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 Cutting betel nut machines are increasingly being designed by engineers using local material. 
However, the performance of the cutting betel nut machine is influenced by the moisture content of 
the betel nut and the rotational speed of the machine. In this study, the performance of cutting a betel 
nut machine under moisture content of betel nut and rotational speed of the machine was studied using 
response surface methodology (RSM) and desirability function. Central Composite Design (CCD) 
coupled with RSM and desirability function was employed to evaluate the impact of moisture content 
of betel nut (34.68–50.54%, w.b.) and rotational speed (600–1000 rpm) on machine capacity (kg/hr), 
efficiency (%), and losses (%) responses. The desirability function was then used to optimize moisture 
content and rotational speed yielding maximum machine capacity and efficiency at lower losses. Three 
verification experiments were run to ensure the empirical relationships were valid. Optimum 
requirements of process parameters have been seen at which moisture content of 50.54% (w.b.) and 
rotational speed of 1000 rpm was achieved in maximum machine capacity of 44.16 kg/hr at higher 
efficiency (92.72%) and lower losses (6.31%). The model's conclusions were very consistent with the 
confirmed values. The results proved that an appropriate performance of the machine can be achieved 
using moisture content of betel nut and rotational speed of machine cutting betel nut. 

© 2022 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

 
     Areca nut is one of the people's plantation crops commonly cultivated in Indonesia, especially in the province of Aceh. The 
area of areca nut plantations in Indonesia is about 95,744 ha (Henanto, 1996). To obtain dried betel nut, several post-harvest 
processes must be passed by the betel nut itself. Areca nuts can be harvested when the color of the fruit is still green, orange, 
and brown, with a water content range of 67.66% to 33.90% (Bulan et al., 2020). After harvesting from the tree, the betel nut, 
which is still in the areca nut bunches, is threshed. After obtaining the threshed betel nut, cutting the betel nut can be done to 
fasten the drying process. Drying can be carried out until the moisture content reaches less than 10%. After drying, the nuts 
from the shell and the fibers can be separated. The mechanization technology for post-harvest handling of areca nuts until it 
is ready for sale is still very limited. To support efforts to develop machines that specifically handle areca nuts, Bulan et al. 
(2020) have conducted studies related to areca nut's physical and mechanical properties that support the design of these 
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machines. From that, a betel nut threshing machine has been reported on its design and evaluation (Bulan et al., 2021a; Bulan 
et al., 2021b). Furthermore, the areca nut cutting machine, whose performance was compared with the manual, was also 
carried out by Sitorus et al. (2019). But unfortunately, until now, there has been no study that focuses on evaluating the 
performance of post-harvest handling machines, especially betel nut cutting machines internally. 
 
     Testing machine performance, especially related to post-harvest processing machines for agricultural products, is not easy. 
This is because many factors must be considered before testing in order to avoid under and over design. There are at least two 
main factors, namely the factor of the material itself and the factor of the designed machine (Hafezalkotob et al., 2018; Hu et 
al., 2019). Factors of material that must be considered are the physical and mechanical properties of the product. Factors of 
the machine that must be considered include the feeding mechanism, the rotating speed of the machine, the feeding speed, 
and so on. Therefore, the combination of these two main factors must be studied together. 
 
     Studies investigating these two factors will produce several treatment combinations that must be tested on the designed 
machine. In addition, repetition of each variety of treatments also needs to be done to get valid test results. In the case of the 
betel nut slicing machine, the internal factor of the machine, which is the main consideration, is the blade's rotational speed 
and the internal factor of the material is the moisture content. Each of these factors has its level of treatment.  
 
     The proposal of the response surface methodology (RSM) and the desirability function in evaluating agricultural machinery 
is one of the latest ways to be accomplished. Recent research conducted by Mehrijani et al. (2019) used RSM to evaluate 
tractors in plowing. In addition, Fu et al. (2020) assessed a frozen corn threshing machine using RSM and NSGA-II. It is used 
because RSM provides a treatment combination facility that can analyze the response of each treatment combination to be 
tested. In addition, the analysis of the variance of the responses can also be carried out simultaneously. After the response is 
known, the post-analysis is that RSM can provide an optimum estimation model of each treatment level being tested using a 
desirability function. Therefore, the objective of this study is to optimize the performance of the cutting betel nut machine via 
response surface methodology (RSM) and desirability function.  
 
