 ఏܲሬሬሬሬԦ ൌ 0 ఏ݁̂ఏܨ⟹  ఏఏ݁̂ఏܨ  ఝఏ݁̂ఏܨ  ఏܨ
߲݁̂
ߠ߲

 ఝఝܨ
߲݁̂ఝ
߲߮

 ఏܨ ൌ 0 
(14) 
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 ఝܲሬሬሬሬԦ ൌ 0 ఝܨ⟹  ఏఝܨ  ఝఝܨ  ఝܨ
߲݁̂
߲߮

 ఝఏܨ
߲݁̂ఏ
߲߮

 ఝܨ ൌ 0 
 

 

 
Fig. 3. The potential forces of solid continuous systems in spherical coordinates systems 

      The variations of unit vectors in spherical coordinates system with respect to other directions are: 
(i.e. ݀݁̂ ൌ ൫݁̂ఏ݀ߠ  sin ߠ ݁̂ఝ݀߮൯, ݀݁̂ఏ ൌ ൫െ݁̂݀ߠ  cos ߠ ݁̂ఝ݀߮൯ and ݀݁̂ఝ ൌ ሺെ sin ߠ ݁̂݀߮ െ
cos ߠ ݁̂ఏ݀߮ሻ). Eliminating ݁̂, ݁̂ఏ and ݁̂ఝ, from Eq. (14) gives: 
 
ܨ  ఏܨ  ఝܨ െ ఏఏܨ െ ఝఝܨ sin ߠ  ܨ ൌ 0  
ఏܨ  ఏఏܨ  ఝఏܨ  ఏܨ െ ఝఝܨ cos ߠ  ఏܨ ൌ 0 (15) 
ఝܨ  ఏఝܨ  ఝఝܨ  ఝܨ sin ߠ  ఝఏܨ cos ߠ  ఝܨ ൌ 0  
 
Replacing Eq. (15) into (2) these equations become: 
 
߲
ݎ߲
ቆ
߲ଶܨ
߲߮ߠ߲

ቇ 
߲
ߠ߲

ቆ
߲ଶܨఏ
߲߮ݎ߲

ቇ 
߲
߲߮

ቆ
߲ଶܨఝ
ߠ߲ݎ߲

ቇ െ
߲ଶܨఏఏ
߲߮ݎ߲

െ
߲ଶܨఝఝ
ߠ߲ݎ߲

sin ߠ 
߲ଷܨ

߲߮ߠ߲ݎ߲
ൌ 0 

 

߲
ݎ߲
ቆ
߲ଶܨఏ
߲߮ߠ߲

ቇ 
߲
ߠ߲

ቆ
߲ଶܨఏఏ
߲߮ݎ߲

ቇ 
߲
߲߮

ቆ
߲ଶܨఝఏ
ߠ߲ݎ߲

ቇ 
߲ଶܨఏ
߲߮ݎ߲

െ
߲ଶܨఝఝ
ߠ߲ݎ߲

cos ߠ 
߲ଷܨఏ

߲߮ߠ߲ݎ߲
ൌ 0 

(16) 

߲
ݎ߲
ቆ
߲ଶܨఝ
߲߮ߠ߲

ቇ 
߲
ߠ߲

ቆ
߲ଶܨఏఝ
߲߮ݎ߲

ቇ 
߲
߲߮

ቆ
߲ଶܨఝఝ
ߠ߲ݎ߲

ቇ 
߲ଶܨఝ
ߠ߲ݎ߲

sin ߠ 
߲ଶܨఝఏ
ߠ߲ݎ߲

cos ߠ 
߲ଷܨఝ

߲߮ߠ߲ݎ߲
ൌ 0 

 

 
By using Eq. (13) in Eq. (16), results as following: 
 
߲
ݎ߲
ሺݎଶ sin ߠ ሻߪ 

߲
ߠ߲

ሺݎ sin ߠ ఏሻߪ 
߲
߲߮

൫ߪݎఝ൯ െ ݎ sin ߠ ఏఏߪ െ ݎ sin ߠ ఝఝߪ  ଶݎ sin ߠ ݂ ൌ 0 
 



  3

߲

߲

 
f
 
߲

߲

߲

 
w
f
 
4
 
 
I
d
d
s
ߪ
 
 
o
c
s
t
ݑ
d
l
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߲
ݎ߲
ሺݎଶ sin ߠ ߪ

