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 Large-scale wind turbines mostly use Continuously Variable Transmission (CVT) as the transmission 
system, which is highly efficient. However, it comes with high complexity and cost too. In contrast, 
the small-scale wind turbines that are available in the market offer a one-speed gearing system only 
where no gear ratios are varied, resulting in low efficiency of harvesting energy and leading to gears 
failure. In this research, an unsupervised machine-learning algorithm is proposed to address the energy 
efficiency of the automatic transmission system in vertical axis wind turbines (VAWT), to increase its 
efficiency in harvesting energy. The aim is to find the best adjustment for VAWT while the automatic 
transmission system is taken into account. For this purpose, the system is simulated and tested under 
various gear ratios conditions while a centrifugal clutch is applied to automatic gear shifting. The 
outcomes indicated that the automatic transmission system could successfully adjust the spinning in 
line with the wind speed. As a result, the obtained level of harvested voltage and power by VAWT 
with the automatic transmission system are improved significantly. Consequently, it is concluded that 
automatic VAWTs, equipped with the machine-learning capability can readjust themselves with the 
wind speed more efficiently.   

© 2022 Growing Science Ltd.  All rights reserved. 

Keywords: 
Wind Turbine  
Automatic Transmission System  
Machine-learning  
Energy Loss 
Python 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 

 
     In recent years, Wind Power is considered the world's fastest-growing source of renewable energy. Currently, wind energy 
is the second-largest source of renewable energy, and by the year 2035, wind energy will take up to 25% of total renewable 
energy, according to the Global Wind Energy Council (GWEC)’s 2013 wind report. Traditionally, wind turbines are located 
onshore, but lately, they are increasingly installed offshore due to community demands. A turbine can produce electricity up 
to 70-85 percent of the time, reliant on local wind speed. Wind energy is highly demanded as it is sustainable and 
environmentally friendly (Update, 2017). For wind energy, wind turbine applications need to be appropriately selected. This 
innovation has broadened to a few world areas and created a great foundation with comparative costs. There are three types 
of wind turbines classified based on the shaft orientation and axis of rotation: horizontal axis wind turbines, vertical axis wind 
turbines, and ducted wind turbines. The first type of wind turbine, the Horizontal axis wind turbine (HAWT), is a turbine with 
a shaft-mounted horizontally parallel to the ground. This type of wind turbine is more commonly used. The second type of 
wind turbine is the vertical axis wind turbine (VAWT), which its shaft is normal to the ground. This type of wind turbine is 
less frequently used which Savonius and Darrieus are the most common in the group. The third wind turbine can be either 
horizontal or vertical axis, but the turbine blades are encased in a shroud or hollow-shaped duct and known as a Ducted Wind 
Turbine (DWT). These wind turbines are mainly used for electricity generation. 
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     The VAWT is not as regular and has just as of late been utilized for a huge-scale power era. A few studies have shown that 
the purpose of the VAWT offers more favorable circumstances than the HAWT. The VAWT does not require to be orientated 
to the course of the wind. Other than that, it does not need to be bothered with a tower, thus decreasing capital costs. The 
generator is mounted at ground level to ease access (Al-Bahadly, 2009; Kanellos & Hatziargyriou, 2008; Yeh & Wang, 2008). 
In this research, Vertical Axis Wind Turbine is designed with an automatic transmission system to improve electric generation 
efficiency. The reliability of wind turbines is a prerequisite to ensure the healthy growth of wind energy. Even if certification 
bodies validate new designs and prototypes performed by manufacturers and could offer safer and more reliable wind turbines, 
their development and related improvements are still based on the experience with smaller turbines than those currently being 
erected. Therefore, the technology is still coming up against its limits. To this end, it has been recognized that there is a need 
to continuously monitor major wind turbine components such as gearbox, generator, and rotor blades. These components are 
seen to require substantial maintenance and repair efforts or even retrofits (Nivedh, 2014). Verma and Pachori (2015) stated 
that wind turbines could either operate at fixed speed or variable speed. For a fixed-speed wind turbine, the generator is 
directly connected to the electrical grid. The most common type of wind turbine is the fixed-speed wind turbine with the 
induction generator directly connected to the grid. This system has several drawbacks, however. The reactive power and, 
therefore, the grid voltage level cannot be controlled. Most of the drawbacks of a fixed wind turbine are avoided when 
variable-speed wind turbines are used. These turbines improve the dynamic behavior of the turbine and reduce the noise at 
low wind speeds. For a variable speed wind turbine, the generator is controlled by power electronic equipment. There are 
several reasons for using the variable-speed operation of wind turbines; among those are possibilities to reduce stresses of the 
mechanical structure, acoustic noise reduction and the possibility to control active and reactive power. However, in variable 
speed wind turbines, there are losses in power electronics and some components. It can even cause an increase in the cost of 
equipment because of the power electronics (Verma & Pachori, 2015). 
 
     In this research, the experimental VAWT is a fixed-speed wind turbine.  The grid voltage level cannot be controlled since 
the generator is directly connected to the grid by referring to Verma and Pachori (2015). These problems lead to some issues 
as follows: 
  
     The current wind turbine only has a one-speed gearing system which when the wind speed is inconsistent, the gearbox is 
not capable of varying the gear ratio, which contributes to the gears cracking and gearbox failures (Cho et al., 2015). The 
current gearbox systems cannot vary the gear ratio due to the one-speed gearing system, leading to less efficiency in harvesting 
the power from wind energy. Hence, energy loss occurred. This research aims to design an automatic control transmission 
system for vertical axis wind turbines using the machine learning algorithms in a way that the system can forecast the wind 
speed changes according to its database and then change the wind turbine gears accordingly. The scope of this research is 
covering the application of automatic transmission systems by using a centrifugal clutch, not Continuously Variable 
Transmission (CVT) or planetary gear.  
  
The rest of the paper is organized as followings: 
  
    In the next section, an in-depth review on the literature of wind turbines will be carried out. Then, in the research 
methodology section (section 3), an automatic transmission system for vertical axis wind turbines will be designed first. Then, 
in the second phase, a supervised machine learning algorithm will be proposed to let the system learn the environment data to 
automatically change the gear and turbine speed in line with the wind speed. Then, in the results and discussion section 
(section 4), the results of simulating the wind speed on voltage and power of the designed automatic transmission system will 
be simulated and analysed.  Then, the results from the testing of the vertical axis wind turbine with automatic transmission 
system will be compared to the vertical axis wind turbine without automatic transmission system. Then, recommendations for 
future studies will also be suggested. 
 
2. Literature Review 
 
    The most renewable form of energy is sun-based energy, as it can be utilized specifically for warmth or power. Hydropower 
originates from falling water because the sun-based energy will cause water to vanish at low rise and rain at higher heights. 
The sun plays its role in warming different parts of the world's surface. Biomass energy originates from plant matter and is 
delivered through photosynthesis which is driven by the sun. In this manner, biomass, wind, and hydropower are simply 
secondary sources of sun-based energy. Non-sun-based renewable energy sources incorporate geothermal energy, which 
originates from the center of the earth, in some form of mixed energy from the beginning and then proceeded with the root of 
atomic materials.  
 