2. Materials and method  
 
2.1 Design of experimental tests  
 
     The British Research Establishment was used to develop the class nine mix (BRE). In twenty-seven runs, experimental runs 
were generated utilizing the CCD of the response surface approach (including replication). This number of runs accurately 
captures the optimal settings and provides significant experimental results (Ghafari et al., 2009). The design had two 
independent variables, moisture content and rotational speed, which were coded as A (moisture content) and B (rotational 
speed). The responses correspond to the machine's capacity, efficiency, and loss. 

2.2 Procedure of experimental tests 
 
    RSM has produced the experimental design for testing the cutting betel nut machine's performance across all runs using the 
DE12 software. First, the moisture content of the betel nut samples was measured three times. The betel nut samples consisted 
of 3 types, i.e., 34.68±7.36%, 46.68±6.57%, and 50.54±0.34%. Second, the areca nut cutting machine that will be tested for 
its performance is prepared (Fig. 1) with the rotation of the cleaver at the previous 600 rpm, 800 rpm, and 1000 rpm levels. 
The regulation of the rotational speed of the betel nut blade was measured using a tachometer. Third, after the machine is 
ready to be tested, as many as 2 kg of samples of each moisture content are entered into the machine, and the operating time 
is recorded. Finally, the samples that have been processed are then separated between perfectly split and unsplit samples. Each 
test combination was performed in triplicate and presented as means ± standard deviation. 

 

 
Fig. 1. Performance-tested betel nut cutting machine 



R. Bulan et al.  / Engineering Solid Mechanics 10 (2022) 
 

255

2.3 Analysis by RSM 
 
     The exploratory stage of research begins by determining what things will be used as factors that can later be changed based 
on the ability of the object under study. The quality or quality of the final product that is expected from machine testing can 
be used to respond to factors that we will later change following the wishes that have been set.  Determination of factors can 
be determined from the research team's observations and compared with previous research references. The factors that have 
been obtained are moisture content and rotational speed, which are then determined as the dependent factor. Moisture content 
is referred to as factor A and rotational speed as B. Response is a priority in determining the machine's performance, namely 
machine capacity, the efficiency of areca nut cutting, and losses of the machine. Data retrieval is done by recording the entire 
data based on predetermined factors.   Statistical analysis of variance will be used to analyze each response data. The 
significance of the P-value on the model, lack of fit, the difference between the R-squared adj and R-squared pred values, and 
appropriate precision are included in the ANOVA analysis's reading findings. After analyzing the entire parameter, the 
machine performance is optimized depending on the identified factors and responses. The optimization process begins with 
determining the priority scale for each element and response.  The achieved optimization is next checked to ensure that it 
follows the software's prediction and is appropriate for usage. Verification is done by re-monitoring the engine performance 
by adjusting the optimization data from the software, which shows the highest desirability value proposed by the system. 
After obtaining the verification data, it is then matched again to whether the results are still within the 95% prediction interval 
(PI) range. If the verification results are still in the field of PI, it can be concluded that the model obtained is by what is shown 
by the software and can be applied in the field. 
 

3. Results and discussion  

3.1 Establishment of regression model 
 

     A mathematical function was established to estimate the performance of the cutting betel nut machines, including machine 
capacity, efficiency, and losses at different moisture content and rotational speed conditions. The coefficients of the regression 
model for machine capacity, efficiency, and losses were calculated at the confidence level of 95%. The quadratic statistical 
model is the most recommended for predicting the response of this engine evaluation. The final regression models for machine 
capacity, efficiency, and losses are given in Eq. (1), Eq. (2), and Eq. (3), respectively. A favorable parameter suggests a 
synergetic impact in which the response extends as the number of independent variables added to the regression equation 
increases. On either side, a negative sign indicates an antagonistic effect, in which the response rises as the input variables are 
decreased. Twenty-seven investigations were conducted to optimize the two parameters (moisture content and rotational 
speed) and triplicate using RSM. The results show that the maximum machine capacity obtained was 52.81 kg/hr using a 
moisture content of 50.54%, and a rotational speed of 1000 rpm, while the minimum carbohydrate yield was 4.85 kg/hr using 
moisture content of 34.68%, and a rotational speed of 600 rpm. A quadratic model (Equations 1 to 3) was developed via a 
multiple nonlinear regression examination of the experimental data to indicate the machine capacity, efficiency, and losses 
obtained from the cutting betel nut machine. 

