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 In this article, hyperelastic material models that state consistent polynomial expansions of the stored 
energy function are discussed. The approach follows from the multiplicative decomposition of the 
deformation gradient. Some advantages of the third-order expansion model over the five-parameter 
Rivlin model using Treloar’s experimental data are shown. The models are qualitatively and 
quantitatively compared to highlight these advantages of the discussed model. 
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1. Introduction 

         
      Elastomers are a group of polymers capable of very large elastic deformations. In a uniaxial tensile stress test, a 
deformation of a sample can reach 1000%. These include natural and synthetic rubbers. The capacity of elastomers to obtain 
large elastic deformations results from their internal structure (Bauman, 2008). Elastomers macromolecule chains form a 
complex spatial network, which may be described by statistical mechanics models. In this work, in order to describe some 
aspects of macroscopic properties of elastomers, the phenomenological approach resulting from the mechanics of continuous 
media and the theory of hyperelasticity of isotropic materials is considered (Ciarlet, 1988). 
 
      Rubber-like materials are often described under an assumption of the incompressibility (Jemioło, 2002). There are many 
constitutive models proposed in the regime, which are derived from the phenomenological or the chain network approaches. 
In the literature since the 1940s, so-called polynomial models have been proposed (Mooney, 1940; Rivlin, 1948), which are 
also widely used nowadays in engineering applications (Dassault Systèmes, 2015). Formally, the most general Rivlin model 
for incompressible materials is a polynomial function of two basic invariants of isochoric deformation tensors. To reduce the 
number of material parameters, many simplifications of the Rivlin's proposal are postulated in the literature (Marckmann and 
Verron, 2006; Seibert and Schöche, 2000). Nevertheless, we do not discuss any type of non-polynomial models here.  
 
      This article is intended as an attempt to show that in the case of polynomial models for incompressible materials a 
consistent expansion of the stored energy function should be preferable to the Rivlin model. The idea follows from the 
multiplicative decomposition of the deformation gradient (Ogden, 1976) rather than the expansion of the function such that 
only certain orders of the principal stretches are included (James, 1975; Sato, 1978) We demonstrate that the postulated so-
called MV model leads to a qualitatively more accurate description of the classical Treloar’s data than the discussed Rivlin 
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model. It is particularly noticiable for large deformations, where the MV stored energy function exhibits desired regularity on 
the plane of principal stretches. 
 
2. Basic equations of constitutive modelling 
 
     In this section, basic equations concerning constitutive modelling of an isotropic, hyperelastic solid with finite 
deformations are presented (Ciarlet, 1988 ; Liu, 2002) These show some aspects of the hyperelasticity which need to be 
considered to correctly postulate a form of the stored energy function. 

 
2.1. The stored energy function of isotropic hyperelastic materials 

      The deformation of a hyperelastic body is described by the so-called deformation gradient 

( ), tχ∂
≡

∂
X

F
X

, 
 

(1) 

where ( ) ( ), ,t tχ= = +x X X u X  is a reversible vector function that defines the position of body particles in the current 
configuration ( u stands for a displacement vector). To avoid interpenetration of matter, it is necessary to assume that 

Lin+∈F , where +Lin  is a subset of Lin∈F  (a nine-dimensional space of second-order tensors) such that det 0>F ( 
Ciarlet, 1988). Then, there exists a unique polar decomposition 
 

VRRUF == ,      (2) 
 
where R is an orthogonal rotation tensor and U, V are positive definite stretch tensors such that 

FFCU T== ,       TFFBV == . 
(3) 

Tensors C and B are the left and the right Cauchy-Green deformation tensors, respectively. 
In the theory of hyperelasticity, it is assumed the existence of a sufficiently regular function W called stored energy 

function so that 
 

( ) ( )W∂
=

∂
F

S F
F

 , 
 

(4) 

where S  denotes the first Piola-Kirchhoff stress tensor. However, restrictions imposed by objectivity require that the stored 
energy should not be directly described only by the deformation gradient (Liu, 2002; Jemioło, 2002). Under the assumption 
of isotropy of the stored energy function, it yields  
 

( ) ( )TW W=QCQ C  ,   ( )3O∀ ∈Q . (5) 

 
The stored energy function may be also described in terms of the stretch tensor U . 