     Biomass is fuel obtained from organic matter combined with wood, crops, trim developments, and animal waste. Fossil 
fuel is similar to biomass but is out-of-date. Biomass is humankind's imperative source, utilized ever since the revelation of 
fire. Despite all that, it is 10% of the world’s basic vital supply and the world's greatest single renewable essential source, as 
a critical part of the aggregate mass uses wood, charcoal, straw, or animal fertilizer as a cooking fuel (IEA 2012).  
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2.1 Wind Power 
 
     Like biomass, wind control had also been used some time ago. In the best areas, introducing the day control era of twist is 
close cost uniformity with power sources, such as coal and nuclear. Regardless, there is a significant complexity between 
wind control cost on the best goals and less sensible regions. Wind power is created by the energy of moving air and varies 
with the robust state of wind speed. Duplicating wind speed has 2×2×2 = 8 times more potential energy; tripling wind speed 
achieves 27 (33) times more energy. More potential energy, of all things considered, means cutting down costs for a given 
measure of energy. The windiest conditions are therefore much better than less tempestuous regions. Generally, these districts 
are in shoreline fronts and offshores, along mountain edges, and in boundless open extents like the US Unprecedented 
Plains.  Wind control potential in numerous zones is constrained and confined by the number of conditions where the energy 
source can be made at a reasonable cost. In any case, if the energy could be moved along the divisions, a locale like the US 
Amazing Plains could, on a fundamental level, supply a massive amount of energy for the US. Not simply midpoints wind 
control changes unfathomably by site, yet control is available at a particular moment furthermore contrasts hugely with wind 
speed. Significantly more essentiality is open on windy days than on calm days. This brokenness trademark is consistent with 
most renewable essentialness sources; however, it is particularly trying with the wind that gives how much potential 
imperativeness changes with wind speed. The furthest variable point of an energy plant is portrayed as the extent of honest to 
goodness imperativeness made to the most extraordinary essentialness era potential. Nuclear and coal control plants usually 
have high furthest point factors, at times outperforming 90%, inferring that over a year, they can make over 90% of the energy 
they would get from constantly running at the most extraordinary yield for a whole year. A breaking point considered for bend 
control on a fair site might be 30% and much lower in poor wind districts. While wind power is occasionally criticized because 
of its unavoidably low cut-off figure, this is only an issue relating to cost. Like all energy sources, wind control has its specific 
externalities. The ones of concern are the impact of the wind turbines, which are usually more than 400' in stature; tumults 
related to the bent forefronts in the turbine, which can be troublesome when in close proximity to the wind turbines; and 
feathered animal mortality caused by accidents with the sharp turbine edges. The legitimate siting of wind workplaces may 
mitigate noise and the death of winged animals. However, wind power is not adaptable in siting, especially in the windiest 
territories. The impact is not easily directed, as wind power requires broad structures that are not adequately concealed. In 
any case, possibly all radiance is subjective, and we may find wind turbines to be engaging, to some degree, in perspective of 
the renewable energy they address. Ocean wind energy is a renewable energy resource with the potential for less negative 
externalities than inland. Wave power can be seen as a supporting source of contorting power, as wind produces waves. 
Procedures for saddling wave control consolidate floatation contraptions that rise and fall with the waves, making mechanical 
energy change over to control at last. While there are various established blueprints for handling wave energy, there are several 
huge-scale working cases. Again, the cost is the issue: while some energy is available in the waves, it is expensive to change 
this into accommodating energy for society.  
 
Table 1. Comparison between VAWTs and HAWTs (Bhutta et al., 2012) 
 VAWT HAWT 
Tower sway Small Large 
Yaw mechanism No Yes 
Self-starting No Yes 
Overall formation Simple Complex 
Generator location On ground Not On-ground 
Height from ground Small Large 
Blade’s operation space Small Large 
Noise produced Less Relatively high 
Wind direction Independent Dependent 
Obstruction for birds Less High 
Ideal efficiency More than 70% 50–60% 
Wind velocity for start Very low Relatively high 

 
     Universally, wind energy has a significant potential to become renewable energy. It can supply more than two-fold of the 
present politically influenced nation use, which is around 15,000×109 kWh consistently. The supply can consistently finish 
from 20,000×109 - 50,000×109 kWh (Hashim & Ho, 2011; Herbert et al., 2007). It depends on a couple of parts, for instance, 
the typical wind speed, the exact wind speed transport, turbulence powers and the cost of wind turbine systems. Other than 
this, more than 50 countries and 1,500 affiliations contribute to hardware manufacturing, broadening headways, controlling 
time, storage, and consultancy. Such a gigantic number accelerates the updates and movements of wind energy advancement. 
Wind turbines can be arranged into two main types, depending on the bearing of the rotor shaft. One is the Horizontal Axis 
Wind Turbine (HAWT) and the second type is the Vertical Axis Wind Turbine (VAWT). HAWTs have sharp edges mounted 
radially from the rotor. Today, most HAWTs have sharp edges and are usually utilized for an expansive scale of network 
electrical power. VAWTs are not as basic and have just been recently utilized for substantial scale power. Both wind turbine 
types have been thoroughly tested and improved (Herbert et al., 2007). Several studies found that the use of the VAWT has 
more points of interest as compared to the HAWT (Bhutta et al., 2012; Dabiri, 2011; Eriksson et al., 2008; Mohamed, 2012). 
A comparison between the VAWT and the HAWT is presented in Table 1. The VAWT does not have to be orientated to the 
wind direction and it does not need a tower, reducing capital costs. The generator needs only to be mounted at ground level 
for easy access (Kanellos & Hatziargyriou, 2008; Yeh & Wang, 2008). Additionally, recent studies show that VAWTs can be 
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installed much closer to each other compared to HAWTs, and because of this, the power density per square meter could be 
considerably higher than for the configurations used presently(Dabiri, 2011).  For various reasons, there is now a resurgence 
of interest in VAWTs, in particular Darrieus turbines (Mohamed, 2012). Furthermore, VAWTs exhibit more advantages 
compared to HAWTs in terms of Malaysia’s weather conditions and risks. They harmonize with the circumstances, such as 
low average wind velocity and risks of lightning and bird strike. The types of VAWT are further analyzed and reviewed in 
the next paragraph. 
 
      The investigation of VAWT design has been directed by now and is being built up. There are a few setups recorded as 
follows: the Darrieus rotor – egg blender formed, the Darrieus rotor – straight bladed, the Darrieus rotor –variable geometry 
oval direction (VGOT), the Darrieus –Masgrowe, the turned three-bladed Darrieus rotor, the Crossflex, Savonius rotor, the 
Combined Savonius and Darrieus rotor, the two leafed semi rotating, Sistan wind process and the Zephyr turbine. As far as 
the assembling procedure and manufacturing costs are concerned, the Darrieus rotor-straight cutting edge or giro mill 
demonstrated a dependable arrangement. The two cutting edges of the giro mill are, for the most part, named the H-rotor 
(Howell et al., 2010; Mertens et al., 2003). Consequently, profound thought and survey will be directed on the Darrieus rotor-
straight sharp edge. As far as the execution of the VAWT, the focal shaft delivered a higher effect of the vibration. Other than 
this, the productivity of the VAWT is expanded by the more noteworthy length of the VAWT and the breadth of the turbine 
edges. Previous studies on VAWT execution concentrated on torque (Chong, Fazlizan, et al., 2012; Gavalda et al., 1990; Islam 
et al., 2008; Mohamed, 2012; Park et al., 2012), control (Chong, Poh, et al., 2012; Gavalda et al., 1990; Greenblatt et al., 
2012; Hossain et al., 2007; Mohamed, 2012; Park et al., 2012) and rotational speed (Chong, Poh, et al., 2012). A few 
components impacting the VAWT execution were raised, for example, sharp edge wellbeing, liquid stream around the edges, 
and the outline of the wind turbine. The studies were directed towards utilizing reproduction and trial strategies and the 
improvements of the VAWT execution. In a plan examination, the outline arrangements may incorporate a few existing 
VAWT types (Gavalda et al., 1990). Another outline of the Darrieus and Savonius joined rotor is proposed and examined. 
The beginning of the torque demonstrates a change. An examination of the existing standard air foil shapes led to 20 plans 
(Mohamed, 2012). From the 20 outlines proposed, they were subjected to computational investigations, where the H-rotor 
Darrieus turbine (including the S-1046 type of air foil) gives off an impression of being highly appropriate to the wind energy 
conditions, especially in urban regions. (Greenblatt et al., 2012) proposed a plasma actuator to control the stream partitions, 
which expanded the power created to around 38%. Stable and adjustable pitch edges were additionally examined. The 
outcomes demonstrated how the adjustable pitch edges could beat the beginning torque issues connected with the VAWTs.  
Besides this, extra adornments may also help in refining the measure of force created. The guide vane placed at the external 
gadget of the VAWT framework may go about as the Bernoulli rule. The diminishment  in pneumatic force causes the air to 
stream into the passage at a higher speed than the external speed. It enhances the rotational speed and the beginning of the 
conduct execution (Chong, Fazlizan, et al., 2012; Chong et al., 2011; Chong et al., 2013; Chong, Poh, et al., 2012; Takao et 
al., 2009). The trial yield was likewise upheld and enhanced by the reproduction examination. The examination on vortex 
reproduction, dynamic slow down and tallness to measurement proportion demonstrated a superior clarification and 
comprehension of the streamlined issue in the test (Islam et al., 2007; Stein et al., 2012; Vandenberghe & Dick, 1987). In 
examining the edges, the impact of a defective sharp edge on the torque and power yield were considered. It demonstrates 
that the torque and power could diminish as the quantity of missing sharp edges expands (Park et al., 2012). Both exploratory 
and reproduction techniques were led to extend the innovation of VAWTs, particularly for RE fields. The plan investigation 
appears to have achieved some kind of development. Scientists have also carefully considered the parameters included, for 
example, streamlined execution and liquid stream investigation. Be that as it may, there are still research chances to be sought 
after in enhancing a sharp edge plan for a few components, for example, traverse length, harmony length, producing capacity 
and streamlined shapes. Advanced investigation can likewise be directed to examine variables that are most powerful in a 
VAWT execution. In any case, the studies on auxiliary honesty should be researched further; the issues highlighted in basic 
trustworthiness include the structure's basic point, sharp edge vibration usage, the impact of the progression of twist stream 
in a brief period, the basic wellbeing observing framework, the normal recurrence of the structure and material choice.  
 
