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 In real-world markets, supply chain costs often fluctuate over time due to the contango and backward-
ation effects, making multi-period supply chain planning complex and critical. This paper presents a 
multi-period supply chain optimization model that explicitly incorporates these effects into cost fore-
casting and decision-making. A multi-period supply chain model is developed, considering the cost 
uncertainty introduced by contango and backwardation. An integrated polynomial regression fuzzy 
method is proposed to address this problem by predicting future fluctuations in purchasing, ordering, 
and logistics costs. A mixed-integer linear programming (MILP) model is formulated to minimize the 
total supply chain cost across multiple periods. Moreover, improving the hybrid genetic algorithm 
(IHGA) is proposed to solve this problem. The performance of the proposed IHGA is triggered by 
integrating trust region, quasi-Newton, and pattern search methods. Response Surface Methodology 
(RSM) determines the optimal parameter settings and hybridization structure. A real-world case study 
involving surgical instrument manufacturing companies validates the proposed approach. The results 
highlight optimal supplier selection and order allocations for each period, and performance compari-
sons reveal that the IHGA outperforms traditional algorithms in terms of cost efficiency, computa-
tional time, and convergence behavior. 
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1. Introduction 
 
Supply chains represent the structured flow of raw materials, products, services, and information across multiple entities. Effective 
supply chain management ensures product availability, timely delivery, and cost control. While various supply chains have been 
studied, ranging from agricultural produce to industrial components, the supply chain for life-saving products such as medicines, 
blood, and surgical instruments remains paramount. Within this domain, selecting appropriate suppliers is a strategic decision that 
significantly influences product quality. Specifically, procuring raw materials with the correct chemical composition directly im-
pacts surgical outcomes in the surgical instrument industry. Therefore, supplier selection and raw material allocation must be 
handled with precision and foresight. Supply chain operations are inherently multi-period. The purchasing, ordering, and logistics 
costs vary over time due to technological changes, market fluctuations, evolving product trends, and quality requirements. Typi-
cally, long-term contracts between manufacturers and clients fix selling prices, even though actual production costs continue to 
change, often eroding profit margins. While many traditional models assume constant costs throughout all periods, this assumption 
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rarely holds in real-world applications (Čuček et al., 2014; Zeballos et al., 2014). Instead, cost structures evolve due to uncertainty, 
necessitating dynamic and responsive supply chain strategies (Akbari & Karimi, 2015; Du et al., 2024).  
 
Recent studies in multi-period supply chain modeling have primarily focused on uncertainty in demand, production, or capacity 
while overlooking cost-side uncertainties. For example, Vicente et al. (2025) and Soleimani et al. (2013) developed multi-period 
and multi-echelon models with fixed costs, limiting their ability to capture real-time financial variability. Similarly, approaches 
proposed by Pasandideh et al. (2015) and Özceylan and Paksoy (2013) focused on demand and capacity uncertainties using fuzzy 
environments but retained fixed cost structures. Although effective in constrained environments, these models fall short when 
applied to fluctuating markets where costs are neither stable nor predictable. The concepts of contango and backwardation offer a 
realistic representation of such uncertainty. In contango, the future cost of a commodity or service is higher than its current value, 
while in backwardation, future prices are lower than spot prices. These phenomena are commonly observed in fuel prices, raw 
material markets, and labor costs. For instance, procurement and quality inspection staff salaries follow a contango trend due to 
organizational increment policies. Conversely, the cost of certain raw materials, such as AISI 304 steel, fluctuates between con-
tango and backwardation depending on external factors like international policies, environmental regulations, and supply disrup-
tions. 
 
Despite the practical importance of these cost fluctuations, they remain underexplored in the literature. Notably, Awudu and Zhang 
(2013) introduced cost uncertainty in biofuel supply chains, yet their model lacked the integration of price trend behaviors like 
contango and backwardation. Other works by Zeballos et al. (2014), Osmani and Zhang (2013), and Rodriguez et al. (2014) 
examined uncertainty in supply and demand, overlooking the dynamic nature of cost progression over time. Furthermore, models 
that consider future costs often assume strictly increasing or decreasing trends (Lalmazloumian et al., 2016; Marzband et al., 2015; 
Saffar & Razmi, 2015), which do not reflect the mixed nature of real-world pricing behavior. To address this gap, this study 
proposes a multi-period supply chain optimization model incorporating contango and backwardation effects into cost forecasting. 
An integrated polynomial regression fuzzy method is employed to model uncertain cost trends by combining historical regression-
based predictions with fuzzy logic to capture deviations caused by unpredictable externalities. This dual-layer modeling ensures 
a more realistic forecast of ordering, purchasing, and transportation costs. 
 