The isotropic scalar function ( )W C  may be rewritten as a function of three invariants of tensor C  and B such that 

( ) ( ) ( ) ( )2 3 2 3
1 2 3

ˆ tr , tr , tr tr , tr , tr , ,W W W W I I I= = =C C C C B B B
 

 ,   (6) 

where the basic invariants are functions of C  and B  as follows 
 

( )

( )

2 2
1 1 1 2 2 2

3 2 3
3 3 3

1( ) ( ) tr , ( ) ( ) tr tr ,
2

1 1 3( ) ( ) det tr tr tr tr .
3 2 2

I I I I I I

I I I

 = = = = = = − 

 = = = = − + 
 

B C C B C C C

B C C C C C C

   

   

(7) 

 
The set of invariants { }2 3tr , tr , trC C C  states a polynomial, irreducible basic of isotropic function (Jemioło, 2002). The 

invariants are symmetric functions of the eigenvalues 0kλ >  of the stretch tensors as follows 
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2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 3 2 2 3 3 1 1 2 3 1 2 3, , .I I I Jλ λ λ λ λ λ λ λ λ λ λ λ= + + = + + = =  (8) 

Thus, the stored energy function may be also expressed as a symmetric function of the eigenvalues kλ  such that (Ciarlet, 
1988). 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 2 3 1 3 1 2

1 3 2 3 2 1 2 1 3

, , , , , ,

, , , , , , .

W W W W W

W W W

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

= = = = =

= = =

U V   

    
(9) 

 

      A crucial role in the theory of hyperelasticity plays polyconvexity as it ensures the existence of an associated boundary 
value problem (Ball, 1976). A function W  is polyconvex if there exists a convex function W such that 

( ) ( ),Cof ,detW =F F F FW  (10) 

with ( ) ( ),Cof ,det 0,Lin Lin∈ × × ∞F F F . We emphasize that ,cof ,detF F F  concern a deformation of lines, a surface 

and a volume of the body, respectively. The extended function is constructed that way mostly because the set +Lin  is not 
convex. Moreover, it is requaired to put some other restrictions on W  to ensure physically motivated proper growth 
conditions. 
 

2.2. Constitutive relations for incompressible solids 

In the case of incompressibility, we assume that a material is subjected to internal constraints of the form  
 

01det1 =−=− FJ ,                    (11) 
 
which ensures a lack of volumetric changes in a body (Bonet, 2016). It might be rewritten as 
 

( )3 2 31 1 3det tr tr tr tr 1 ,
3 2 2
 = − + = 
 

C C C C C        
 

(12) 

which implies directly that the trace of the third power of tensor C  is reducible. However, it is convenient to express the 
stored energy function in terms of two modified invariants of T=C F F . It follows from the decomposition of the deformation 
gradient 1/3J=F F  so that the volumetric and isochoric deformations are decoupled (Ogden, 1976) The formulation is 
particularly convenient when describing slightly compressible material (Horgan and Murphy, 2009; Franus et al., 2020) Here, 
the stored energy function is postulated by 

( ) ( ) ( )2
1 2

ˆ tr , tr ,W W W I I= =C C C


 ,   (13) 

where  
 

( )2 2 1 1
1 2

1tr tr , tr tr tr tr
2

I I − − = = = − = =  
C B C C C B . 

(14) 

 
W  

 
 
F  is polyconvex if there exists an extension of the function to convex one W  such that ( ) ( ), cofW =F F FW . 

The function ( )1 2,W I I


 is not an elastic potential, because the volumetric part of the Cauchy stress tensor is not 

specified. The constitutive relation, in the deformed body configuration, defines only the deviatoric part of the Cauchy stress  
 

( ) ( ) ( ) ( )1 2 1 2 1

1 2

, ,
2 dev 2 dev

W I I W I I
p

I I
−∂ ∂

= − + −
∂ ∂

σ I B B
 

 ,    
 

(15) 

 

where ( )dev   denotes the deviatoric component of a tensor. The hydrostatic pressure component p  does not depend on 
the particular material definition. 
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3. Consistent polynomial expansions of the stored energy function  

Constitutive models for isotropic incompressible hyperelastic materials are continuously proposed and discussed in the 
literature (Marckmann and Verron, 2006; Horgan, 2021; Anssari-Benam and Bucchi, 2021; Suchocki and Jemioło, 2019; 
Attard and Hunt, 2004) A representation of the stored energy function is typically considered as follows: 

• the arguments of the stored energy function are invariants of the polynomial basis, 
• the arguments of the stored energy function are the eigenvalues of the stretch tensors, 
• the arguments of the stored energy function are the other three independent invariants of any reasonable tensor 

measure of deformation or strain. 
From the point of view of the theory of representation of tensor functions, the choice of a functional basis other than 

{ }2 3tr , tr , trC C C  is not theoretically important (Jemioło, 2002) but might be more convenient for studying certain 

computational aspects. An important distinction between models is their linearity or non-linearity in terms of model 
parameters. All of the above statements also hold in the case of incompressibility.  