     The Horizontal Axis Wind Turbine (HAWT) is the most widely recognized and can often be seen littered over the scene 
in territories of similarly level ground with unsurprising year-round wind conditions. HAWT sits on an extraordinary segment 
and holds a great deal of cutting edge that rotates around a pivot parallel to the present course. These wind turbines have been 
the essential issue of wind turbine investigation for quite some time, fundamentally because they impart basic operations and 
elements to revolving airplanes. In HAWT, there are two essential types: the wind turbine that faces the wind and the other 
one that faces far from the wind. Turbines that face into the wind require a rudder or some other kind of instrument to have 
the capacity to self-orientate in confronting the approaching current of air. Those that face far from the wind need not bother 
with this per user to self-orientate; in any case, they experience the ill effects of vibration because of the bolster tower blocking 
part of the wind stream. While the Vertical Axis Wind Turbine (VAWT) pivot around a hub opposite the approaching stream, 
they can subsequently take a twist from any headings, leading them to be more flexible. VAWTs are rough, calm, 
omnidirectional, and they do not place as much weight on the bolster structure. They can be pressed nearer together in wind 
ranches, permitting more in a given space. It is not because they are smaller but also due to the moderating impact reported 
in real-time, compelling originators to separate them by ten times their width. The VAWT is not as proficient as the HAWT 
and it has low beginning torque. Not only it has dynamic soundness issues, but also it offers benefits in low wind circumstances 
where the conventional HAWT experiences issues when working. The fundamental advantages are acquired and enhanced 
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execution at lower wind speeds and a lower r.p.m. administration at higher wind speeds bringing about a quiet turbine 
appropriate for private situations. Likewise, it tends to be more secure and simpler to construct, and it can be amassed near 
the ground and can handle turbulence much superior to the flat ones (Polinder et al., 2004).  
 
     VAWTs comprise two noteworthy types, the Darrieus rotor and Savonius rotor. The Darrieus wind turbine is a VAWT 
that pivots about a focal hub because of the lifts delivered by the turning surfaces, though a Savonius rotor pivots because of 
the drag made by its sharp edges. There is in like manner a crude sort of VAWT developing in the wind control industry, 
which is a blend between the Darrieus and Savonius plans. There are two major configurations of VAWTs: The Savonius and 
Darrieus rotor types. The earlier design is a drag-type turbine, where power is generated using momentum transfer. In contrast 
to the Savonius formation, the Darrieus formation is a lift-driven turbine: The power is produced from the aerodynamic torque 
acting on the rotor (Korobenko et al., 2014). The efficiency of Darrieus-type turbines is significantly higher than the one of 
the Savonius type, and because of this, the Darrieus-type turbines are chosen in this research study. However, a detailed study 
will still be done for both designs to understand the wind turbines' design appropriately. As energy resources in the world are 
continuously depleting, the importance of green energy keeps rising every day. Malaysia is a country that is blessed with not 
just windy beaches around the country but also airports surrounded by massive and empty land areas. It should be optimized 
by this gift and start considering wind energy as one of the energy sources. It can significantly boost Malaysian airports’ 
performance and ranking in general and other related institutions such as aircraft maintenance training and renewable energy 
institutions in this country. However, currently, there is a lack of research in wind turbines, especially focusing on comparing 
HAWT and VAWT performance in this country. This study is focused on building the functional wind turbines and comparing 
the performance of HAWT and VAWT under certain wind speeds and behaviors, which is just one of the aspects that need to 
be considered. In terms of power generation under a steady wind stream, HAWT is the better one. The HAWT can produce 
much higher energy in steady and high wind streams. However, this is not a feasible form of analysis because the two types 
of wind turbines are not comparable. The huge gap in current and voltage output is due to the major weight difference between 
both wind turbines. The weight of the VAWT is almost double the weight of the HAWT. This factor affects the prototype's 
performance as more wind speed is needed to turn heavier blade sections. A better comparison can be made based on the 
second indoor testing: wind angle change. VAWT is efficient in this environment where the direction of the wind is changing. 
While the performance of HAWT is dropping as the direction of the wind is away from the direction of the blade, VAWT is 
capable of maintaining the output throughout the test. In a sporadic environment, HAWT faces difficulties in responding while 
VAWT flourishes in turbulent and sporadic wind patterns. In Malaysia, where the wind direction is unpredictable, a VAWT 
with improvable performance would most likely perform better than the HAWT due to its handling of turbulent and 
omnidirectional wind (Johari et al., 2018). 

2.1.1 Wind Energy Harvesting 
 
     Harnessing wind energy provides a means to reduce dependencies on fossil fuel reserves. With the rapid growth of the 
global human population, the energy demand also increases. Therefore, many countries worldwide have adopted renewable 
energy technology to generate clean and inexhaustible energy to fulfill their ever-increasing electricity demands. In some 
places, 100% of their average yearly demand is provided by renewable energy resources. As one of the fastest-growing 
renewable energy resources in the world today (Gipe, 2004), the global cumulative installed wind capacity has increased 
significantly since 1996. The total wind power capacity at the end of 2015 was about 433 GW, as reported in Figure 2.12. It 
is projected to reach 2000 GW by 2030, supplying between 17 and 19% of global electricity demand. There are two major 
types of wind turbines; the horizontal axis wind turbine (HAWT) and the vertical axis wind turbine (VAWT). In general, the 
HAWTs are better at extracting wind energy than the VAWT. Therefore, most wind turbines in the commercial market today 
are dominated by HAWT machines. However, researchers and manufacturer's new interests in the VAWT technology have 
reignited major development efforts for this wind turbine (Global Wind Energy Council, 2015). In some situations, the VAWT 
has superior advantages over the HAWT, including its ability to extract wind energy from almost every direction, is easier to 
maintain, has less visual impact, produces low noise emissions, and works with improved performance in skewed wind flow 
conditions. The complex characteristic of urban winds involves erratic, insubstantial and inconsistent wind flow due to the 
many obstacles (i.e., buildings). The distinctive characteristic of urban wind requires wind turbines that suit this phenomenon 
well. The VAWT is deemed more suitable for the urban context than the large and more common HAWT. 

2.1.2 Automatic Transmission Systems 
 
    Ariffin et al. (2014) stated that a remote-controlled vehicle’s transmission system is as same as an automated manual 
transmission system in a life-sized car, in which the transmission included an automatic clutch assembly. The automatic clutch 
assembly aims to perform a clutch engaging operation automatically by an actuator for a clutch. The automated manual 
transmission is connected to an engine (Ariffin et al., 2014). In an automated manual transmission, an actuator shifts from one 
gear to another in response to the sleeve’s axial movement. Alternatively, in this transmission, the actuator was replaced by 
the centrifugal clutch to shift one gear to another gear, thus regulating the engine's torque.  
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2.1.3 Automatic Gearbox 
 
    According to Raut and Mali (2014), the automatic gearbox consists of an assembly of gears and centrifugal clutches. In 
their work, an automatic gearbox applied with centrifugal clutches has been designed and manufactured. Fig. 1 shows the 
schematic diagram of the Automatic Transmission System Gearbox with centrifugal clutches. The A & B are respectively 
driving and driven shafts. Driving and driving shafts are parallel to each other. These two shafts are carrying all the rotating 
elements. The most important thing is that the main principle of an automatic transmission system depends on the centrifugal 
clutch. Three clutch drums C1, C2 & C3 were applied to the system. On each of the centrifugal clutch hubs, the pinion gear 
was fitted. This means, on the hub of clutch drum D1, Pinion Gear P1 is fitted. While, on the hub of clutch drum D2, Pinion 
Gear P2 is fitted, and on the hub of clutch drum D3, the Pinion Gear P3 is fitted. These three drums are mounted on a driving 
shaft that is free to rotate on it. Centrifugal clutch spiders are fitted inside all the clutch drums. The clutch springs were also 
designed so that the clutch spiders fly apart when RPM reaches 500 for C1, 1000 for C2, and 1600 for C3, respectively, hence 
engaging the particular gears once the required speed is achieved. The Pinions are in constant mesh with gears, which are 
mounted on freewheels that are fitted on the driven shaft. Figure 2.24 shows the actual model of automatic transmission 
gearbox with centrifugal clutches (Raut & Mali, 2014). 