3.2 Parameter effects for machine capacity model 
 
    The regression models for machine capacity in high R2 values (0.9356) indicate an excellent fit of the data to the models. 
The value of R2 should be near one for an ideal model. The residuals did not show a time-based relationship, demonstrating 
that the regression modelling approach was acceptable. The statistical analysis ANOVA results for the machine capacity full 
model are presented in Table 1.  

 

Table 1. Machine capacity regression model statistical data 
Source Sum of squares df Mean square F value p value 
Model 5514.50 5 1102.90 61.05 0.0001 
A-Moisture content 5352.27 1 5352.27 296.27 0.0001 
B-Rotational speed 140.56 1 140.56 7.78 0.0110 
AB 1.79 1 1.79 0.0989 0.7562 
A2 378.81 1 378.81 20.97 0.0002 
B2 18.74 1 18.74 1.04 0.3201 
Residual 379.38 21 18.07   
Lack of fit 33.74 3 11.25 0.5857 0.6321 
Pure error 345.64 18 19.20   
Correlation total 5893.88 26    
Standard deviation 4.25  R2 0.9356  
Mean 25.22  Adjusted R2 0.9203  
C.V (%) 16.86  Predicted R2 0.8962  
Press 612.04  Adequate precision 20.0574  

 
     High F-values and low p-values show the model was statistically significant and had no significant lack of fit. Each 
parameter in the model was also analyzed for significance, and for the machine capacity model, all parameters were significant 
based on their F-values. It is crucial to mention that the interaction parameter of moisture content and rotational speed (A×B) 
was significant for the machine capacity model. These results imply that the models provide reasonable response surface 
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estimates and are analyzed further. The F-value for each parameter shows the relative significance. For example, moisture 
content (A) of betel nut is clearly the most influential parameter in this model (F-value > 250) for the machine capacity model. 
 
    The empirical model for machine capacity (kg/hr) is shown in coded form in Eq. (1), established from the regression 
procedure and supported by ANOVA. The coefficients of the regression model for machine capacity were computed at a 
confidence level of 95%. The overview of model statistics indicated that quadratic is best suggested that it has been used for 
predicting the machine capacity responses. A positive value correlates with increased machine capacity when the parameters 
(moisture content and rotational speed) increase (vice versa). In the model, all two main parameters of the testing design are 
significant, as are one interaction effects and two higher-order effect. Identification of significant relations and higher-order 
parameters explain the experimental method's use because these parameters would not have been identified with a more 
straightforward experimental procedure.  
 

Cm = 14.95 + 17.24A + 2.85B - 0.37AB + 11.25A2 - 1.77B2 (1) 
 
    The 3D response of surface machine capacity under moisture content and rotational speed has been demonstrated in Fig. 2. 
This figure displays the relationship between machine capacity at the center value of the other two parameters (moisture 
content and rotational speed). It is clear from the graph that the maximum moisture content of betel nut parameters and 
increased rotational speed will produce maximum machine capacity. Utilizing Eq. (1) and Fig. 2 analyzes the response surface 
of machine capacity as a function of the independent variables. These surfaces were established by having two factors constant 
at the respective center point conditions while varying the other factors. 

 

 
Fig. 2. 3-D surface plot machine capacity vs. moisture content and rotational speed 

 
    The normal plot of residuals and graph of actual vs. predicted values have also been drawn in Fig. 3. The normal plot of 
residuals is utilized to confirm the normality hypothesis, whereas the figure of indicated vs. actual values shows the forecast 
capability of the established model. All distribution data on the line implies the error was normally distributed. The distribution 
data is close to the actual values, indicating that the predicted values reasonably agree with the actual values. The regression 
models for expected machine capacity in high R2 values (0.8962) show an excellent fit of the data to the models. The value 
of R2 should be near one for an ideal model. 