Numerous artificial intelligence techniques have been employed to solve complex supply chain network problems, particularly 
where traditional optimization methods fail to handle uncertainty and system complexity. Jamrus et al. (2015) integrated particle 
swarm optimization (PSO) and the GA to solve a supply chain network problem to minimize the overall supply chain costs. 
Mousavi et al. (2015) used a modified fruit fly algorithm to solve a location allocation-inventory control problem involving a 
distributer-retailer network. Fathian et al. (2018) used an improved electromagnetism-like algorithm to solve the problems of 
location-allocation and transportation planning in a supply chain. Garg (2016) used a hybridized GA and PSO to solve various 
constraint optimization problems. Changdar et al. (2015) improved the genetic algorithm (GA) by fine-tuning its parameters, 
including crossover and mutation. While GAs are widely applied in supply chain and logistics optimization (Afrouzy et al., 2016; 
Meena & Sarmah, 2013), their performance often deteriorates under constraint-heavy problems. To overcome this, the study de-
velops an IHGA that integrates fine-tuning via response surface methodology (RSM) and hybridization with pattern search, quasi-
Newton, and trust region methods. Prior research has treated tuning and hybridization independently, but this study demonstrates 
the benefit of combining both strategies to enhance cost, convergence speed, and computational efficiency. The proposed approach 
is validated through a real-world case study involving surgical instrument manufacturing firms. This research offers a novel con-
tribution by integrating contango and backwardation effects into future cost prediction for a multi-period surgical supply chain, 
modeled using an integrated polynomial regression fuzzy method together with IHGA optimization methodology. The findings 
illustrate that modeling cost-side uncertainties with contango and backwardation effects yields more practical and flexible supply 
chain strategies, ultimately supporting better supplier decisions and resource allocations over time. 
 
The remainder of this paper is organized as follows: Section 2 comprehensively describes the problem and the corresponding 
mathematical model. Section 3 presents a detailed explanation of the proposed IHGA. Section 4 discusses the computational 
experiments and analyzes the results obtained. Finally, Section 5 concludes the paper and outlines potential directions for future 
research. 
 
2. Problem description and mathematical model 
 
The first phase of this research focuses on developing the mathematical model. Each product and service within the selected supply 
chain is critically analyzed in this phase, and future cost trends are modeled considering uncertainty. An integrated polynomial 
regression fuzzy method is proposed to represent the uncertainty arising from contango and backwardation conditions. This mod-
eling approach leads to a mixed-integer linear programming (MILP) model designed to minimize total supply chain costs across 
multiple time periods. The supply chain consists of a set of suppliers and manufacturers. Manufacturers procure raw materials 
from suppliers and convert them into final products. The supply of raw materials is not a one-time event but a recurring process 
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that unfolds over multiple periods. A fundamental aspect of supply chain management is selecting the most suitable suppliers to 
fulfill demand efficiently. However, suppliers that perform well in one time period may not remain optimal in subsequent periods 
due to fluctuations in cost, delivery time, and product quality. Therefore, supplier selection must be reassessed periodically to 
ensure total supply chain costs are minimized across the planning horizon. Three scenarios are considered to capture the nature of 
cost fluctuations: contango, backwardation, and a mixed condition combining both.  
 
Case 1- Contango: Contango describes a situation where future prices of products or services are higher than current (spot) prices. 
This condition is typically observed in scenarios involving predictable cost growth. For instance, ordering costs in a supply chain 
often follow a contango pattern because they are influenced by employee salaries, which generally increase over time. Therefore, 
future labor costs are higher than spot costs (Ribeiro & Hodges, 2005).  
 
Case 2- Backwardation: Backwardation represents the inverse condition where future prices are lower than spot prices. This is 
often seen in technology products like computers or mobile phones, where innovation and competition drive prices downward 
over time (Miffre, 2000). 
 
Case 3- Contango-backwardation: In practice, however, many cost elements do not follow a singular pattern. Instead, they 
exhibit mixed trends—commonly referred to as contango-backwardation—driven by complex external factors such as political 
decisions, environmental regulations, international trade laws, and market volatility. For example, logistics costs, which are highly 
sensitive to fuel prices, often follow this mixed pattern. Similarly, the price of AISI 304 steel, a key raw material in surgical 
instruments, fluctuates in response to multiple global influences, although with relatively lower volatility than fuel (Benth et al., 
2008). Fig. 1 illustrates these three cost trends within a multi-period supply chain, i.e., contango, backwardation, and contango-
backwardation. 
 
Several assumptions are made to develop a realistic and practical model. The demand for raw materials in the current period is 
known, while future demand is forecasted. Oil price variations and steel price fluctuations are treated as uncertain variables across 
all time intervals. Manufacturers are assumed to have their transportation systems, and their purchasing budgets are known in 
advance for each period. Salary increments for employees occur at fixed rates, and both supplier capacities and the number of 
employees at each manufacturing facility remain constant over time. Hiring or firing during the planning horizon is not permitted. 
These assumptions enable the formulation of a structured yet flexible model that accommodates real-world uncertainties while 
aiming to minimize the total supply chain costs over multiple time periods. 
 

 
Fig. 1. Multi-period supply chain model with contango and backwardation effects 
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Table 1  
Symbols and variables. 

Notations Meanings 
p Material part index 
s Supplier index 
t Time period index 
m Manufacturer index 
i Time interval index 
j Employee type index 
k Algorithm type index 
r Performance measure index 
OCpmst Ordering cost of part material “p” in time period “t” by supplier “m” to supplier “s” 
NOpsmt Number of orders of part material “p” placed to supplier “s” by manufacturer “m” in time pe-

