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 Rotating shafts have a vast application in various industries especially in the aerospace industry such 
as engines, compressors and turbines. The researchers have performed considerable efforts on the 
rotating shafts’ dynamic behavior because of their sensitivity to the rotor specifications and different 
parameters such as supports. In this paper by employing a pipe elbow element, an especial finite 
element formulation is derived to investigate dynamic behavior of rotating shaft in the presence of 
support clearance. The proposed element consists of four nodes with twenty-four degrees of freedom, 
which also accounts for the shear and gyroscopic effects. Within a finite element analysis framework, 
the focus of the paper is proposing a formulation to account for the dynamic behavior of a rotating 
shaft with much less number of elements. The element is implemented in a finite element code and 
then is used to model and analyze some rotating shaft examples. In order to verify the developed 
formulation, results are compared with those obtained from other schemes reported in the literature.   
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1. Introduction 
 

Due to the importance of using rotors or rotating shafts in various industries, the study of dynamic behavior of these 
shafts has always been an important part of engineering research. So far, many investigations have been performed for 
investigating the dynamic behavior of rotors using various analytical, semi-analytical and numerical methods. One of the 
numerical methods used to investigate rotors is the finite element method. Nelson and McVaugh (1976) presented a complete 
dynamic model of rotor-bearing systems including rigid discs, shafts discretized to finite elements and separate bearings 
based on the finite element method. They implemented the Euler-Bernoulli beam model to extract stiffness matrices. A few 
years later, Nelson (1980) used the Timoshenko beam model to develop finite element formulation of rotors, in which he 
could describe the effect of shear deformation and rotational inertia on the critical speeds. The Timoshenko beam model 
(Lien-Wen and Der-Ming, 1991) used a three-node beam element to analyze the critical speeds of the rotating shafts. (Nandi 
and Neogy, 2001), used three-dimensional solid finite elements to model and solve rotor dynamic problems, which 
automatically include shear deformations and rotational inertia due to the three-dimensional elasticity formulation. They 
modeled shafts and  discs using the same type of element and this makes it possible to take into account  the flexibility of the 
disc as well. (Jahromi et al., 2014) , used a laboratory test rig to observe critical speed  in a Jeffcott rotor. They also used the 
analytical method and the finite element method to validate the results. Sinou et al. (2005) investigated the effect of rotor 
bearing support flexibility on its dynamic behavior as well as its first critical forward and backward speeds. Tamrakar and 
Mittal (2016) obtained natural frequencies of un-cracked and cracked rotors in non-rotating conditions and critical speeds in 
the first and second modes in rotating conditions using both finite element and experimental schemes. They investigated the 
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effects of crack properties on dynamic behavior of rotors by comparing Campbell diagrams. Torabi and Afshari (2016), 
derived an analytical solution for dynamic behavior and whirling analysis of axial-loaded Timoshenko rotors. They 
investigated the effect of angular velocity of spin, axial load, slenderness and Poisson's ratio on the natural frequencies of 
these rotors. 
  
     Tiwari (2017) used the Timoshenko beam element of a two-node with four degrees of freedom to calculate the first and 
second backward and forward critical speed of a continuous rotating shaft. Sousa et al. (2017), investigated the dynamic 
behavior of a flexible rotor by considering the basic excitation using both experimental and finite element methods. They 
considered the shaft as a Timoshenko beam and modeled it by a two-node beam element with eight degrees of freedom. Ishida 
et al. (2009) observed vibration characteristics in turbo machinery with radial clearance between a bearing outer ring and a 
casing. Their work primarily focused on the self-excited oscillation by numerical method. They modeled a flexible rotor to 
present where bearing collides with casing due to clearance, and derived its equation of motion. (Hosseini Kordkheili and 
Bahai, 2009) presented a finite element formulation for geometrically nonlinear analysis of structures. Their formulation was 
based on a shell element and an Updated Lagrangian (UL) formulation. They then extended this formulation and derived 
finite element formulation for a pipe elbow element to analyze riser structures (Hosseini Kordkheili et al.,  2008). 
  