2.2 Machine Learning Algorithms 
 
     Machine learning methods are widely used during the last decade, specifically by emerging industry 4.0. Machine learning 
algorithms can be used for two main purposes: pattern recognition and clustering. They can be divided into one of the two 
mentioned groups. Depending on the labels for data, machine learning groups can be considered supervised machine learning 
algorithms where the labels of the data are available, and unsupervised machine learning algorithms where the label of the 
data exists. In semi-supervised learning methods, an agent exists that can get information from the environment and use it to 
train the model. Fig. 1 shows some of the most frequently used supervised and unsupervised machine learning.  
 
 

 

Fig. 1. The most frequently used Machine Learning algorithms 

2.3 Comparing Supervised, Unsupervised, and Reinforcement Machine Learning Algorithms 
 
In order to choose the best machine learning algorithm that matches the problem statement of this research, the attributes of 
the machine learning algorithm must be compared first. Table 2 compares the attributes of the machine learning methods: 
 
 

Machine Learning 
Algorithms

Supervised 
Methods

Decision Tree 
Method

Linear 
Regression

Logistic 
Regression

Single Layer 
Preceptron

Multi-layer 
Perceptron

Support Vector 
Machine

Semi-supervised 
Methods

Self-training

Graph-based Semi 
Supervised Learning

Low-density Separation

Un-supervised 
Methods

Association

Apriori

Eclat

F-P Growth 
Algorithm

Clustering

Partitionning

K-means 
Clustering

Fuzzy C-means 
Clustering

Hierachical

Aggoomerative

Clink

Slink 

Ward

Wlink

Divisive
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Table 2. Comparing Machine Learning Methods 
Machine Learning Type Label Complexity Training Accuracy 
Supervised Learning  Low Using labeled data High 
Unsupervised Learning  High Using Data Information Medium 
Reinforcement Learning  Medium Using Actions (Reward, Punishment) High 
 
    Today, the attention of many scholars and researchers has focused on the topic of supervised learning of systems using 
machine learning algorithms. Machine Learning algorithms are more in need with the growth of the market needs over the 
past few years, which makes them have a significant share of the countries' economy. Many researchers focused on the features 
of the manufacturing systems (Abecassis-Moedas, 2006; Mehrjoo & Pasek, 2014; Nagurney & Yu, 2012). Besides, it was 
shown that dynamic conditions could increase intensive entropy in manufacturing systems and influence the performance of 
it (Brito et al., 2015; Castillo et al., 2018; Zhou et al., 2015). In the following, a number of successful cases that used machine 
learning in the manufacturing systems and supply chains will be reviewed. In supply chain models, product distribution is 
considered a significant parameter in the success of the supply chain. Machine-learning algorithms showed excellent 
performance in identifying patterns in manufacturing systems and supply chains. Supervised algorithms refer to the machine-
learning algorithm when the label (category) of the data for training is available. Therefore, the algorithm has a map to dedicate 
a series of data to a class. Several supervised machine-learning algorithms showed excellent performance in the classification 
of data by the learning process. Linear Regression, Logistic Regression, Support Vector Machine, Naive Bayes, Random 
Forest, Decision Tree, Single-Layer Perceptron, Multi-Layer Perceptron, and K-nearest Networks are among the most popular 
Supervised Machine-learning Algorithms. (Abbasi et al., 2019) focused on financial-based risk assessment in supply chains 
while the Internet of things comes into consideration. For this purpose, they used Support Vector Machine and Logistic 
regression methods to rate the developed risk assessment model. (Fanoodi et al., 2019) used an artificial neural network in an 
auto-regressive integrated moving average model for Blood products in a supply chain considering the short life span of these 
products. (Negrutiu et al., 2020) applied a binary logistic regression for finding the impact of features that can influence 
sustainable entrepreneurship in supply chains. (Mehrolia et al., 2021) used a binary Logistic Regression to classify the 
customers that used online food orders during the COVID-19 outbreak in India. Traditionally supervised machine learning 
methods are used frequently for demand forecasting. (Yue et al., 2007) used a support vector machine for forecasting demands 
in the retail industry where seasonal and promotional features were considered in their model. (Wu, 2010) addressed a hybrid 
support vector machine and particle swarm optimization for demand forecasting in the automotive industry. (Taghiyeh et al., 
2020) showed that there are time series in supply chains, which correlate with geographical features. They used machine-
learning algorithms for forecasting each time series in a multi-phase hierarchical decision-making method. 
 
     Carbonneau et al. (2008) presented a Multi-layer Perceptron in supply chains to minimize the bullwhip effect by forecasting 
demand while sufficient information about other participants' demand was not available. (Wan et al., 2016) presented the 
Least squares support vector machine method for electronics supply chains where interaction and added value in the supply 
chain were their goals. (Villegas et al., 2018) developed a new model using Support Vector Machine that uses various 
integrated criteria for selecting individual criteria, which showed high performance for scenarios with highly volatile demand. 
(Foltin et al., 2018) used KNN, decision trees, and Logistic Regression for the classification level of performance in supply 
chains while the capability of logistics infrastructure, the network of activities, and services operating were considered. 
(Mahadevan et al., 2019) reviewed machine-learning algorithms applied to the health care sector. They showed the importance 
of machine-learning algorithms in improving the performance of supply chains. Zhang (2019) proposed a model for predicting 
the exporting in the aquaculture sector. Using a multi-layer perceptron, they showed that artificial intelligence could provide 
an excellent method for the export prediction of aquatic products. Delgoshaei and Gomes (2019) proposed a hybrid Multi-
Layer Perceptron and Simulated Annealing for minimizing the cell-load variation effect in cellular manufacturing systems 
where their model could minimize cell underutilization using an effective preventive maintenance plan. (Liu & Huang, 2020) 
addressed a hybrid ensemble support vector machine and a reducing noises method for the risk assessment process in the 
supply chain. (Daneshmand-Mehr et al., 2020) used Multi-Layer Perceptron to minimize the bullwhip effect in the supply 
chain, which causes significant shortcomings such as delayed orders or surplus inventories. Shi et al. (2021) applied a hybrid 
Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) for predicting the geothermal productivity that could 
learn the non-linear relationship between the geothermal productivity and constraint conditions. Asrol et al. (2021) addressed 
a support vector machine algorithm for evaluating the sustainability of the manufacturing systems.  
 