 

  
(a) Normal plot of residuals  (b) Predicted vs. actual 

Fig. 3. Diagnostic plots for machine capacity response 
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3.3 Parameter effects for cutting efficiency model 
 
    A statistical test was run on the regression model and individual model variables to determine the model's significance. The 
analysis of variance (ANOVA) for the data provided by Eq. (1) for cutting efficiency is shown in Table 2. A high Fisher's F 
and a modest P-value (Prob. > F) demonstrate the relevance of the model and its terms (Yirgu et al., 2021). The model's F-
value of 441.20 and p-value of 0.0001 suggested that it was significant in this investigation. The cutting efficiency of all linear 
terms, two quadratic terms (A2 and B2), and interacting terms (AB) were severely reduced. The F and P values for lack of fit 
were 2.26 and 0.116, respectively, indicating that the lack of fit was not significant compared to the pure error and that the 
model fit is satisfactory (Mendes et al., 2001). 

 
Table 2. Cutting efficiency regression model statistical data 

Source Sum of squares df Mean square F value p value 
Model 13498.96 5 2699.79 441.20 0.0001 
A-Moisture content 11673.92 1 11673.92 1907.77 0.0001 
B-Rotational speed 32.37 1 32.37 5.29 0.0318 
AB 208.94 1 208.94 34.15 0.0001 
A2 48.96 1 48.96 8.00 0.0101 
B2 62.08 1 62.08 10.15 0.0045 
Residual 128.50 21 6.12   
Lack of fit 35.19 3 11.73 2.26 0.1160 
Pure error 93.32 18 5.18   
Correlation total 13627.46 26    
Standard deviation 2.47  R2 0.9906  
Mean 73.16  Adjusted R2 0.9883  
C.V (%) 3.38  Predicted R2 0.9852  
Press 201.57  Adequate precision 50.5398  

 
    ANOVA was used to determine the model's adequacy. R2 and adjusted R2 values of 0.9906 and 0.9883 indicate congruence 
between experimental results and fitted regression models. The lack of fit is also negligible, which is desired given the 
requirement for a fitting model (Miri et al., 2016). The distribution of points compatible with the regression line demonstrates 
the applied regression model's increased adequacy. Additionally, a random bounce of residuals establishes the reasonableness 
of the claimed relation. The empirical model for machine capacity (kg/hr) is shown in coded form in Eq. (2), established from 
the regression procedure and supported by ANOVA. A positive value correlates with increased cutting efficiency when the 
parameters (moisture content and rotational speed) increase (vice versa). The effect of the combination of moisture content 
and rotational speed is known to reduce the cutting efficiency of the machine. However, doubling both parameters' moisture 
content and rotational speed has the opposite effect on cutting efficiency. 
 

Ef = 69.71 + 25.47A + 1.37B – 4AB - 4.04A2 + 3.22B2 (2) 
 
     The 3D response of surface cutting efficiency under moisture content and rotational speed has been demonstrated in Fig .
4. This figure displays the relationship between cutting efficiency at the center value of the other two parameters (moisture 
content and rotational speed). It is clear from the graph that the maximum moisture content of betel nut parameters and 
increased rotational speed will produce maximum cutting efficiency. Utilizing Eq. (2) and Fig. 4 analyzes the response surface 
of cutting efficiency as a function of the independent variables. These surfaces were created by holding two variables constant 
at their respective center point conditions while altering the other variables. 

 