 
      In the article, we focus on presenting the construction of polynomial models for incompressible rubber-like materials 
which results from a consistent expansion of the stored energy function in terms of the measure of deformation C . In the 
opinion of the authors, the discussed MV model is the simplest polynomial one which captures a typical 'S' shape of a stress-
stretch curve of rubber and gives a sufficiently regular stored energy function for large deformations. 
 
      A similar idea of consistent expansion in the context of stress-stretch relationships resulting from basic homogeneous 
deformations and their importance for the description of elastomers are discussed e.g. in the articles (James, 1975; Van Der 
Hoff and Buckler, 1967; Sato, 1970; Tschoegl, 1971) The basic motivation given in the papers is the description of the 'S' 
shape of a stress-stretch curve, which is not predicted by the Mooney model (Mooney, 1940) Therefore, it was proposed to 
include only certain orders of principal stretches, i.e. 2 4 6, ,λ λ λ , in an expansion of the stored energy function (Sato, 1978). 

The reasoning is not correct, because the incompressibility assumption 1 2 3 1J λ λ λ= =  leads to ( )3 1 21/λ λ λ= . 
Nevertheless, these relations were successfully applied in the works to approximate experimental data of elastomers. 
 
     Here, the consistent nth order polynomial expansion ( )2ˆ tr , trW C C of the stored energy function ( )W C  fulfils the 

condition  
 

( ) ( ) ( )12
2

ˆ tr , tr
n

W W
+

− =C C C C ,   
(16) 

 
where 2•  denotes the Euclidian norm. We restrict ourselves to at most third-order terms ( )3n = . Hence, a general form 

of Ŵ  yields 
 

( ) ( ) ( )2 32 2 2
1 2 1 2

ˆ tr , tr tr tr tr tr tr trW b c d d e e= + + + + +C C C C C C C C . 
(17) 

 

Assuming that the reference configuration is a natural state 

( ) 1 2 1 2
ˆ 3,3 3 9 9 27 27 0W b c d d e e= + + + + + = , (18) 

we obtain the function of the form 

( ) ( ) ( ) ( )
( )( ) ( )

22 2
1 2

3 2
1 2

ˆ tr , tr tr 3 tr 9 tr 9

tr 27 tr tr 27 .

W c d d

e e

 = − + − + − +  

+ − + −

C C C C C

C C C
          

 

 

(19) 

Substituting definitions of the invariants into (16) yields a five-parameter MV model (Jemioło, 2002) 
 

( ) ( )
( ) ( ) ( ) ( ) ( )

2
1 2

2 3
1 1 2 1 3 1 4 2 5 1 2

ˆ tr , tr ,

1 1 13 9 27 3 9 .
2 2 3

MVW W I I

a I a I a I a I a I I

= =

 = − + − + − + − + −  

C C


   

 
 

(20) 
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      More strictly speaking, the stored energy function (20) is consistent third-order expansion in terms of the deformation 
measure C . Nevertheless, the polyconvexity of the function is not ensured because of the term 1 2I I . 

Analogously, as a special case of (20), we obtain the stored energy function of the Ishihara-Zahorski (MIZ) model (Isihara 
et al., 1951; Zahorski, 1959), 

( ) ( ) ( ) ( )2
1 2 1 1 2 1 4 2

1 1, 3 9 3 ,
2 2MIZW I I a I a I a I = − + − + −  


   

 

(21) 

which states the second-order model in the sense of (16). The function (20) may be rewritten in a slightly different form  
 

( ) ( ) ( )( ) ( )2
1 2 0 1 2 1

1 1, μ 3 1 3 3
2 4MIZW I I I I c Iα α = − + − − + − 


,   

(22) 

where 0μ 0>  denotes an initial shear modulus. The expression (21) is not as general as (22), but is more convenient for 
analysing some aspects of the non-uniqueness of a boundary value problem solution (Jemioło, 2019)  The function (21) is 
polyconvex if material parameters satisfy ( )0,1α ∈  and 0c > . For 1, 0cα = =  we formally obtain the neo-Hookean 
stored energy function 
 

( ) ( )1 2 0 1
1, μ 3
2NHW I I I= −


, 

(23) 

which is the simplest constitutive model for incompressible materials and states the first-order expansion in the sense of (16).  
 