     This paper presents a finite element formulation based on a four-nodded, twenty-four degree of freedom annular section 
pipe elbow element to characterize the properties of the rotating shafts. This element can represent axial, shear, torsional and 
bending displacements as well as rotations. In order to show the accuracy and capability of the presented finite element 
formulation to model rotors, some examples are solved and the results are compared with those available in the literature. 

 
2. Kinematics of Pipe Elbow Element 

       Fig. 1 depicts a four-nodded, twenty-four degrees of freedom three-dimensional annular section pipe elbow element that 
employed in the present paper. This element also considers shear deformations. According to Fig. 1, three coordinates 
( , , )r s t  are used to define the geometry of the element, where, the curvilinear coordinate r expresses the element mid-line, 
and the two other coordinates express any position between the inner and the outer surfaces of the element section. Here each 

thk  node also has three translations 1 2 3( , , )k k ku u u  and three rotations 1 2 3( , , )k k kθ θ θ  DOFs with respect to the global 

1 2 3( , , )x x x coordinate system.  

 
Fig. 1. Four-nodded pipe elbow element 

 
      After finite element discretization on the middle line of the continuum pipe elbow element, the configuration of this 
element having thickness ka  for node k is expressed as follows: 

4 4 4

1 1 1
( , , ) ( ) ( ) ( )k k k k k

i k i k si k ti
k k k

r s t r r rx h x s h a V t h a V
= = =

= + +   ;  321 ,,i =  
(1) 

where ( )k rh  are cubic shape functions corresponding to nodal point k . Also, k
siV  and k

tiV  are the local normal vector 
components at node k  in directions s and t, respectively. Using Eq. (1), the displacement field of the element is obtained as: 
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4 4 4

1 1 1
( , , ) ( ) ( ) ( ) ; 1, 2,3k k k k k

i k i k ti k si
k k k

r s t r r ru h u t a h V s a h V i
= = =

= + + =    
 

(2) 

Therefore 
 

{ }1 2 3 1 2 3( , , ) ( , , )
Tk k k k k k kr s t r s tu u u θ θ θ= = U H H u    

 
(3) 

where U is displacement vector and ( , , )r s tH  is displacement interpolation matrix which can be decomposed as below 

( , , ) ( ) ( ) ( )a b cr s t r r rs t= + +H H H H , (4) 

Where 

( )
1...4
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a a
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=
 =
 

H H  , ( ) ( )

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

k
k

a k

k

r

h
h

h
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H  

 

(5) 
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1...4
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r r
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 =   
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2 1
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0 0 0 0

0 0 0 0
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s s
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k k s sb
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V V

 −
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( )
1...4

( ) ( )k
c c

k
r r

=
 =
 

H H  , ( )
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2 1

( )

0 0 0 0

0 0 0 0
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k k
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c k k t t

k k
t t

r

V V

a h V V

V V

 −
 

= − − 
 

−  

H  

 

 

(7) 

3. Dynamic Finite Element Formulation for Rotating Shafts 

In order to derive dynamic finite element formulation for rotating shafts in presence of gyroscopic  effects arising from 
the Coriolis acceleration, we consider the equations of Lagrange for the energies kinetic and potential of the solid that is given 
as follows 
 

. . . . . . 0d
dt

∂ ∂ ∂ − + = ∂ ∂ ∂ 
K E K E P E

U U U
 

 
(8) 

 
where . .K E  and . .P E  are the kinetic and potential energies of the system, respectively, and can be written using the 
structural matrices as follows 
 

2
( , , ) ( , , )

2 2 2

1 1 1. .
2 2 2
1 1
2 2

T T T T T T T
r s t r s t

V V
T T T T

V V V V

dV dV

dV dV dV dV

ρ ρ

ρ ρ ρ ρ

= + − − +

− − + −

 