    Supervised machine learning problems are successfully used for supplier selection problem in supply chains. Guo et al. 
(2009) addressed a hybrid potential Support Vector Machine and Decision Tree Method for supplier selection problem, which 
showed better performance and less calculation time than standard support vector machines. Fallahpour et al. (2018) proposed 
a hybrid Data Envelopment Analysis and Support Vector Machine for supplier selection where the suppliers' predicted 
efficiency was considered the dataset label. Delgoshaei and Gomes (2016) used multi-layer perceptron for scheduling 
manufacturing systems. Ishak and Wijaya (2019) used Multi-layer Perceptron for supplier selection problems in the 
automotive supply chains. Cheng et al. (2020) used the support vector regression method for the supplier evaluation problem 
in supply chains where a multiple criteria decision-making method is employed to determine suppliers' labels. Oh et al. (2019) 
proposed SVC for quality monitoring and control in automotive manufacturing industries, explicitly incorporating inspection-
related expenses and error types. Jiang et al. (2019) used logistic regression for predictions of aflatoxin in grain at a post-
harvest stage, providing a base for guaranteeing the safety of stored grain by providing early warning on contaminant problems 



 42 

emerging while storing the product. Goettsch et al. (2020) used a multi-layer perceptron algorithm in a mathematical modeling 
problem where the aim was to decrease gas emissions by optimizing the biomass supply chain. There are novel research 
studies for using supervised machine learning methods in production planning. (Delgoshaei et al., 2016) proposed a multi-
layer perceptron to find the best in-house manufacturing and outsourcing quota in cellular manufacturing systems where 
bottleneck machines existed. Silva et al. (2017) used an ANN method to forecast the potential orders and allocate the order to 
the proper chain member. Golkhoo and Moselhi (2019) used a hybrid Genetic Algorithm and Multi-Layer Perceptron for 
material control problems in the construction sector. They showed the superiority of the proposed method compared to the 
classic Genetic Algorithm. Rezanoori et al. (2019) proposed an artificial neural network method for safety of passengers in 
an active suspension system. Kozłowski et al. (2020) addressed a Logistic Regression method for solving a model that could 
estimate the parameters of probabilities of transitions between operational states. From the above review, the application of 
automatic transmission systems in vertical axis wind turbines further investigation. There is still a lack of findings on the 
gearing system design and clutch design. Investigation of the gearing system and the number of the gears and clutch can be 
further enhanced, especially for vertical axis wind turbine applications. The application of clutch in automatic transmission 
systems for VAWT also needs further investigation.   
 
     This research focuses on two issues identified in the literature review. The first issue concerns using an automatic 
transmission system for vertical axis wind turbines to improve the efficiency of energy captured. The second issue concerns 
the bonding MFC design of gears and clutch for the automatic transmission system. The effect of the transmission system in 
VAWT is investigated. The next section will present the research methodology and the experiments employed to achieve the 
research objectives. 

3. Research Methodology 
 
The process began with a background study and reviewing the latest literature or articles related to automatic transmission 
systems and wind turbines. The idea of this project is to apply an automatic transmission system to wind turbines, which in 
this project, the vertical axis wind turbine is used. Hence, the VAWT is designed and fabricated by using the combination of 
Darrieus and Savonius types. As understood, the automatic gearbox with centrifugal clutches is related to an automatic 
transmission. More particularly, the invention describes a transmission for producing a variable speed drive. Then, the gears 
and clutch will be designed using gear and clutch formulas by Solidworks software and fabricated using a 3D printer. This 
automatic transmission system must be installed to the vertical axis wind turbine, so the wind turbine can automatically vary 
its gear ratio from the driving shaft to the driven shaft. The VAWT with an automatic transmission system will be tested to 
analyze the performance. The wind turbine needs to spin at a suitable gear ratio depending on its incoming wind speed to 
harvest the optimum energy. Fig. 2 showed the flow chart of the overall research. 

 

Fig. 2. Automatic Transmission System flow chart 
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3.1 Design of Vertical Axis Wind Turbine 
 
     The Savonius is one of the simplest self-starting vertical-axis turbines. Aerodynamically, these turbines are drag-type 
VAWT, so they cannot rotate faster than the wind speed. It means that the tip speed ratio is smaller, making this type of 
turbine unsuitable for electricity generation. The Savonius turbine consists of two or three scoop rotors that look like an “S” 
configuration in a cross-section. The curved “S” shape allows the scoops to experience less drag force when going against the 
wind compared to when the scoops are moving along with the stream of the current of air. This discrepancy in drag causes 
the Savonius turbine to spin. The blades’ cavity shape also allows the wind pressure to rotate the turbine with low speed and 
produces a high bending moment along the barb of the turbine because of the large area of the curved components. The 
efficiency of the turbines is very low compared to other types, which are approximately 15%. It can then be used for other 
purposes, such as pumping water or grinding grain. Most of the swept area of the Savonius rotor is near the ground, creating 
an overall energy extraction that is less effective due to lower wind speed at lower heights. The advantages of this type of 
VAWTs are its simplicity, reliability, and low noise production. It can operate well at low wind speed because the torque is 
very high, especially in these conditions. Since the torque is not invariant, improvements such as a helical shape are used. The 
most ubiquitous application for the Savonius VAWT is the ventilator commonly used or discovered along the roof of vans 
and buses. 
  
     The Darrieus wind turbines consist of several curved airfoil blades mounted in the vertical rotating shaft or framework. 
The curve of the blades allows the vanes to be studied only in tension at high rotational speeds. The original design of Darrieus 
arranges the airfoils in symmetrical ways so that the turbine has zero rigging angles. This arrangement is equally effective no 
matter which direction the wind blows. 
  
     Furthermore, when the Darrieus rotor is spinning, the control surfaces move onwards through the air circularly. 
Proportional to the blade, the oncoming airflow is vertically added to the wind so that the resultant airflow creates a varying 
slight positive angle of attack to the vane. As the airfoils move around, the angle of attack changes to the opposite sign. Only 
the generated force is still in an indirect position to the direction of rotation because the wings are symmetrical and the ringing 
angle is zero. As the angle of attack changes, each blade generates its maximum torque at two spots along with its wheel, 
where it contributes to a sinusoidal power cycle that creates resonant modes and subsequently induces a disruption to the vane. 
Giromill and Cycloturbine are examples of modifications of the Darrieus turbine design. The modifications allow the 
generated torque to remain almost constant over a pretty wide angle, allowing it to have the advantage of self-starting. It can 
be done by flipping the “downwind moving” blade flat to the air current to get dragged down the turbine at low velocity. The 
disadvantage of these figures is that the blade pitching mechanism is difficult and laborious as it needs the wind-direction 
sensors to pitch the blade properly. 
  
     The vane-type wind turbine is a new type of wind turbine with a vertical area of bars in figures. It has vertical areas of 
three or four vanes that make a pit shape with shut vanes of the physical body to expand the drag coefficient estimate and cuts 
down the negative torque on the opposite side. The wind turbines have upwind rotors and utilize a tail vane for preparation 
into the wind. The tail vane confines the development of the rotor far from the wind. This pivoting vane framework transforms 
the turbine into a twist at low wind speeds and then out of the twist at higher rates. Be that as it may, at high wind speeds, it 
will continue delivering power. Preventing harm to the wind turbine, the sharp edges are intended to have the capacity to 
dislodge into a place in which they are completely or incompletely adjusted in a steady progression. This character of the 
wind turbine can be implicitly stated as follows: first, by tossing four edges with points, 90o somewhere around one and on a 
level plane developed bars with vanes that can curve on 90o. The second case can be worked by holding only three edges with 
points of 120o between one. Outline components should be efficiently shaped to diminish the drag constraint of the twist 
activity for the non-working components of a turbine. The casings are associated with the pole and the pole is associated with 
the electrical generator. They are secured on the bars that turn up on the sides of the suspension. Vane bars can be outlined 
vertically, yet in such cases, casings will have a vane flipping impact that may obstruct or reduce the dependability of a 
turbine. The edge’s vertical parts are like a Darrieus type, where it can expand the yield of the wind turbine. During a wind 
condition, the vanes on the odd side of the edges are shut and will bear the twisted quality in a wide plate. The sharp edges on 
the correct position of the edge are uncovered and wind will fall through the open tissue. The left side vanes are visually 
associated with right side vanes so that vanes can be twofold driven; this development empowers the twist energy to overlap 
with the left side vanes and at the same time opens the right side vanes. The torque delivered by the wind constraint outlines 
with the yield shaft, which exchanges the torque by equipping to the electrical generator. 
  
     The wind turbine was designed by combining the Savonius and Darrieus types of wind turbines. By having a new design, 
the disadvantages of the two types of wind turbines can be covered by each other, hence improving the efficiency and starting 
torque of the wind turbine. 
 