It is worth noticing that the other well-known in the literature polynomial models follow from (19). Assumption 

4 5 0a a= =  yields the Yeoh model (Yeoh, 1990), which is given by the function of the first invariant only. Adding to the 
Yeoh form a linear term of the second invariant gives the Biderman model (Biderman, 1958). None of these states a consistent 
expansion of the stored energy function in terms of C . 
 

4. Comparison of the MV model with the Rivlin polynomial form 
 

      In the following part of the paper, we compare the performance of the presented models. In particular, we demonstrate 
some advantages of the MV model in comparison with the five-parameter Rivlin model based on classical Treloar’s 
experimental data on a vulcanized rubber (Treloar, 1944). The method of least squares is employed to minimize the sum of 
the squares of the relative error  
 

( ) 2( ) ( )

( )
1

,
arg min 1 ,

m

i in
j j

i
i j

S
S

λ
∈ =

 
 −
  


a

a


    

 
(24) 

where a stands for a set of model parameters. As a measure of the quality of fit we choose an estimated variance of residuals 
( )ir  such that 

 

( )
( )22 ( )

2( )1

1 1 ( ) ,
n

i

ii j

s r
n p σ=

=
−  a         

 
(25) 

where p  denotes the number of parameters in a model and n  is the number of data elements. For more details on the subject 
of parameter identification for hyperelastic models, we refer the reader to (Destrade et al., 2017; Darijani and  Naghdabadi, 
2010). 
 
4.1. The MV model 

       As concluded in the previous section, the neo-Hookean model, the MIZ model and the MV model are the first, the second 
and the third consistent expansions of the stored energy function in the sense of (16), respectively. It is known that the neo-
Hookean model poorly describes elastomers mostly due to lack of influence of the second invariant. However, it can be 
applied to model these type of materials in a very small range of deformation, see Fig.1. It is known that the MIZ model brings 
qualitatively and quantitively better results in comparison with the neo-Hookean model. In Fig. 2a it is shown that the model 
accurately describes the data but only for moderate deformations.  The whole range of deformations is properly approximated 
by the MV model, see Fig 2b. However, evaluating a model fit based on an accuracy of fitting a curve to data is not sufficient, 
because the determined parameters should not only to reasonably reproduce the material behavior in the selected basic tests, 
but to allow a reasonable description of an arbitrary deformation. In this context even a cursory evaluation of contour plots of 
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a stored energy function allows rejecting completely inadequate sets of parameters. Hence, it should be emphasized that 
contour plots of stored energy functions for all three models are very regular, see Fig. 3. In the following part of the article, 
we demonstrate that it is not the case for the five-parameter Rivlin model.   
 

 
Fig. 1. Plots of the nominal stress vs principal stretch – the neo-Hookean model 

 
      It is worth mentioning here that the second invariant 2I  is not a convex function for sufficiently large stretches (Suchocki 
and  Jemioło, 2019). However, the stored energy function for basic experimental tests can be considered as a function of a 
single variable ( )1W λ . Then, the functions ( ) ( )1 1 2 1,I Iλ λ  are convex. 

 
Fig. 2. Plots of the nominal stress vs principal stretch – the MIZ and MV models 

 
Fig. 3. Contour plots of stored energy function of the neo-Hookean (NH), the MIZ and the MV models 
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Nonconvexity of the second invariant ( )2 1 2,I λ λ  might lead to nonconvexity of a stored energy function with respect 

to the principal stretches (Liu, 2002) As an example, we utilize the MIZ model whose parameters should satisfy ( )0,1α ∈  

and 0c >  to ensure polyconvexity of the stored energy function. For 0.8, 0.1f c= =  the function ( )1 2,W λ λ  is convex, 

which is not the case for 0.2, 0.1f c= = , see Fig. 4.  