   

    



K E U MU U GU U NU U H Ω x U H Ωx

U Ω U U Ω U U Ωx x Ω x

   

    
 

 
 
 

(9) 

( , , ) ( , , )
1. .
2

T T T T T
r s t r s t

V V

dV dV= − − P E U KU U H f U H t   
 
(10) 

where M  is mass matrix, K  is the linear stiffness matrix, G  is Coriolis matrix, N  is centrifugal acceleration matrix and 
Ω  is rotational matrix. Also, x  is geometry vector, f denotes the body load vector and t is the surface traction vector. 
These matrices and vectors are obtained based on equilibrium equation as follows 

T
( , , ) ( , , )r s t r s t

V

dVρ=M H H    (11) 
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T ( , , ) ( , , )
V

r s t r s t dV=Κ B CB     (12) 

( , , ) ( , , )2 r s t r s t
V

dVρ=  TG H ΩH    (13) 

2
( , , ) ( , , )r s t r s t

V

dVρ= TN H Ω H        (14) 

0
0

0

z y

z x
y x

ω ω
ω ω
ω ω

− 
 = −
 − 

Ω       
(15) 

where C  is the material properties matrix, xω , yω  and zω  are rotating speeds about corresponding axes. B  is strain-
displacement matrix which can be decomposed as  
 

( , , ) ( ) ( ) ( )r s t r r rs t= + +a b cB B B B      (16) 

where ( )( ) ( )k
a ar r =

 
 B B , ( )( ) ( )k

b br r =   
 B B  and ( )( ) ( )k

c cr r =
 
 B B  for 1...4k =  and 

 

( )

,1 111 211 311

,2 122 222 322

,3 133 233 333

,2 ,1 112 121 212 221 312 321

,3 ,2 123 132 223 232 323 332

,3 ,1 113 131 213 231 313 331

( )

0 0
0 0
0 0

0
0

0

k k k
k

k k k
k

k k k
k k

a k k k k k k
k k

k k k k k k
k k

k k k k k k
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r

h
h

h
h h

h h
h h

 Φ Φ Φ


Φ Φ Φ
Φ Φ Φ

=
Φ +Φ Φ +Φ Φ +Φ
Φ +Φ Φ +Φ Φ +Φ
Φ +Φ Φ +Φ Φ +Φ
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(18) 
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123 132 223 232 323 332

113 131 213 231 313 331
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(17) 
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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 Φ Φ Φ
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Φ Φ Φ = Φ +Φ Φ +Φ Φ +Φ 
Φ +Φ Φ +Φ Φ +Φ 

 Φ +Φ Φ +Φ Φ +Φ 

B    

 
 
 

(18) 

 

     Also ( )1 1
2 3

ˆk k k
min n mi n mi kJ J hφ φ− −Φ = + , 1

1 ,
ˆˆ k k

min n mi k rJ hφ−Φ =  and 1
1 ,

k k
min n mi k rJ hφ−Φ = . Moreover, nonzero values for φ̂  and 

φ  are 12 21 3
ˆ ˆ 0.5k k k k

sa Vφ φ=− =− , 13 31 2
ˆ ˆ 0.5k k k k

sa Vφ φ=− = , 23 32 1
ˆ ˆ 0.5k k k k

sa Vφ φ=− =− , 12 21 30.5k k k k
ta Vφ φ=− =− , 

13 31 20.5k k k k
ta Vφ φ=− = , 23 32 10.5k k k k

ta Vφ φ=− =− . 
 