riod “t” 
Wjmt The annual wage of employee type “j” of manufacturer “m” in time period “t” 
Ljmt Number of employees type “j” of manufacturer “m” in time period “t” 
CPQ Total cost of employees involved in purchasing and quality inspection   
𝛿𝛿𝑖𝑖𝑖𝑖𝑤𝑤 Change in salary of employee “j” in the interval “i” 
PCpst Purchasing cost of part material “p” from supplier “s” in time period “t” 
𝛿𝛿𝑖𝑖
𝑤𝑤𝑤𝑤 Change in purchasing price of part material in the interval “i” 
𝛿𝛿𝑖𝑖𝑜𝑜 Change in oil price in interval “i” 
𝛼𝛼  Intercept of regression model  
𝛽𝛽  Slope of regression model 
𝜀𝜀 Regression error 
𝜇𝜇𝑥𝑥 Membership function of fuzzy variable “x” 
A Pessimistic value of triangular function  
B Optimistic value of triangular function 
M Most likely value of triangular function 
𝜏𝜏𝜏𝜏 Transportation cost 
𝑂𝑂𝑃𝑃𝑡𝑡  Oil price per liter in time period “t” 
𝛾𝛾 Oil consumption rate 
𝑑𝑑𝑠𝑠𝑠𝑠 Distance between supplier and manufacturer 
V Average speed of vehicle 
Dpmt Demand of part material “p” from manufacturer “m” in time period “t” 
𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 Capacity of supplier “s” for part material “p” in time period “t” 
𝐴𝐴𝐵𝐵𝑚𝑚𝑚𝑚  Budget of manufacturer “m” in time period “t” for the purchase of raw material 
𝑀𝑀𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Maximum order size that supplier “s” can supply to manufacturer “m” in time period “t” 
ATm Maximum allowable delivery time by supplier to manufacturer 
ARp Maximum allowable rejection rate 
AVrk Achieved value of performance measure “r” of algorithm “k”  
BVr Best value of performance measure “r” from set of “K” algorithms 
Grk Gap between performance “r” of algorithm “k”  

Ipsmt = �1 if supplier “𝑠𝑠” provided material “p”  to munufacutrer “m” in time period “𝑡𝑡”
0 otherwise

� 
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The total cost in the supplier selection and allocation problem comprises three major components: purchasing, logistics, and or-
dering costs. The ordering cost includes the salaries of purchase managers and marketing staff and the in-house quality inspection 
costs incurred when raw materials arrive at the manufacturer. Two types of employees are directly associated with ordering costs. 
The first type consists of executives involved in preparing purchase requisitions and orders and finance managers responsible for 
processing payments to suppliers. The second type comprises laborers assigned to inspect raw materials' quality upon arrival at 
the production facility. Since ordering costs depend on employee salaries, which are subject to periodic increments, these tend to 
rise over time. The ordering cost for each period can be calculated using the following equations. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  +  (𝑖𝑖𝑖𝑖 −
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  

(1) 

𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

× 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 
(2) 

𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1

𝑁𝑁𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝
�𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 × 𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗� 

(3) 

𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �� ��
1

𝑁𝑁𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝
�𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 × 𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗� × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇

𝑡𝑡=1

𝑀𝑀

𝑚𝑚=1

𝑆𝑆

𝑠𝑠=1

𝑃𝑃

𝑝𝑝=1

 
(4) 

 
Eq. (1) defines the total ordering cost. Eq. (2) calculates the per-unit ordering cost based on annual salary and the number of orders. 
Eq. (3) expresses this cost in terms of wage and labor variables, and Eq. (4) represents the aggregated ordering cost across all part 
types, suppliers, manufacturers, and time periods. 
 
2.1 Contango effects on ordering costs   
 
In traditional multi-period models, cost is assumed to be fixed in all periods. In reality, however, labor costs are not the same 
across time because salary incremental policies in each organization ensure that organizations maintain their current workforce. A 
contango situation occurs when the spot price of labor is lower than the future price of labor [24]. If we consider the salary 
incremental policy of organizations, then labor costs follow contango effects.  If “δ_y^w” is the percentage of salary increment in 
time period “t”, then adding this policy in Equation (4) yields Equation (5). Equation (5) is valid when the salary increment remains 
constant in all time periods for all types of employees. Finally, we get Equation (6), which is the ordering cost considering the 
contango effect. 
 
𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ ∑ ∑ ∑ ∑ 1

𝑁𝑁𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 × 𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗�

𝐽𝐽
𝑗𝑗=1

𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝐽𝐽
𝑗𝑗=1

𝑃𝑃
𝑝𝑝=1 × (1 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑤𝑤)𝑡𝑡   (5) 

𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ ∑ ∑ ∑ ∑ 1
𝑁𝑁𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝

�𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 × 𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗�
𝐽𝐽
𝑗𝑗=1

𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝐽𝐽
𝑗𝑗=1

𝑃𝑃
𝑝𝑝=1 × (1 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑤𝑤)𝑡𝑡 × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   (6) 

 
2.2 Contango and backwardation in purchasing costs 
 
Contango and backwardation are opposite phenomena to one another. In a backwardation situation, the future prices of products 
or processes are less than the spot price. Various commodities and processes are subject to either contango or backwardation 
phenomena. In a surgical supply chain, the price of steel follows a mixed situation of contango and backwardation because there 
are many determinants of steel prices, including changes in technology, market competition, alternative materials, and organiza-
tional policies. Therefore, modeling the price of steel under only one contango or backwardation would not be feasible. However, 
the price of steel can be modeled using both situations. Past prices across the previous few years must be known to predict future 
prices. Here, we propose an integrated polynomial regression fuzzy model for predicting future prices in contango-backwardation 
situations. This method consists of the following steps. Let “δ ” be the price difference between two consecutive periods. In other 
words, it is the difference in price in an interval of two successive time periods. 
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𝛿𝛿𝑖𝑖
𝑝𝑝 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡−1) = 𝛿𝛿1

𝑝𝑝

𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡−1) − 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡−2) = 𝛿𝛿2
𝑝𝑝

𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡−2) − 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡−3) = 𝛿𝛿3
𝑝𝑝

.