߲
ݎ߲
൫ݎଶ sin ߠ ߪ

      Finally,
following: 

ߪ߲
ݎ߲


1
ݎ
ߪ߲
߲

ఏߪ߲
ݎ߲


1
ݎ
ߪ߲
߲

ఝߪ߲
ݎ߲


1
ݎ
ߪ߲
߲

where, exac
for more cla

4. Nonlinea

     In this s
In the linea
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߲ଶܨ௫௫
ݖ߲ݕ߲

ൌ ௫௫ߪ  ௫௬ߪ
ݑ߲
ݕ߲

 ௫௭ߪ
ݑ߲
ݖ߲

 
߲ଶܨ௫௬
ݖ߲ݕ߲

ൌ ௫௫ߪ
ݒ߲
ݔ߲

 ௫௬ߪ  ௫௭ߪ
ݒ߲
ݖ߲

 
 

߲ଶܨ௫௭
ݖ߲ݕ߲

ൌ ௫௫ߪ
ݓ߲
ݔ߲
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ݓ߲
ݕ߲

 ௫௭ ௫݂ߪ ൌ
߲ଷܨ௫

ݖ߲ݕ߲ݔ߲
 

 

߲ଶܨ௬௫
ݖ߲ݔ߲

ൌ ௬௫ߪ  ௬௬ߪ
ݑ߲
ݕ߲

 ௬௭ߪ
ݑ߲
ݖ߲

 
߲ଶܨ௬௬
ݖ߲ݔ߲

ൌ ௬௫ߪ
ݒ߲
ݔ߲

 ௬௬ߪ  ௬௭ߪ
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ݖ߲

 
(19) 
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Result of inserting Eq. (19) in Eq. (5) is as below: 
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(20) 
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       Last equation has not been expanded for abbreviation. In this equation if slope of deformations in 
 be ignored, governing equations of transverse vibration in (ݒ and ݑ slopes of) directions ݕ and ݔ
mechanical structures will be achieved. Because, ߲ݔ߲/ݑ and ߲ݔ߲/ݒ are negligible in comparison 
with ߲ݔ߲/ݓ for transverse deformation of mechanical structures. While Eq. (20) has a general form 
and is extendable to any arbitrary problem. 
  
5. Conclusion 
 
      The concept of governing equations in continuous systems was reviewed. It was shown that, for 
continuous systems the motions equations should be expandable to all points of system. Because a 
physical particle cannot be a mathematical point, so there is a challenge in the concept of governing 
equations in continuous systems which guided us toward a fundamental investigation about these 
systems. So, it was shown that using from intensive properties generalizes the governing equations of 
a particle with specified dimensions to any internal dimensionless point of it. Basics of a simple 
method were established for deriving the governing equations in continuous systems based on 
applying intensive properties. By extraction of equilibrium equations in Cartesian, polar and spherical 
coordinates systems, the method is verified and exact agreement was observed. The new method is 
more efficient in comparison with old methods such as Hamiltonian and classic methods due to its 
simplicity. Other methods contain a hard task in their solution process and needs more time. 
Moreover of saving time in new method, it has made possible to be realized concept of governing 
equations in continuous systems for researchers. Direct method is also extensible to other equations 
and a united procedure has been offered for extracting the governing equations in continuous systems. 
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Appendix 
 
     For derivation of heat equation for a homogenous material as a solid continuous system, direct 
method is used as follows: 
 
First law of thermodynamics: 
 

ܳ ൌ ܳ௫  ܳ௬  ܳ௭ ൌ ݉ܿ
߲ܶ
ݐ߲

 
(A.1) 

Fourier equations: 
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(A.2) 

 
Direct method: 
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Inserting Eq. (A.2) in (A.3) results heat equation as following: 
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(A.4) 

  
 