     Using Eq. (9) and Eq. (10) into Eq. (8), a finite element formulation for dynamic analysis of rotating shafts is developed. 
By assuming constant rotating speed, this finite element formulation is  
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( )+ + + = U U K N U FM G          (20) 

Substitution of Eq. (4) and Eq. (16) into Eqs. (11-15) results in 
 

( )2 2( ) ( ) ( ) ( ) ( ) ( )a b c d e f
V

r s r t r st r s r t r dVρ + + + + +=M M M M M M M    (21) 

( )2 2( ) ( ) ( ) ( ) ( ) ( )a b c d e f
V

r s r t r st r s r t r dV+ + + + +=Κ Κ Κ Κ Κ Κ Κ  (22) 

( )2 2( ) ( ) ( ) ( ) ( ) ( )2 a b c d e f
V

r s r t r st r s r t r dVρ + + + + += G G G G G G G     (23) 

( )2 2( ) ( ) ( ) ( ) ( ) ( )2 a b c d e f
V

r s r t r st r s r t r dVρ + + + + += N N N N N N N       (24) 

where 
 

T( ) ( ) ( )a a ar r r=M H H , T( ) ( ) ( )a a ar r r=Κ B CB , ( ) ( ) ( )a a ar r r= TG H ΩH , 2( ) ( ) ( )a a ar r r= TN H Ω H  (25) 

T T( ) ( ) ( ) ( ) ( )b a b b ar r r r r= +M H H H H , T T( ) ( ) ( ) ( ) ( )b a b b ar r r r r= +Κ B CB B CB ,  

T T( ) ( ) ( ) ( ) ( )Ω Ωc a c c ar r r r r= +G H H H H , T 2 T 2( ) ( ) ( ) ( ) ( )Ω Ωc a c c ar r r r r= +N H H H H  (26) 

T T( ) ( ) ( ) ( ) ( )d b c c br r r r r= +M H H H H , T T( ) ( ) ( ) ( ) ( )d b c c br r r r r= +Κ B CB B CB , (27) 

T T( ) ( ) ( ) ( ) ( )Ω Ωd b c c br r r r r= +G H H H H , T 2 T 2( ) ( ) ( ) ( ) ( )Ω Ωd b c c br r r r r= +N H H H H  (28) 

T( ) ( ) ( )e b br r r=M H H , T( ) ( ) ( )e b br r r=Κ B CB , T( ) ( ) ( )Ωe b br r r=G H H , T 2( ) ( ) ( )Ωe b br r r=N H H  (29) 

T( ) ( ) ( )f c cr r r=M H H , T( ) ( ) ( )f c cr r r=Κ B CB , T( ) ( ) ( )Ωf c cr r r=G H H , T 2( ) ( ) ( )Ωf c cr r r=N H H  (30) 

 
Employing a certain order of Gaussian quadrature numerical integration method on element volume, Eqs. (21-24) are 

estimated. In order to make the formulation more efficient and to avoid higher order numerical integrations, and to eliminate 
some terms in Eqs. (21-24), an analytical explicit integration scheme for through-the-thickness coordinates r and t is employed 
to solve these equations. Thus, we conclude: 
 

( ) ( )
1

0 1 , 0, 01
( ) ( ) ( )a e f r s tr r ra a drρ = =−

+ + =  M M M M J  
(31) 

( ) ( )
1

0 1 , 0, 01
( ) ( ) ( )a e f r s tr r ra a dr= =−

+ + =  Κ Κ Κ Κ J  
(32) 

( ) ( )
1

0 1 , 0, 01
( ) ( ) ( )2 a e f r s tr r ra a drρ = =−

+ + =  G G G G J     
(33) 

( ) ( )
1

0 1 , 0, 01
( ) ( ) ( )2 a e f r s tr r ra a drρ = =−

+ + =  N N N N J  
(34) 

where 

( )( )2
0 1 /i oa r rπ= − , ( )( )4

1 1 /
4 i oa r rπ= − , ( )( )6

2 1 /
24 i oa r rπ= −     

(35) 

     To evaluate these matrices a three points Newton-Cotes scheme numerical integration is also adopted employed during 
finite element solution. 
 