.
𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡−(𝑛𝑛−1)) − 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡−𝑛𝑛) = 𝛿𝛿𝑛𝑛

𝑝𝑝⎦
⎥
⎥
⎥
⎥
⎥
⎤

   (7) 

 

As there are “n” past intervals, so we get a matrix of size “𝑛𝑛 × 1”, which is shown in Eq. (7). By using the values of “𝛿𝛿𝑖𝑖
𝑝𝑝”, we can 

establish a polynomial regression model with parameter “𝛽𝛽 ” and error “𝜀𝜀 ” as shown in Eq. (8). To formulate the future purchasing 
cost formula, we can write the following relationship between spot and future prices.  

𝛿𝛿𝑖𝑖+1
𝑝𝑝 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑡𝑡𝑖𝑖+12 + 𝛽𝛽1 × 𝑡𝑡𝑖𝑖+13 . . . . . . . . . +𝛽𝛽1 × 𝑡𝑡𝑖𝑖+1𝑘𝑘 + 𝜀𝜀   (8) 

𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × ∏ �1 + 𝛿𝛿𝑖𝑖+1
𝑝𝑝 �          𝑡𝑡 = 2,3, … ,𝑇𝑇𝑇𝑇

𝑡𝑡=1     (9) 

Eq. (9) shows the predicted future purchasing price of part material “p” at time period “t”, but it does not consider uncertainty in 
price changes. Price changes are uncertain because of the involvement of various factors, such as government policies, market 
competitiveness, the environment, and other unknowable factors. Any price change must be treated as a fuzzy variable to model 
this uncertainty. The fuzzification process consists of the following steps. 
 
2.2.1 Determination of the membership function 
 
Determination of the membership function is the first step in the fuzzification process. The membership function shows the shape 
of the curve within which the value of an uncertain variable lies. The most commonly used membership functions are triangular 
and trapezoidal, but their use depends on the nature of the data. In this problem, we have analyzed past material data for parts 
(AISI 204 stainless steel), finding that it follows the triangular membership function. Equation (10) shows the triangular member-
ship function. Figure 1 is the graphical representation of a membership function in which “a, b and m” are the parameters of the 
membership function. Because “ 1

p
iδ +  ” is the fuzzy variable, 1 1

p
ia δ += − ∆ , 1

p
im δ += , and 1 2

p
ib δ += + ∆ . Inserting values of 

“a, b and m” in Eq. (10), we obtain the final membership function for uncertain changes in price as shown in Eq. (11). 
 

𝜇𝜇𝑥𝑥 = �

𝑥𝑥−𝑎𝑎
𝑚𝑚−𝑎𝑎

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑚𝑚
𝑏𝑏−𝑥𝑥
𝑏𝑏−𝑚𝑚

𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑏𝑏
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�   

(10) 

𝜇𝜇𝑥𝑥(𝛿𝛿𝑖𝑖+1
𝑝𝑝 ) =

⎩
⎪
⎨

⎪
⎧𝑥𝑥−𝛿𝛿𝑖𝑖+1

𝑝𝑝 +𝛥𝛥1)

𝛥𝛥1
𝛿𝛿𝑖𝑖+1
𝑝𝑝 − 𝛥𝛥1 ≤ 𝑥𝑥(𝑖𝑖+1) ≤ 𝛿𝛿𝑖𝑖+1

𝑝𝑝

𝛿𝛿𝑖𝑖+1
𝑝𝑝 +𝛥𝛥2−𝑥𝑥

𝛥𝛥2
𝛿𝛿𝑖𝑖+1
𝑝𝑝 ≤ 𝑥𝑥(𝑖𝑖+1) ≤ 𝛿𝛿𝑖𝑖+1

𝑝𝑝 − 𝛥𝛥2
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

  

(11) 

 
Fig. 1. Triangular membership function 
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2.2.2 Fuzzification  
 
In consideration of “𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑦𝑦” and “𝛿𝛿𝑝𝑝 = 𝑥𝑥 ”, Eq. (11) changes to Eq. (12). If we consider “t=1”, then Eq. (12) reduces to Eq. 
(13). By solving Eq. (13) for the value of “x (i+1)”, we get Eq. (14). Putting the value of “x (i+1)” from Eq. (14) to the limits of Equ. 
(11), we get Eqs. (15-16). We get Eqs. (15-16) from Eqs. (17-19). 
 
𝑦𝑦 = 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × ∏ (1 + 𝑥𝑥(𝑖𝑖+1)

𝑇𝑇
𝑡𝑡=1 )                                    𝑡𝑡 = 2,3, . . . ,𝑇𝑇    (12) 

𝑦𝑦 = 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × �1 + 𝑥𝑥(𝑖𝑖+1)�                                              𝑡𝑡 = 2,3, . . . ,𝑇𝑇    (13) 

𝑥𝑥(𝑖𝑖+1) = 𝑦𝑦−𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1

   (14) 

(𝛿𝛿𝑖𝑖+1
𝑝𝑝 − 𝛥𝛥1) × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑦𝑦 ≤ 𝛿𝛿𝑖𝑖+1

𝑝𝑝 × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝     (15) 

𝛿𝛿𝑖𝑖+1
𝑝𝑝 × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑦𝑦 ≤ (𝛿𝛿𝑖𝑖+1

𝑝𝑝 + 𝛥𝛥2) × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 (16) 
𝑦𝑦1 = (𝛿𝛿𝑖𝑖+1

𝑝𝑝 − 𝛥𝛥1) × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝    (17) 

𝑦𝑦2 = 𝛿𝛿𝑖𝑖+1
𝑝𝑝 × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝   (18) 

𝑦𝑦3 = (𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 𝛥𝛥2) × 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 + 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 (19) 

 
2.2.3 Defuzzification 
 
Defuzzification converts a fuzzified model to a crisp model. There are many methods for defuzzification, but the centroid method 
is extensively utilized because it is easy to use. Eq. (20) shows the center of gravity formula. Using Equations (17-20), we compute 
the final crisp model following defuzzification as given in Eq. (21) and Eq. (22). If we consider time period “T”, then this becomes 
Eq. (23), as follows, 
 

𝑦𝑦 =
∑ 𝑦𝑦𝑗𝑗
𝐽𝐽
𝑗𝑗=1

𝐽𝐽
    

(20) 

𝑦𝑦 = 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × �(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) + (𝛥𝛥2−𝛥𝛥1)

3
�    (21) 

𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × �(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) + (𝛥𝛥2−𝛥𝛥1)

3
�  (22) 

𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × ∏ �(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) + �𝛥𝛥2

𝑝𝑝−𝛥𝛥1
𝑝𝑝�

3
�𝑇𝑇

𝑡𝑡=1    (23) 

 
2.3 Transportation costs with contango-backwardation effects 
 
The costs of transportation depend mainly on the price of fuel. Changes in oil prices also follow contango-backwardation effects, 
as oil prices fluctuate significantly due to global market competition, political, and geographical factors. Eq. (24) shows the rela-
tionship between the spot price and the future price of fuel oil. As changes in oil prices are uncertain, oil prices are also treated as 
a fuzzy variable. The triangular membership function is found based on past oil price data. The same processes of fuzzification 
and defuzzification are repeated for Eq. (24). Finally, we get Eq. (25). Eq. (26) is the transportation cost function. Inserting the 
value of “OCpst” in Equation (26), we get Eq. (27). The final function of the purchasing cost is represented in Eq. (28). By com-
bining Eq. (26) and Eqs. (27-28), we get the final total cost function as given in Eq. (29). 
 
𝑂𝑂𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑂𝑂𝑃𝑃𝑝𝑝𝑝𝑝1(∏ (1 + 𝛿𝛿𝑖𝑖+1𝑜𝑜 )𝑇𝑇

𝑡𝑡=1 )    (24) 

𝑂𝑂𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑂𝑂𝑃𝑃𝑝𝑝𝑝𝑝1 × ��(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) +

(𝛥𝛥2𝑜𝑜 − 𝛥𝛥1𝑜𝑜)
3

�
𝑇𝑇

𝑡𝑡=1

 (25) 

𝜏𝜏𝜏𝜏 = ∑ ∑ ∑ ∑ 𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝛾𝛾 × 𝑑𝑑𝑠𝑠𝑠𝑠𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝑆𝑆
𝑠𝑠=1

𝑃𝑃
𝑝𝑝=1      (26) 

𝜏𝜏𝜏𝜏 = ∑ ∑ ∑ ∑ �𝛾𝛾 × 𝑑𝑑𝑠𝑠𝑠𝑠 × 𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝1 × ∏ �(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) + �𝛥𝛥2

𝑜𝑜−𝛥𝛥1
𝑜𝑜�

3
�𝑇𝑇

𝑡𝑡=1 � × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝑆𝑆
𝑠𝑠=1

𝑃𝑃
𝑝𝑝=1    (27) 
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𝜌𝜌𝜌𝜌 = ����𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × ��(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) +

�𝛥𝛥2
𝑝𝑝 − 𝛥𝛥1

𝑝𝑝�
3

�
𝑇𝑇

𝑡𝑡=1

𝑇𝑇

𝑡𝑡=1

𝑀𝑀

𝑚𝑚=1

𝑆𝑆

𝑠𝑠=1

𝑃𝑃

𝑝𝑝=1

× 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (28) 

𝑇𝑇𝑇𝑇 = �����
1

𝑁𝑁𝑂𝑂𝑝𝑝𝑝𝑝
× {(𝑊𝑊𝑒𝑒 × 𝐿𝐿𝐸𝐸) + (𝑊𝑊𝑜𝑜 × 𝐿𝐿𝑂𝑂)} × (1 + 𝛥𝛥𝑡𝑡)𝑡𝑡� × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇

𝑡𝑡=1

𝑀𝑀

𝑚𝑚=1

𝑆𝑆

𝑠𝑠=1

𝑃𝑃

𝑝𝑝=1

 

+�� ���𝛾𝛾 × 𝑑𝑑𝑠𝑠𝑠𝑠 × 𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝1 × ��(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) +

(𝛥𝛥2𝑜𝑜 − 𝛥𝛥1𝑜𝑜)
3

�
𝑇𝑇

𝑡𝑡=1

� × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇

𝑡𝑡=1

𝑀𝑀

𝑚𝑚=1

𝑆𝑆

𝑠𝑠=1

𝑃𝑃

𝑝𝑝=1

 

∑ ∑ ∑ ∑ �𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × ∏ �(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) + �𝛥𝛥2

𝑝𝑝−𝛥𝛥1
𝑝𝑝�

3
�𝑇𝑇

𝑡𝑡=1 �𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1

𝑆𝑆
𝑠𝑠=1

𝑃𝑃
𝑝𝑝=1 × 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝     

(29) 

2.4 Constraints 
  
∑ 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆
𝑠𝑠=1 = 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝∀𝑝𝑝;∀𝑚𝑚;∀𝑡𝑡    (30) 