 
Fig. 4. 3-D surface plot cutting efficiency vs. moisture content and rotational speed 
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    Correlation coefficients with a higher significance indicated that the model was very reliable in forecasting machine 
capacity; adjusted R2 quantified the variation around a mean explained by the model (Rahim and Bharti, 2020). The R2-value 
suggested that the quadratic model explained 99.06% of the variability in cutting efficiency in this investigation. The high 
adjusted R2 value indicated an acceptable agreement between observed and anticipated cutting efficiency values, indicating 
that the proposed quadratic model equation produces desirable and accurate results. Additionally, the difference between the 
anticipated and adjusted R2 values is too tiny, indicating that they are reasonably consistent with one another 
(Lakshminarayanan & Balasubramanian, 2009). R2 and adjusted R2 values are near one, suggesting a high correlation between 
observed and anticipated cutting efficiency values. Simultaneously, the model's low coefficient of variance (3.38%) indicated 
a high degree of accuracy and dependability for the experimental data (Sinha et al., 2013). As a result, the constructed model 
could accurately predict cutting efficiency across the observed variables.  The normal plot of residuals and graph of actual vs. 
predicted values for cutting efficiency have also been drawn in Fig. 5. The normal plot of residuals is utilized to confirm the 
normality hypothesis, whereas the figure of predicted vs. actual values shows the forecast capability of the established model. 
The regression models for predicted cutting efficiency in high R2 values (0.9852) indicate an excellent fit of the data to the 
models. The value of R2 should be near one for an ideal model. 

 

 
(a) Normal plot of residuals (b) Predicted vs. actual 

Fig  .5. Diagnostic plots for cutting efficiency response 

3.4 Parameter effects for cutting losses model 
 
     The regression models for cutting losses in high R2 values (0.9892) indicate an excellent fit of the data to the models. The 
value of R2 should be near one for an ideal model. The residuals did not show a time-based relationship, demonstrating that 
the regression modeling approach was acceptable. The statistical analysis ANOVA results for the full cutting losses model 
are presented in Table 3. High F-values and low p-values show the model was statistically significant and had no significant 
lack of fit. Each parameter in the model was also analyzed for significance, and for the cutting losses model, all parameters 
were significant based on their F-values. It is crucial to mention that the interaction parameter of moisture content and 
rotational speed (AB) was significant for the cutting losses model. These results imply that the models provide reasonable 
response surface estimates and are analyzed further. The F-value for each parameter shows the relative significance. For 
example, moisture content (A) of betel nut is clearly the most influential parameter in this model (F-value > 1500) for the 
machine capacity model. 

 
Table 3. Cutting losses regression model statistical data 

Source Sum of squares df Mean square F value p value 
Model 12576.44 5 2515.29 385.39 0.0001 
A-Moisture content 10740.89 1 10740.89 1645.70 0.0001 
B-Rotational speed 71.90 1 71.90 11.02 0.0033 
AB 204.67 1 204.67 31.36 0.0001 
A2 62.37 1 62.37 9.56 0.0055 
B2 80.67 1 80.67 12.36 0.0021 
Residual 137.06 21 6.53   
Lack of fit 38.38 3 12.79 2.33 0.1083 
Pure error 98.68 18 5.48   
Correlation total 12713.50 26    
Standard deviation 2.55  R2 0.9892  
Mean 24.74  Adjusted R2 0.9867  
C.V (%) 10.33  Predicted R2 0.9832  
Press 214.01  Adequate precision 47.1431  
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     ANOVA was used to determine the appropriateness of the created model. R2 and adjusted R2 values of 0.9892 and 0.9867 
indicate congruence between experimental data and fitted regression models. Additionally, the lack of fit is negligible, which 
is desirable given the requirement for a fitting model. The distribution of points that conform to the regression line 
demonstrates the applied regression model's increased adequacy. Additionally, the random bounce of residuals establishes the 
reasonableness of the stated connection. The empirical model for cutting losses is shown in coded form in Eq. (3), established 
from the regression procedure and supported by ANOVA. A negative value correlates with decreased cutting losses when the 
parameters (moisture content and rotational speed) increase (vice versa). The effect of the combination of moisture content 
and rotational speed is known to increase the cutting losses of the machine. However, doubling both parameters' moisture 
content and rotational speed has the same effect on cutting losses. 
 

Lc = 27.92 - 24.43A - 2.04B + 3.96AB - 4.57A2 - 3.67B2 (3) 
 
    The 3D response of surface cutting efficiency under moisture content and rotational speed has been demonstrated in Fig. 
6. This figure displays the relationship between cutting losses at the center value of the other two parameters (moisture content 
and rotational speed). It is clear from the graph that the maximum moisture content of betel nut parameters and increased 
rotational speed will produce maximum cutting losses. Utilizing Eq. (3) and Fig. 6 analyzes the response surface of cutting 
losses as a function of the independent variables. These surfaces were generated by maintaining two variables at their 
respective center point conditions while varying the other. 