4. Results and Discussion 

       The dynamic finite element formulation of the rotating shafts derived in this paper has been implemented in an own 
developed code. Using this tool, some sample problems are solved and performance of the present finite element formulation 
is assessed.  

 
1. Modal Analysis of a Free-Free Hollow Conical Beam 

      In the first example, a modal analysis is conducted on the hollow aluminum beam of Fig. 2a with a conical section using 
ten pipe elbow elements (Fig. 2b). Support condition is free - free and geometrical information of this beam is given in 
references (Nandi & Neogy, 2001; Vest & Darlow, 1989; Stephenson & Rouch, 1993). Vest and Darlow (1989) measured 
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natural frequencies of this beam both experimentally and numerically using a modulus-corrected beam element. Stephenson 
and Rouch (1993) also proposed an axisymmetric solid finite element formulation to calculate natural frequencies of this 
beam.  

 
(a) 

 
(b) 

 
(c) 

Fig. 2. a) A hollow aluminum beam with conical section, b) discretization using 10 pipe elbow elements together with 
31 nodes, c) Five integration points 
 
Table 1. Natural frequencies of hollow aluminum beam 

 Present Work 
Beam element 

(Vest and Darlow 
1989) 

3D 
625 elements 

(Nandi, & Neogy 2001) 

Experimental 
(Vest and 

Darlow 1989) Mode 5 elements 10 15 
1 1045.7 1042.1 1042.0 1043.8 1052.9 1040 
2 1649.3 1644.8 1644.4 1658.7 1639.4 1643 
3 4144.8 4057.7 4054.8 4123.0 4056.7 4042 
4 6275.9 5829.4 5823.0 5817.0 5911.8 5886 
5 8529.3 7648.7 7645.3 7867.0 7590.2 7459 
 

     
     Table 1 lists and compares the first five natural frequencies of the beam, those from the present finite element formulation 
and others reported in literature. In this table, one can observe that, with much less number of elements and employing a five 
integration point scheme (Fig. 2c), the results from the present work are more comparable with those from experiments. For 
example, in comparison with (Nandi and Neogy, 2001) work, we used more than 40 times lesser elements to solve this 
problem which greatly reduces computational costs. Moreover, it also observes that similar to other results, for higher mode 

ele.1 ele.2 ele.3
ele.4

ele.5 ele.6
ele.7

ele.8 ele.9 ele.10

X X X X X X X X XXXXXXXXX X X X X X X X XXXXXXXXX X X X X X X X X
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numbers, the difference between the natural frequency values obtained from experiments and numerical solution slightly 
increases. However, the maximum divergence from experiment is about 2.6%. 

 
2. Natural frequencies and critical speeds of a simply supported shaft 
 
For this example, natural frequencies and the forward and backward critical speeds of a uniform cross section simply 

supported spinning mild steel shaft are obtained using the developed pipe elbow finite element formulation. 
 
The values of the natural frequencies of the first and second modes for the shaft with slenderness ratio of R=0.02 (R=r/2L, 

where r is radius and L is length of the beam) are examined with different number of elements and are given and compared 
with (Shames and Dym, 2006) work in Table 2. According to these tabulated data, employing 10 elements leads to an 
acceptable accuracy for the results, so this discretization is used for further study. Non-dimensional critical speeds of the shaft 
(i.e. 2 2 2 1/4[ / (R/ 2 ) ]n nl E lω ρ ω= ) with slenderness parameters 0.02 to 0.10 are then calculated and gathered in Table 
3. In this table, the results are compared with those published by Eshleman and Eubanks (1969). From these results, it is noted 
that, the results from the present work are comparable with others in the literature with maximum 2.5% difference.  
 