� 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ �𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑀𝑀

𝑚𝑚=1

∀𝑝𝑝;∀𝑠𝑠;∀𝑡𝑡 
(31) 

��� �𝑃𝑃𝐶𝐶𝑝𝑝𝑝𝑝1 × ��(𝛿𝛿𝑖𝑖+1
𝑝𝑝 + 1) +

�𝛥𝛥2
𝑝𝑝 − 𝛥𝛥1

𝑝𝑝�
3

�
𝑇𝑇

𝑡𝑡=1

� × 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑀𝑀

𝑚𝑚=1

𝑆𝑆

𝑠𝑠=1

𝑃𝑃

𝑝𝑝=1

≤ 𝐴𝐴𝐵𝐵𝑡𝑡∀𝑡𝑡 
(32) 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑀𝑀𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∀𝑝𝑝;∀𝑠𝑠;∀𝑚𝑚;∀𝑡𝑡 (33) 

𝑑𝑑𝑚𝑚𝑚𝑚
𝑣𝑣

× 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝐴𝐴𝐴𝐴∀𝑝𝑝;∀𝑠𝑠;∀𝑚𝑚;∀𝑡𝑡 
(34) 

𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝐴𝐴𝑅𝑅𝑝𝑝∀𝑝𝑝;∀𝑠𝑠;∀𝑚𝑚;∀𝑡𝑡 (35) 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 0∀𝑝𝑝;∀𝑠𝑠;∀𝑚𝑚;∀𝑡𝑡 (36) 

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {0,1}∀𝑝𝑝;∀𝑠𝑠;∀𝑚𝑚;∀𝑡𝑡 (37) 

Eq. (25) is the objective function of the total cost, which is composed of ordering, purchasing, and transportation costs with 
contango and backwardation effects. Eq. (26) shows the demand constraint, with demand being generated from the manufacturer. 
The constraint in Eq. (27) represents the capacity of each supplier to supply parts to the manufacturer. In contango and backward-
ation situations, fluctuations in budget increase dramatically. Accordingly, we have introduced a budget constraint in Eq. (28), 
which restricts costs in the budget. Eq. (29) shows the maximum order a supplier can supply to a manufacturer in time period “t”. 
Logistic time constraints are represented in Eq. (30). A defect rate measures steel quality; accordingly, Eq. (31) ensures that the 
defect rate is less than the acceptable limit. Eq. (32) is a non-negativity constraint, and Eq. (33) shows the binary variable.  
 
3. Proposed metaheuristic approach 
 
A genetic algorithm (GA) is an evolutionary computation method widely used to solve complex optimization problems. Darwinian 
natural selection principles inspire it and operate on a population of individuals, where each individual represents a feasible solu-
tion. Through genetic operations—such as selection, crossover, and mutation—a new generation is produced iteratively until the 
optimal or near-optimal solution is achieved. The GA has been extensively applied in supply chain optimization problems (Afrouzy 
et al., 2016; Meena & Sarmah, 2013; Soleimani et al., 2013). However, its performance degrades when applied to constrained 
problems, especially equality constraints. Prior studies have improved GA performance by fine-tuning its parameters or hybridiz-
ing it with other algorithms to address this. However, these studies explored only one improvement avenue: fine-tuning or hybrid-
ization. In contrast, the proposed methodology introduces a combined enhancement approach: simultaneous fine-tuning and hy-
bridization, thereby capturing both benefits. 
 
In this methodology, we first identify the GA parameters with the most significant influence on performance: population size and 
crossover rate. A small population size may reduce computational time but compromise the quality of solutions. Besides, a large 
population size increases computational time with a higher likelihood of convergence to optimal solutions. Similarly, a high 
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crossover rate enhances population diversity, reduces the required generations, and increases computational overhead. Likewise, 
hybridizing GA with local search algorithms improves solution quality but adds to computational cost. Therefore, an optimal 
balance among these parameters is crucial. To achieve this balance, we employ RSM. The input factors in RSM include population 
size, crossover rate (both continuous), and the choice of hybrid function (categorical). The output responses measured are total 
cost, computational time, and the number of generations/iterations required for convergence.  
 

The steps involved in our proposed methodology are as follows. First, we identify the GA parameters that significantly influence 
performance regarding objective function value, computational time, and the number of generations. This study selects population 
size and crossover rate as the most impactful parameters. Next, we determine which algorithms are suitable candidates for hybrid-
ization with GA. For this purpose, pattern search, trust region, and quasi-Newton methods are chosen. These hybrid functions are 
treated as a categorical factor with three defined levels. In contrast, population size and crossover rate are considered continuous 
variables. A central composite design (CCD) under the response surface methodology (RSM) framework is employed to structure 
the experimental setup for parameter tuning. The GA is then executed for each experimental run, and corresponding responses, 
namely, total cost and computational time are recorded. Using the collected data, response surfaces are generated to model the 
relationships between the input parameters and performance outcomes. These surfaces extract optimal values of the crossover rate, 
population size, and the most effective hybrid function. The GA is then hybridized using the best-performing function, and the 
optimal parameter values are applied. If termination criteria are met, the process is terminated. Otherwise, the tuning cycle is 
repeated, starting from the experimental design phase. The step-by-step procedure for the implementation of the proposed IHGA 
is given below. 