 
Fig. 6. 3-D surface plot cutting losses vs. moisture content and rotational speed 

 
    The normal plot of residuals and graph of actual vs. predicted values have also been drawn in Fig. 7. The normal plot of 
residuals is utilized to confirm the normality hypothesis, whereas the figure of expected vs. actual values shows the forecast 
capability of the established model. All distribution data on the line implies the error was normally distributed. The distribution 
data is close to the actual values, indicating that the predicted values reasonably agree with the actual values. The regression 
models for expected cutting losses in high R2 values (0.9832) show an excellent fit of the data to the models. The value of R2 
should be near one for an ideal model. 

 

  
(a) Normal plot of residuals (b) Predicted vs. actual 

Fig. 7. Diagnostic plots for cutting losses response 



 260 

3.5 Optimum of cutting betel nut machine parameter values 
 
      The model's desirability value close to one is the most desirable because it increasingly indicates the importance of 
optimization accuracy (Chabbi et al., 2017). The desirability value indicates the level of fulfillment of the specified criteria 
(Fig. 8). Based on the optimization process, this method shows the prediction of the most optimal conditions in the process of 
testing this machine is at a moisture content of 50.54%, and a rotational speed of 1000 rpm is recommended as the most 
optimal formula solution because in this process condition it has the highest desirability value, namely of 0.913 or equivalent 
to 91.3%. So it can be concluded that the process conditions with these components will produce machine performance with 
the desired quality, namely machine capacity of 44.16 kg/hr, cutting efficiency of 91.72%, and cutting losses of 6.31%. Table 
4 shows the criteria for each optimized response, including the target, minimum limit, the maximum limit, and level of 
importance at the formula optimization stage. 

 
Table 4. Components, targets, constraints, and importance at the optimization stage 

Respon Goal Lower Upper Importance 
Machine capacity Max 4.85 52.81 +++ 
Efficiency of areca nut cutting Max 37.75 97.25 +++ 
Losses of machine Min 2.5 59.25 +++ 

 

 
Fig. 8. Optimization of cutting betel nut machine performance using desirability function 

 

3.6 Confirmation test 
 
    The optimization results obtained were then verified three times. The verification of optimum conditions can be seen in 
Table 5. Based on the verification data from the response of machine capacity, the efficiency of areca nut cutting, and losses 
of a machine, the values are 38.77 kg/hr, 83.17%, and 14.75%, respectively. This shows that the machine capacity response 
is correctly predicted in 95% CI low and 95% CI high. However, the efficiency response of areca nut cutting and losses of a 
machine is not in the range of 95% PI low and 95% PI high. 
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Table 5. Verify the optimum formula solution for cutting betel nut machines 
Respon Prediction SD-P SE-P 95% PI low Verifikasi 95% PI high 

Machine capacity (kg/hr) 44.16 4.25 3.21 37.48 38.77 50.84 
Efficiency of areca nut cutting (%) 91.72 2.47 1.87 87.83 83.17 95.60 
Losses of machine (%) 6.31 2.55 1.93 2.29 14.75 10.33 

 
5. Conclusion 
 
    In this study, the following conclusions were established from an experimental investigation into the performance of cutting 
betel nut machines via response surface methodology (RSM). Source, both moisture content of areca nut and rotational speed, 
are known to significantly affect the performance response of this machine (machine capacity, efficiency of areca nut cutting, 
and losses of machine). The performance response of machine capacity, the efficiency of areca nut cutting, and losses of a 
machine can be predicted from the model developed with a source moisture content of areca nut and rotational speed with 
terminated coefficients of 89.62%, 98.52%, and 98.32%, respectively. Via RSM combined with desirability function, this 
research recommends a formula for moisture content of 50.54% and a rotational speed of 1000 rpm in this machine application 
with the highest desirability value of 91.3%. In addition, verification of machine capacity response, the efficiency of areca 
nut cutting, and losses of the machine showed values of 38.77 kg/hr, 83.17%, and 14.75%, respectively. RSM now has a 
considerable amount of information in a short period and with the fewest possible experiments. 
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