 
Fig. 4. Contour plots of the stored energy function of the MIZ model. 

 
4.2. The Rivlin polynomial model 

Rivlin (Rivlin, 1948) proposed a phenomenological model of the isotropic, hyperelastic incompressible material of the 
form 
 

( ) ( ) ( )1 2 1 2
1

, 3 3
N k l

kl
k l

U I I C I I
+ =

= − − ,              
 

(25) 

where N  is an arbitrary natural number. Formally, the polynomial (12) can be seen as a series expansion of the stored energy 
function at the point 1 23, 3I I= =  such that 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

2
2

1 2 1 12
1 1

2 2
2

2 2 1 22
2 2 1 2

3,3 3,31, 3,3 3 3
2

3,3 3,3 3,313 3 3 3 .
2

U U
U I I U I I

I I
U U U

I I I I
I I I I

∂ ∂
= + − + − +

∂ ∂

∂ ∂ ∂
+ − + − + − − +

∂ ∂ ∂ ∂


    

 
 
 

(26) 

 
     A motivation to compare the model with the MV is its wide popularity in applications (Sharma, 2003; Tabaddor, 1987). 
For example, in the documentation of the ABAQUS (Dassault Systèmes, 2015) it is stated that the model for 2N =  more 
accurately approximates the Treloar’s data than the Mooney model, i.e. 1N = . However, the comparison is performed based 
on the quality of fit to the data which describes only certain deformation modes. We show that the five-parameter model 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2
1 2 1 2 10 1 20 1

1
2

01 2 02 2 11 1 2

, 3 3 3 3

3 3 3 3

N k l
MR kl

k l
W I I C I I C I C I

C I C I C I I

=

+ =

= − − = − + − +

+ − + − + − −




 

 
 

(27) 

 

performs qualitatively much poorer than the MIZ and MV models for Treloar’s data. 
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Fig. 5. Plots of the nominal stress vs principal stretch – the five-parameter Rivlin model 

 

      Comparing the results based on the estimated variance in Tab.1, we do not notice a significant difference between these 
three models. In fact, the variance for the Rivil model is lower than for the MIZ one. Nevertheless, the approximation of the 
data is not qualitatively acceptable, especially for large deformations, see Fig. 5. More importantly, contour plots of the stored 
energy function with respect to the principal stretches show extensive irregularity of the function. There is no physical 
justification for such behaviour of the elastomer. It states a serious disadvantage of the model in the case of simulating large 
non-homogeneous deformations e.g. with a help of the finite element method (Bonet et al., 2016).  

 

 
Fig. 6. Contour plots of stored energy function  ( )1 2,MRW I I


 of the five-parameter Rivlin model. 

Table 1. Parameters for the Treloar’s data 

Model a1 a2 a3 a4 a5 Variance 
MIZ 3.139 ×10−1 3.746 ×10−3 -    3.789 ×10−3 -  4.023 ×10−2 
MV 3.735 ×10−1 −8.634 ×10−3 2.644 ×10−4 2.078 ×10−2  −2.825 ×10−4  1.932 ×10−2 

Model C01 C10 C02 C20 C11 Variance 
Rivlin 3.164 ×10−2   1.383 ×10−1 9.034 ×10−5 1.716 ×10−3 −1.769 ×10−3 3.026 ×10−2 

 
5. Concluding remarks 
 
      The MV model, which appears to be the consistent third order polynomial expansion of the stored energy function, 
describes the Treloar’s data on rubber more accurately than the presented polynomial Rivlin model.  Its advantage is 
particularly noticable in a range of large deformations. Two-dimensional contours plots of the stored energy function on the 
principal stretches plane exhibits its desired regularity. It is not the case for discussed the five-parameter Rivlin model. 
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      An evaluation of a stored energy function based on contours plots on the principal stretches plane allows to reject 
inadequate sets of parameters or even a model (Jemioło, 2002).  An accuracy of the stored energy function fit should not be 
only conducted based on specific deformation modes corresponding to the experimental data. The model should be capable 
to predict a reasonable response to any deformation. A similar approach for comparing stored energy functions in the plane 
of the isochoric invariant was developed in (Currie, 2004; Currie, 2005). The approach might be also useful for an evaluation 
of other type of the stored energy function, but it certainly would not reveal the irregularity shown in the case of the Rivlin 
model.   
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