Algorithm: Steps of proposed IHGA 
Begin IHGA 
// Step 1: Identify GA Parameters 
Define key parameters: population size, crossover rate 
Select candidate hybrid functions: (Pattern Search, Trust Region, Quasi-Newton) 
// Step 2: Parameter Classification 
Classify: 
    - Population size and crossover rate → Continuous 
    - Hybrid function → Categorical 
// Step 3: Experiment Design via RSM 
Use Central Composite Design (CCD) to structure experimental runs 
For each parameter combination: 
    Run GA with selected hybrid function 
    Record performance: cost and computational time 
// Step 4: Analyze Results 
Construct response surfaces 
Identify optimal values of population size, crossover rate, and best hybrid function 
// Step 5: Execute Optimized GA (IHGA) 
Initialize population with optimal population size 
While termination criteria not met: 
    Select parents 
    Apply crossover (with optimal rate) 
    Apply mutation 
    Evaluate offspring 
    Select individuals for next generation 
Apply the best hybrid function for local refinement 
// Step 6: Evaluate IHGA Performance 
If termination criteria is met: 
    Terminate 
Else: 
    Return to Step 3 and repeat tuning 
End IHGA 

 
3.1 Example case problem 
 
A real-world case study involving a group of surgical companies is presented to solve the formulated mathematical model using 
the proposed approach. These companies are based in Sialkot, Pakistan, and operate three manufacturing plants that produce 
surgical instruments, including knife handles, scissors, forceps and clamps, retractors, suction tubes, orthopedic instruments, and 
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cardiac, vascular, and thoracic instruments. The manufacturing processes rely on various grades of stainless steel (AISI 302–AISI 
316), depending on the specific product type. In particular, AISI 304 steel is used to produce scissors, representing the highest 
volume of orders the group receives. The companies manage their logistics and use in-house transportation to collect raw materials 
from suppliers. The average fuel consumption is 0.0385 liters per kilometer, with an average vehicle speed of 70 kilometers per 
hour. Company executives, including the CEO, have expressed concern about the uncertain fluctuations in AISI 304 steel and 
diesel oil prices over time. These price changes significantly impact profitability, especially since customers often establish long-
term price agreements. As production costs rise—driven by variability in raw material and fuel prices—the profit margin narrows, 
making it increasingly difficult to maintain financial stability. The group recognizes the need for strategic supply chain planning 
over multiple periods, specifically over a five-year horizon. This planning must incorporate certain and uncertain elements: certain 
increases in ordering costs due to employee salary increments and uncertain variations in purchasing and transportation costs 
driven by external market dynamics. 
 
The plan is constrained by a fixed budget of $30,000,000, a maximum delivery time of six hours, and an acceptable quality 
threshold defined by a maximum rejection rate of 3%. The annual forecasted demand for AISI 304 steel for each manufacturer 
over the planning horizon is presented in Table 2. Six suppliers supply AISI 304 steel to the manufacturing plants. Distances 
between suppliers and manufacturers are given in Table 3. The expected number of orders placed by manufacturers for AISI 304 
steel is shown in Table 4. Purchasing cost is the cost of AISI 304 steel. Table 6 shows the cost of AISI 304 steel per kilogram from 
each supplier in the current time period. 
 
Table 2  
Annual forecasted demand of AISI 304 steel (kg) from each manufacturer in each time period  

Time/ Manuf. t=1 t=2 t=3 t=4 t=5 
m=1 8,500 4,000 3,250 3,080 3,100 
m=2 3,300 3,700 4,050 4,050 3,200 
m=3 4,800 4,350 4,000 4,400 4,800 

 
Table 3  
Distances between suppliers and manufacturers in kilometers 

Supplier/Manuf. s=1 s=2 s=3 s=4 s=5 s=6 
m=1 120 134 87 63 102 76 
m=2 95 57 173 154 134 44 
m=3 72 162 127 84 87 83 

 
Table 4  
Expected number of orders placed by manufacturers in each period 

Manuf./Time t=1 t=2 t=3 t=4 t=5 t=6 
m=1 203 207 211 212 217 219 
m=2 176 181 182 191 193 196 
m=3 234 121 231 125 213 123 

 
Table 5  
Total no. and annual salary of each employee type in period t=0 and salary increment per year 

Manuf.         m=1       m=2       m=3 

Employer j=1 j=2 j=1 j=2 j=1 j=2 

Ljmt 22 65 15 78 141 204 
Wjmt ($) 8,400 3,600 9,000 4,000 9,300 3,750 

w
ijδ  18 % 18% 17% 17 % 15 % 15 % 

 
Table 6  
Purchasing cost ($) of AISI 304 steel per kilogram from each supplier 

Cost s=1 s=2 s=3 s=4 s=5 s=6 
PCps1 2.20 2.65 1.65 1.98 2.20 2.31 

 
It is clear from Fig. 3 that fluctuations in the price of AISI 304 steel across the last five years follow contango and backwardation 
effects. Changes in steel prices are uncertain, so the variable is considered fuzzy. Based on data from the past five years, changes 
in the price of AISI 304 steel are modeled in polynomial regression. Programming language MATLAB R2017a is used to find a 
regression model for future changes in steel price prediction. Eq. (38) shows the relationship between future price changes and 
current time periods. The adjusted R-squared value for this model is 0.68, the sum of squared errors is 0.18, R-squared is 0.7114, 
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and the root-mean-square error is 0.05524. If we use forecasted data only, the curve fitting will follow only increasing or decreas-
ing trends. However, fluctuations in price changes are uncertain, and therefore, changes in future prices are uncertain or fuzzy. 
Table 6 shows the values of deviational variables for each period. These deviational variables predict uncertain changes in the 
AISI 304 steel prices over time. A set of expert and past data analysis have decided the values of these variables. Using Equation 
(38), Equation (28), and Table 6, we can compute the future purchasing costs of AISI 304 steel.  Similarly, transportation costs 
are a function of diesel oil prices. Changes in oil prices are in a contango-backwardation situation, so we followed the same 
procedure to predict changes in future time periods. Figure 3 shows the curve fitting of data for diesel oil prices across the last 
five years. Equation (39) represents the polynomial regression for changes in oil prices. 
 