     The Savonius type is one of the simplest self-starting vertical-axis turbines. Aerodynamically, these turbines are drag-type 
VAWT, which means they cannot rotate faster than the wind speed. It also means that the tip speed ratio is smaller, making 
it unsuitable for electricity generation. Apart from these, the Savonius turbine consists of two or three scoop rotors shaped 
like an “S” configuration in cross-section. Due to this curvaceous “S” shape, the scoops experience less drag force when going 
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against the wind compared to when the scoops are moving with the current of the air. Due to this differential drag, the Savonius 
turbine spins. The blades are also cavity-shaped, allowing the wind pressure to rotate the turbine with low speed and producing 
a high bending moment along the turbine’s barb due to a large area of the curved components. The turbines have low efficiency 
compared to the other types, which are approximately 15%. Most of the swept area of the Savonius rotor is near the ground, 
creating a less effective overall energy extraction due to lower wind speed at lower heights. Some of the advantages of this 
type of VAWT are its simplicity, reliability, and low noise production. It can operate well at low wind speed as the torque is 
very high, especially in these conditions.  Since the torque is not invariant, some improvements such as a helical shape are 
used. The blade of the savonius design was made by using lightweight plastic, which is Polyvinyl chloride. 
 
 

 
Fig. 3. Design of wind turbine 

 
Fig. 4. Savonius blade design 

 
          The Darrieus blade is a straight air-foil blade that is mounted in a vertical rotating shaft. The aerofoils are arranged 
symmetrically and have zero rigging angle, which allows the turbine to spin no matter the direction of the wind. Relative to 
the blade, this oncoming airflow is added to the wind so that the resultant airflow creates a varying slight positive angle of 
attack to the blade. It generates a net force pointing forward. This force can be projected inwards past the turbine axis at a 
certain distance, giving a positive torque to the shaft, thus helping it rotate in the direction it is already traveling in. As the 
aerofoil moves around the back of the turbine, the angle of attack changes to the opposite sign, but the generated force is still 
obliquely in the direction of rotation because the blades are symmetrical and the rigging angle is zero. The turbine spins at a 
rate unrelated to the wind speed and usually many times faster. Thus, the kinetic energy from the rotation can be extracted 
from the torque and converted into power. 
 

 

Fig. 5. Darrieus blade design 

 

Fig. 6. Savonius-Darrieus wind turbine 

3.2 Gearing System Design 
 
     Gearing System Design involved designing the gears, specifically the design of several teeth for the gears. The number of 
teeth for each gear is one of the important elements needed to be designed as it deals with gear ratio. The number of teeth for 
each gear can be decided by referring to the result from Table 3. At this initial stage of designing gears, some formulas and 
calculations were involved. The formula to calculate gear ratio is: 
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45𝐺𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 ൌ  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑃𝑀 𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑅𝑃𝑀𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒  (1) 

 
     Each increment of incoming wind speed was set to be the desired top speed for its assigned gear; first gear, second gear, 
third gear and fourth gear. By referring to equation 1, the calculated gear ratios are in Table 3 as follow: 
 
Table 3. Gear ratios and their assigned gear 
Incoming Wind speed, m/s Revolutions per Minute (RPM) Gear ratio Assigned gear 
5 22.1 4.42 1 
10 47.3 2.07 2 
15 72.5 1.35 3 
20 97.7 1

 
4 

 
     From the gear ratios calculated in Table 3, the number of teeth for each gear can be estimated by using the formula: 
 𝐺𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 ൌ  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑎𝑡 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑔𝑒𝑎𝑟𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑎𝑡 𝑑𝑟𝑖𝑣𝑒𝑟 𝑔𝑒𝑎𝑟  (2) 

 
    At this stage of estimating the number of teeth, it does not have to be rigid. In order to do so, the ratio between the number 
of teeth at driven gear and that in driving gear needs to be “try and error” as long as they come out with the required gear ratio 
as calculated in Table 3. However, the limitation to consider is that the higher the number of teeth will result in a large gear 
size. So, in this case, the size of the gear was considered, so the gears can be fitted at the bottom part of the Vertical Axis 
Wind Turbine, as shown by Fig. 7. 
 

 

Fig. 7. Gears installation area at experimental VAWT 
 
       The calculated number of teeth at each gear is represented in Table 4: 
 
Table 4. Number of teeth for each gear 
Assigned gear Gear ratio Gear action Number of teeth Outside diameter (cm) 
1 4.42 Driving 14 3.2 

Driven 62 12.8 
2 2.07 Driving 15 5.1 

Driven 31 11.56 
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     Once the number of teeth is determined, the Computer-Aided Drawing (CAD) of the gears can be designed using 
SOLIDWORKS. Fortunately, with the “Toolbox” function in SOLIDWORKS, the gears could be designed efficiently. The 
gears can be designed carefully. With the “toolbox” function in SOLIDWORKS, the user can only enter the required properties 
and parameters. To design the gears in SOLIDWORKS, the “Assembly” mode was selected. Then, the “Toolbox” function 
can be selected from the “Design Library” on the right side of the screen. Then, the spur gears were selected from the 
“Toolbox” function. Finally, the software required the properties and parameters such as Module, Number of Teeth, Pressure 
Angle, Face Width, and the gears designing was done as seen in Fig. 8. 
 

 

Fig. 8. Designing gears using the “toolbox” function 
 
     The properties and parameters for gear 1 are tabulated in Table 5 as follows: 
 
Table 5. Properties and parameters for gear 1 
 Driving Driven 
Module 2 2 
Number of teeth 14 62 
Pressure angle 20 20 
Face width 10 10 
Hub Style Type B Type B 
Hub Diameter 22 22 
Overall length 20 20 
Nominal shaft diameter 14 14 
Keyway None None 
Outside diameter (cm) 3.2 12.8 
 

     For the gear 1 driving, the drawings are illustrated in Fig. 9. For the gear 1 driven, the drawings are visualized in Fig. 10 
as follows: 
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Fig. 9. Isometric view of gear 1 driving Fig. 10. Isometric view of gear 1 driven 

 
The properties and parameters for gear 2 are tabulated in Table 6 as follows: 
 
Table 6. Properties and parameters for gear 2 
 Driving Driven 
Module 2 2 
Number of teeth 15 31 
Pressure angle 20 20 
Face width 10 10 
Hub Style Type B Type B 
Hub Diameter 22 22 
Overall length 20 20 
Nominal shaft diameter 14 14 
Keyway None None 
Outside diameter (cm) 5.1 11.56 
 

     For the gear 2 driving and driven, the drawings are illustrated in Fig. 11 and Fig. 12 as follows: 
 

  
Fig. 11. Isometric view of gear 2 driving Fig. 12. Isometric view of gear 2 driven 

 
     The finalized Computer Aided Drawings (CAD) were fabricated using an Odyssey 3D printer. Before the printing process 
started, a few steps needed to be done. First, all the CAD files were converted to STL format. This step was to make sure that 
the files can be imported into Cura. Cura is the software to demonstrate how the printing process is done, as seen in Fig. 1. 
The STL files were imported into Cura to set the printing quality, adjust the printing speed, change the orientation of the 
printing object and control the fill density. Second, the CAD was then saved as Gcode file format. This step was taken so the 
CAD file can be imported into Pronterface. Pronterface is a printer interface for Odyssey 3D printer, as shown in Fig. 12. 
Pronterface was used to control the 3D printer, controlling its nozzle and platform. The Gcode file was imported into 
Pronterface, and the printing process started.  
 
     After modeling the gears, they need to be virtually assembled in SOLIDWORKS, as shown in Fig. 13. This step was to 
make sure all the gears are in the correct size to be fitted together. Other than that, by assembling, it can be seen that all the 
gears can be aligned correctly. Furthermore, this step was taken to visualize how this gearing system looks. 
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Fig. 13. Gearing system assembly Fig. 14. Assembly of VAWT with an automatic 
transmission system 

3.3 A Supervised Machine Learning algorithm for Optimizing the Designed Turbine  
 

     Random forests algorithm (R.F.), which was first proposed by (Ho, 1995), is classified among the most powerful 
classifying algorithms that enjoy using decision trees at the training stage for classification, regression, and various defined 
tasks. One dominant feature of the Random Forest Algorithm that stands out for this research is its high ability to select a 
class by most trees during the classification process. In other words, this method has a high capability to classify different 
groups with high features and is a very efficient method. The Random Forest Algorithm has been widely used in various 
engineering, medical and management problems. The basis of this method is in the classification of different regions by cross-
support vectors. When identifying intersecting lines, try to select the line that has the most confidence margin. The machine 
backup vector method uses various functions to do this. The various kernel functions used in the machine backup vector 
method include exponential, polynomial, and sigmoid cores. 