Table 2. Dimensionless non-rotating first and second mode natural frequencies of simply supported shaft 

Mode 

Present work 

Closed form solution (Shames and Dym, 2006) 1 Element 2  Elements 4 Elements 10 Elements 20  Elements 
1 3.29018 3.13735 3.13260 3.13238 3.13238 3.1325 
2 6.52343 6.47782 6.21800 6.21165 6.21160 6.2122 

 
Table 3. Dimensionless non-rotating, first forward and backward critical speeds of simply supported shaft for different 
slenderness ratio 

 Non rotating 1st backward Critical Speed 1st  forward Critical Speed 

R Present work Analytical 
(Shames & Dym, 2006) Present work Analytical 

(Eshleman & Eubanks, 1969) Present work Analytical 
(Eshleman & Eubanks, 1969) 

0.02 3.1324 3.1325 3.0547 3.1251 3.2184 3.1373 
0.04 3.1058 3.1061 3.0286 3.0780 3.1891 3.1245 
0.06 3.0646 3.0644 2.9896 3.0067 3.1455 3.1037 
0.08 3.0125 3.0103 2.9400 2.9193 3.0904 3.0757 
0.1 2.9531 2.9472 2.8833 2.8234 3.0279 3.0757 

 
3. Analyzing a cantilever beam with a disk in its free end 
 
In this example, a massless cantilever beam with a 1.815 kg disk in its free end is analyzed. The dimensions of this steel 

shaft and disk have been given in (Nandi & Neogy, 2001; Thomson, 1981). According to Fig. 3, four elements (three elements 
for the shaft and one element for the disk) are employed to discretize the problem. The first non-rotating natural frequency of 
this system is calculated using a number of different elements. The disk is considered as one pipe element, the shaft is also 
divided into 2, 4 and 8 elements, and their results are given in Table 4. Furthermore, after selecting the appropriate number 
of elements, i.e. 4 elements, the Campbell diagram for this problem is depicted in Fig. 4 and compared with the analytical 
results reported in (Thomson, 1981). From this figure, one can see that the obtained results as well as the results from the 
closed form solution are in good agreement. 

 
 

 
Fig. 3. A cantilever beam with a disk at its end (elements and nodes) 

ele.1 ele.2 ele.3

ele.4
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Table 4. Natural frequencies of non-rotating cantilever beam with a disk in its free end (rad/s) 

Analytical 
(Thomson, 1981) 

3D FEM 
(Nandi, & Neogy 2001) Present Work 

Mode 20 Elements 11 Elements 4 Elements 3 Elements 2 Elements 
160.754 157.633 159.089 159.083 149.645 149.647 Non rotating 1 

 

 
Fig. 4. Campbell diagram of the cantilever beam with a disk in its free end 

 
4. A simply supported shaft with a disk in the middle  
 
In this example, a simply supported steel shaft with length 400 mm and diameter 6 mm is analyzed. A disk with diameter 

80 mm and thickness 25 mm is also located in the middle of the shaft (Fig. 5). The disk is modeled using one element and the 
shaft is divided into 2, 4 and 8 elements. In Table 5 the critical forward and backward speeds for the first mode are calculated 
with the number of different elements and compared with the experimental results obtained by (Jahromi et al., 2014). Results 
reveal that, due to inherent limitations in the measuring equipment, however, experiments executed by (Jahromi et al., 2014) 
could not separate forward and backward critical speeds of the shaft but our formulation leads to two different values for 
these speeds, which are in accordance with the experimental value. 

 

  
Fig. 5. A simply supported shaft with a disk in the middle 
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Table 5. First critical forward and backward speeds of a simply supported shaft with a disk in the middle (rad/s) 

Experimental 
(Jahromi et al., 

2014) 

Present Work 

Mode 
9 Elements 5 Elements 3 Elements 

120.511 107.4476 107.6221 107.6300  1st backward 
Critical Speed 

120.511 119.3211 119.5159 119.5237 1st  forward Critical 
Speed 

 
 

5. The bearing clearance effects of dynamic behavior of rotor 
 
Consider a vertical steel shaft with length 900 mm and diameter 16 mm in which a disc with a diameter 480 mm and 

thickness 5.5 mm is mounted on 350 mm distance from one of its supports (Fig. 6). The supports are ball bearings and the 
ball bearing of one of the supports has a radial clearance of 0.1 mm relative to the casing in which it is installed. (Ishida et al., 
2009) investigated this problem by experimental and analytical methods. In this paper, this problem is solved by using a pipe 
elbow element and then the results are compared with their results for validation. 

 
 

Fig. 6. A vertical rotor-bearing shaft with radial clearance 
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Assuming the shaft to be simply supported, Campbell diagram is extracted and depicted in Fig. 7. From this diagram, the 
major critical speed is about 700 rpm which is the same as reported by (Ishida et al., 2009). 

 

 
 

Fig. 7. Campbell diagram for the vertical shaft with simply supported boundary conditions 
 

   Now in order to consider and model the clearance in the lower bearing, the boundary condition at the lower end is considered 
to be free, i. e. the shaft is released at all degrees of freedom at this end. However, the movement of this end is limited 
according to the amount of clearance, i. e. 0.1 mm. The collision between the bearing and the casing is shown in Fig. 8. 

 
 

Fig. 8. Collision between bearing and casing due to clearance 
  
 In this figure, the bearing at its initial and current positions are shown much smaller than the casing to give more clarity. 

Taking radial movement of the bearing to be r and clearance value to be C, simply we can say that if r value comes to be 
greater than C then the collision happens and these conditions are occurred; n n t tv ev and v v+ − + −= − = ; where vn and vt are 
the components of velocity in the vertical and tangential directions, respectively. The subscripts “ −” and “ + ” indicate the 
velocity values before and after collision, respectively. e is the coefficient of restitution, which is determined experimentally.  

 
Ishida et al. (2009) used the harmonic balance method, obtained orbit diagrams and displacement time history for the 

disk at four different speeds 1200 rpm, 1321 rpm, 1970 rpm and 2671 rpm, and verified the results by tests. They considered 
both shaft and bearing damping properties and ignored their mass. They used two degrees of freedom for the disk and two 
degrees of freedom for the bearings to solve the problem. 
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Here, adapting the developed pipe element formulation, we solve this problem to achieve the shaft behavior at the same 
four different speeds (Fig. 9). Comparing the results in this work with those reported by (Ishida et al., 2009) one can observe 
that the results coincide. Some visible differences may occur due to different initial conditions and assumptions. For example, 
in this work no damping is considered for either the shaft or the bearing as well as the shaft is continuously analyzed according 
to its mass. In the disk orbit diagram, from Fig. 9 one can see initial displacements as well as the displacement during transition 
state as well. However, (Ishida et al., 2009) did not report these displacements in their work. 

(a) 
ω= 

1200rpm 

  

(b) 
ω = 

1321rpm 

  

(c) 
ω = 

1970rpm 

  

(d) 
ω = 

2671rpm 

  
Fig. 9. Disk displacement time history and orbit 

 
5. Conclusions 
 
       In this paper, a finite element formulation was presented for dynamic analysis of rotating shaft structures in presence of 
Coriolis effects. Based on the equations of Lagrange for the kinetic and potential energies of the rotating shaft, the dynamic 
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formulation has been derived for an annular section three-dimensional pipe elbow element. Decomposing the displacement 
interpolation matrix in axial and transverse directions, made it possible to explicitly account governing equation matrices in 
the direction along the thickness. Moreover, these decompositions led to a particular formulation. It is noted that the employed 
integration scheme avoids inaccuracies normally associated with numerical integration methods during approximation of 
these matrices. 
 
      Some examples were solved and the results were compared with those available in the literature. It was shown that the 
results make good agreement with others in the literature after much reduced computational efforts. According to the results, 
the present more accurate formulation is capable to being adapted to solve rotating shafts with clearance in their supports. 
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