3.3.1 Libraries of Python 
 
    For this purpose, the following Libraries will be used: 
 

• Numpy: for support for large-scale data and multi-dimensional arrays and matrices 
• Pandas: for using data sets and data frame 
• Scipy: for modules for optimization, linear algebra, integration, interpolation, special functions 
• Matplotlib: for drawing graphical views of the outcomes of the model 
• Sklearn: for importing machine-learning algorithms tools 
• Mlxtend.plotting: for drawing plot, the clusters and figures 

 

3.3.2 Jupyter as the Platform of Python 
 

     Jupyter is one of the most powerful platforms for coding algorithms with Python. It is free and open-source and has been 
widely used throughout the world during the past years. One dominant feature of Jupyter is testing the outcome of each script 
line exactly below it during the coding process. It helps algorithm developers to examine each line before going further.  

3.3.3 Block Diagram of the proposed supportive vector machine algorithm 
 

    Fig. 15 shows the process of developing the supervised machine-learning algorithm: 

 
Fig. 16. The Block Diagram of the Proposed Algorithm 

1 • Importing the Required Libraries

2 • Importing the data set

3 • Feature Selection (Normalizing Features)

4 • Data Preprocessing

5 • Developing the Algorithm

6 • Setting the Parameters of the algorithm

7 • Specify Train and Test Data

8 • Learinign Process

9 • Predict using Test Data

10 • Calculate Algorithm Score

11 • Predicit Using Actual Values
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4. Results and Discussion 
 
     This section will describe and discuss the results obtained from testing a vertical axis wind turbine without an automatic 
transmission system to compare with a vertical axis wind turbine with an automatic transmission system. The vertical axis 
wind turbine testing was conducted in a wind tunnel, and the incoming wind speed is allowed and controlled. The incoming 
wind speed is restricted from 0 m/s to 20 m/s only. The raw data was obtained from the voltage produced by the DC generator 
motor, where NI 9234 and NI LABVIEW were used to read the data from the generator. This section discussed output voltage 
and output power that the VAWT without an automatic transmission system and with an automatic transmission system could 
produce. The voltage data was obtained directly from the generator, while the power data was calculated using its relationship 
with the voltage. The calculations and formulas used were shown in this section. Then, the voltage and power produced were 
plotted in the form of the graph, and the plotted trend of the graphs was discussed briefly in this section. The efficiency of the 
energy harvesting of the vertical axis wind turbine was measured by comparing the produced voltage and power of the vertical 
axis wind turbine with an automatic transmission system and the vertical axis wind turbine without an automatic transmission 
system. The results of the comparison were discussed briefly. 
 
      In this section, a new model will be developed and solved by Random Forest Algorithm for predicting the best medicine 
distribution pattern among the different cities in the U.S. using Python. Python is among the most powerful applications that 
provide a comprehensive and robust basis for machine-learning algorithms. 
The outcomes will be compared with six more supervised machine-learning algorithms in terms of accuracy score, mean of 
absolute error (MAE), and mean of squared errors (MSE).  

4.1 Coding the K-nearest Neighbors Algorithm 

4.1.1 Data in Use 
 

      This section uses a CSV file  containing 30 data of  testing wind turbine with automated transferring system is simulated. 
The dataset will be imported into Python (Table 7). 

Table 7. Dataset in use 
Case Wind Speed RPM Gear ratio Time Voltage(V) Power(W) VAWT Spins Assigned 

gear 
1 8 22.1 4.42 0.2 0 0.007 1 1 
2 10 47.3 2.07 0.4 0.3 0 0 2 
3 11 72.5 1.35 0.6 2 0.6 1 2 
4 13 97.7 1 0.8 5 2 1 2 
5 8 22.1 1 0.4 0 0.003 1 1 
6 10 47.3 2.07 1.2 0.4 0.01 1 2 
7 11 72.5 1 1 3 0.7 1 2 
8 10 47.3 2.07 0.2 0.2 0.005 1 2 
9 8 22.1 1 0.2 0 0.007 1 1 
10 10 47.3 2.07 1 0.3 0.01 1 2 
11 11 47.3 1 0.2 1 0.3 1 2 
12 13 97.7 1 1.2 5 2 1 2 
13 8 22.1 1 0.6 0 0.004 1 1 
14 10 47.3 2.07 0.8 0.4 0.01 1 2 
15 11 72.5 1 0.8 2 0.6 1 2 
16 13 97.7 1 0.6 4 2 1 2 
17 8 22.1 1 1 0.05 0.001 1 1 
18 10 47.3 2.07 0.6 0.3 0.035 1 2 
19 11 72.5 1 1 3 0.7 1 2 
20 10 47.3 2.07 0.2 0.1 0.005 1 2 
21 10 47.3 2.07 0.6 0.2 0.035 1 2 
22 10 47.3 2.07 0.4 0.2 0.01 1 2 
23 11 72.5 1 0.8 2 0.65 1 2 
24 13 97.7 1 0.2 4 1.5 1 2 
25 8 22.1 1 0.8 0.05 0.001 1 1 
26 10 47.3 2.07 0.8 0.3 0.02 1 2 
27 11 72.5 1 0.6 2 0.3 1 2 
28 13 97.7 1 0.8 5 2 1 2 
29 13 97.7 1 0.4 4 1.5 1 2 
30 13 97.7 1 1 5 2 1 2 

 

4.1.2 Descriptive Analysis 
 
      To continue and before any further processing, the data must be described statistically. For this purpose, descriptive 
analysis is done using the Pandas library, as shown in Table 17. 
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Table 8 Descriptive Analysis of the Dataset 
  Case Wind 

Speed RPM Gear ratio Time Voltage (V) Power (W) VAWT 
Spins 

Assigned 
gear 

count 30 30 30 30 30 30 30 30 30 
mean 15.5 10.53 59.06 1.48 0.64 1.66 0.56 0.96 1.8 
std 8.8 1.71 27.07 0.74 0.31 1.86 0.76 0.18 0.41 
min 1 8 22.1 1 0.2 0 0 0 1 
25% 8.25 10 47.3 1 0.4 0.2 0.007 1 2 
50% 15.5 10 47.3 1 0.6 0.4 0.035 1 2 
75% 22.75 11 72.5 2.07 0.8 3 0.7 1 2 
max 30 13 97.7 4.42 1.2 5 2 1 2 

 

     As shown by Table 8, all features are answered fully by the responders. Therefore, there is no need for a data pre-processing 
step.  

4.1.3 The Significant Features 
 
     In this section and before choosing features to be considered in learning process, the important features must be determined. 
For this purpose, we used Shapiro method for ranking the features. The outcomes showed that all features are important and 
must be considered in the learning process (Fig. 16).  

 
Fig. 16. Results of Sharipo Method for the Supervised Machine Learning Method 

4.1.4 Choosing Features and Labels 
 

     In supervised machine learning algorithms before applying the fitting method, the features and label must be specified. For 
this purpose, the Wind Speed, RPM, Gear ratio and Time are considered as the features and voltage is considered as the label. 
Table 9 shows the transformed data typed into the Python.  
 
Table 9. Data Before and After Using Standard Scaler Method 

Xtrain Data  ytrain Data  
array([[ 8.  , 22.1 ,  4.42,  0.2 ], 
       [10.  , 47.3 ,  2.07,  0.4 ], 
       [11.  , 72.5 ,  1.35,  0.6 ], 
       [13.  , 97.7 ,  1.  ,  0.8 ], 
       [ 8.  , 22.1 ,  1.  ,  0.4 ], 
       [10.  , 47.3 ,  2.07,  1.2 ], 
       [11.  , 72.5 ,  1.  ,  1.  ], 
       [10.  , 47.3 ,  2.07,  0.2 ], 
       [ 8.  , 22.1 ,  1.  ,  0.2 ], 
       [10.  , 47.3 ,  2.07,  1.  ], 
       [11.  , 47.3 ,  1.  ,  0.2 ], 
       [13.  , 97.7 ,  1.  ,  1.2 ], 
       [ 8.  , 22.1 ,  1.  ,  0.6 ], 
       [10.  , 47.3 ,  2.07,  0.8 ], 
       [11.  , 72.5 ,  1.  ,  0.8 ], 
       [13.  , 97.7 ,  1.  ,  0.6 ], 
       [ 8.  , 22.1 ,  1.  ,  1.  ], 
       [10.  , 47.3 ,  2.07,  0.6 ], 
       [11.  , 72.5 ,  1.  ,  1.  ], 
       [10.  , 47.3 ,  2.07,  0.2 ], 
       [10.  , 47.3 ,  2.07,  0.6 ], 
       [10.  , 47.3 ,  2.07,  0.4 ], 
       [11.  , 72.5 ,  1.  ,  0.8 ], 
       [13.  , 97.7 ,  1.  ,  0.2 ], 
       [ 8.  , 22.1 ,  1.  ,  0.8 ], 
       [10.  , 47.3 ,  2.07,  0.8 ], 
       [11.  , 72.5 ,  1.  ,  0.6 ], 
       [13.  , 97.7 ,  1.  ,  0.8 ], 
       [13.  , 97.7 ,  1.  ,  0.4 ], 
       [13.  , 97.7 ,  1.  ,  1.  ]]) 
  

array([ 
0.  , 0.3 , 2.  , 5.  , 0.  , 0.4 , 3.  , 0.2 , 0.  , 0.3 , 1.  , 
       5.  , 0.  , 0.4 , 2.  , 4.  , 0.05, 0.3 , 3.  , 0.1 , 0.2 , 0.2 , 
       2.  , 4.  , 0.05, 0.3 , 2.  , 5.  , 4.  , 5.  ]) 
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4.1.5 Determine the Best Share of Test and Train Split Rate 
 

     Choosing the best amount of train and test share split is vital for boosting the accuracy of the machine-learning algorithm. 
It can also show a valuable hint for recognizing the over-fitting or under-fitting. For this purpose, using a 'For' loop, the 
proposed algorithm will be run ten times. In each iteration, the algorithm chooses a specific test and train share. Fig. 17 
indicates that the algorithm's performance will be maximized when the split rate is 0.2, which provides lower possibilities of 
emerging under-fitting and over-fitting.  

 
Fig. 17. The accuracy of train and test data for the proposed algorithm 

4.1.6 Test and Train Data Selection 
 
     This research uses the 'train_test_split' command of the sklearn library, the data is divided into two sections where 80% of 
the data set will be used for training purposes (24), and 20% will be considered for training purposes test data (6). Fig. 18 
shows the dimensions of the 'Xtrain' and 'Xtest' matrices.  
 

 
Fig. 18. Clustering dataset into Train and Test Sets 

4.1.7  Learning (Fitting) Process 
 
      In this research, several machine learning algorithms are taken into account. The aim is to find the best machine learning 
method that can provide a more fitting score and less error for the designed wind turbine. The settings of the classifiers are 
shown in Table 10. 
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Table 10. Settings of the used Supervised Machine-learning Algorithms 
Row Machine-learning Algorithm Used Settings 
1 Linear Regression clf1= linear_model.LinearRegression() 
2 Logistic Regression clf2 = LogisticRegression(random_state=1, solver='newton-cg', multi_class='multinomial') 
3 Random Forest clf3 = RandomForestClassifier(random_state=3, n_estimators=100) 
4 Naive Base (Gaussian NB) clf4 = GaussianNB() 
5 Support Vector Machine clf5 = SVC(gamma='auto') 
6 Multi-Layer Perceptron clf6 = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(8, 3), random_state=1) 
7 Knearest Neighbors clf7=KNeighborsClassifier(n_neighbors=10, p=2,metric='minkowski') 

  

4.1.8 Mean Absolute Error and Mean Squared Error 
 

     One crucial step that must be taken after evaluating the performance of the proposed machine-learning model; and before 
using actual data for predicting the Technological Innovation is to measure the model's accuracy by calculating the errors. For 
this purpose, Mean Absolute Error and Mean Squared Error is used (Table 11): 𝑀𝐴𝐸 ൌ  ቀଵቁ∑ห𝑌௧௦௧ െ 𝑌ௗห        (9) 

𝑀𝑆𝐸 ൌ  ቀଵቁ∑൫𝑌௧௦௧ െ 𝑌ௗ൯ଶ   (10) 

      The reason for using both MAE and MSE is that MAE only measures the model's accuracy without considering the 
direction of the values, and therefore some values may neutralize the effects of other values in the opposite direction. However, 
it can show the average magnitude of the errors in a set of predictions, and therefore MAE should not be ignored (Table 11). 

4.1.9 Comparing the Performance of Different Supervised Machine-learning Algorithms for the Developed Model 
 
      In this section, the patterns offered by the supervised machine-learning algorithms, including Linear Regression, Logistic 
Regression, Random Forest, Naive Base (Gaussian NB), Support Vector Machine, Multi-Layer Perceptron, and K-nearest 
Neighbours will be presented (Table 11).  
 
Table 11. Comparing the Outcomes of Different Supervised Machine-learning Algorithms for the Developed Model 

Metric Linear 
Regression 

Logistic 
Regression 

Random 
Forest 

Naive Base 
(Gaussian NB) 

Support Vector 
Machine 

Multi-Layer 
Perceptron 

K-nearest 
Neighbors 

Accuracy Score 0.785 0.791 0.875 0.875 0.75 0.833 0.708 

Mean Absolute 
Error 0.5 1.333 0.5 0.5 1.333 5.33 0.668 

Mean Squared 
Error 0.5 3.333 

 
0.5 
 

0.5 
 

6.333 
 

34.666 
 

0.772 
 

 
      Table 11 presents the results of comparing different supervised machine-learning algorithms indicating Random Forest 
and Naive Base could provide a base with higher accuracy (0.875) and less Absolute Mean Error and Mean Squared Error at 
the same time (0.5 and 0.5, respectively). The recognized regions of technological innovation by different machine-learning 
algorithms are shown in Fig. 19. 
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Fig. 19. Comparing Clustered Regions by Different Supervised Machine-learning Algorithms 

 
     In Fig. 20, Random Forest Classifier and NB could provide more specific regions. It should be mentioned that the 
complexity in the plots of Random Forest and BN is due to the complexity of the used data set and not over-fitting. The less 
accurate method is Linear Regression since the data pattern is very complex and cannot be identified easily by linear lines. 
Other methods are also provided, but their plots reveal that they are under-fitted. Therefore, using the data used in this model, 
Random Forest Algorithm seems to draw the best clustering regions. 

4.1.10 Validating the proposed RFC Model 
 
      In order to evaluate the performance of the proposed RFC algorithm for predicting the turbine spin according to the wind 
speed, several series are given. The outcomes are indicated in Fig. 20. 
 
      MAE results indicate that the proposed method could successfully predict and classify most of the validating data (0.871). 
Using 637 data for the training model, the achievements are noticeable and worthy. Moreover, it can be seen that while the 
model is confronted with new conditions, which were not defined for it during the training process, it can still successfully 
determine the class of the technological innovation.   
 
     The confusion matrix for the proposed method is shown by Fig. 20: 



 54 

 

 
 

 

Fig. 20. Confusion matrix for the proposed method Fig. 21. Dataset for Validating the proposed RFC 
 

     Fig. 21 indicated that the proposed method is sensitive to voltage 2 and 3 meaning that in some cases while the real class 
is 2v, the algorithm might determine it as 3v. However, since in most of the rest cases, the predicted classes are as true classes, 
the algorithm is reliable enough to be used. 
 
5 Conclusion 
 
     The efficiency of Vertical Axis Wind Turbines can be improved to give better performance in energy harvesting in terms 
of its transmission system. Gear ratio plays a vital role in transmission systems, as in motorcars, motorcycles and bicycles. In 
addition, the centrifugal clutch majorly contributed to the automatic transmission system.  
 
     In this research, an automatic transmission system in VAWT is designed. Then, a supervised machine-learning algorithm 
is proposed for optimizing a designed automatic transmission system for vertical axis wind turbines.  
 
     The outcomes indicated that using the machine learning algorithm, the designed automatic transmission system could 
recognize the wind speed and automatically change its gear ratio by shifting the gears. Consequently, the positive engagement 
of gears during shifting is achieved which causes the VAWT to spin at the correct gear ratio during the wind speed 
inconsistency. 
 
      The results showed that the application of the automatic transmission system in VAWT has improved energy efficiency 
significantly (up to 5 V) in the Vertical Axis Wind Turbine and reduced energy loss. Furthermore extension by fabricating 
the system using industrial-level material instead of fabricating using a 3D printer is suggested. 
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