𝛿𝛿𝑖𝑖+1
𝑝𝑝 = −2.88 × 10−8 × 𝑡𝑡5 + 4.88 × 10−6 × 𝑡𝑡4 − 2.92 × 10−4 × 𝑡𝑡3 + 7.282 × 10−3 × 𝑡𝑡2 − 6.63 × 10−2 ×
𝑡𝑡 + 0.1293  (38) 

𝛿𝛿𝑖𝑖+1𝑜𝑜 = −1.88 × 10−7 × 𝑡𝑡4 + 2.27 × 10−5 × 𝑡𝑡3 − 0.00086 × 𝑡𝑡2 + 0.01057 × 𝑡𝑡 − 0.02926  (39) 
 
The adjusted R-squared value for Eq. (39) is 0.772, the sum of squared errors is 0.05126, the value of R-squared is 0.7872, and 
the root-mean-square error (RMSE) is 0.03025. Table 8 shows the deviational variables for changes in the change of oil prices 
across time. Experts and past data have decided the values of these variables. 
 

 
Fig. 2. Curve fitting of the last five years’ prices of (a) AISI 304 steel and (b) diesel oil 

Table 7 
Deviational variables for changes in the change of future purchasing price of AISI 304 steel 

Price changes  t=1 t=2 t=3 t=4 t=5 t=6 

1
p∆  -0.03 -0.33 -0.27 0.10 -0.23 -0.37 

1
p∆  0.20 -0.11 0.16 0.31 0.245 0.26 

1
o∆  -0.05 -0.05 -0.11 -0.08 -0.03 -0.05 

2
o∆  -0.01 0.05 0.05 0.08 0.05 -0.01 

Logistic costs can be computed using Eq. (27). There are six suppliers, and each supplier's capacity is known and remains the 
same for all periods. Table 8 shows the capacity of each supplier. 
 
Table 8  
Capacity of each supplier to supply AISI 304 steel in kilograms 

Capacity s=1 s=2 s=3 s=4 s=5 s=6 

psη  9,000 8,000 7,950 8,000 9,000 8,500 

Because the suppliers deal with many other manufacturers, they provide maximum order quantities to a given manufacturer in a 
certain period of time. The maximum order quantity that a supplier can supply to a manufacturer is presented in Table 9.  

Table 9  
Maximum order quantity that a supplier can supply to a manufacturer 

Order quantity s=1 s=2 s=3 s=4 s=5 s=6 
psmtMQ  4,500 3,000 2,500 4,000 3,500 2,700 
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The group of companies wants to decide the quantity of steel and which supplier will supply AISI steel to which manufacturer in 
time period “t”.  

3.2 Implementation of proposed methodology  
 
The proposed IHGA is employed to solve this model. The chromosome structure designed for this problem is three-dimensional, 
comprising 180 genes. Among these, 90 genes are continuous variables, while 90 are binary. Due to the high dimensionality of 
the chromosome, only the structure corresponding to a single period is presented for illustrative purposes in Table 10. 
 
Table 10  
Chromosome structure for period “t=1” 

 
Manuf. 

t=1 
s=1 s=2 s=3 s=4 s=5 s=6 

m=1 3,500 200 200 200 200 200 
m=2 2,000 660 660 660 660 660 
m=3 3,800 0 0 0 0 0 
m=1 1 1 1 1 1 1 
m=2 1 1 1 1 1 1 
m=3 1 0 0 0 0 0 

 
As explained above, GA performance depends on the values of specific parameters, such as population size, crossover rate, mu-
tation rate, and generation gaps. However, the values of crossover rate and population have more impact on performance than 
other operators, such as mutation rate and generation gaps. The first step in determining the optimal parameters for the improved 
hybrid GA (IHGA) involves defining the relevant factors and their corresponding levels. Three key factors are considered in the 
experimental design. The first is a categorical factor—algorithm type—which includes three levels: pattern search, trust region, 
and quasi-Newton. The second factor is the crossover rate, evaluated at three levels: 0.4, 0.6, and 0.8. The third factor is population 
size, which is tested at 50, 100, and 150. In the second step, a central composite design (CCD) is employed to model the experi-
mental setup using response surface methodology. Each experiment is executed in MATLAB (R2017a) on a machine equipped 
with 8 GB RAM and a 3.40 GHz processor. Three performance metrics—cost, computational time, and number of generations—
are recorded for each experimental run. The complete experimental design and the corresponding results are presented in Table 
11. The data collected from Table 11 is then used to construct a response surface that identifies the optimal parameter configuration 
for the IHGA. Figure 4 illustrates the response surface, showing how performance varies with changes in parameter levels. From 
the analysis, it is evident that hybridizing the GA with the pattern search function, using a crossover rate of 0.56671 and a popu-
lation size of 100, yields superior cost minimization, computational efficiency, and faster convergence results. The findings from 
Fig. 4 confirm that the IHGA, when fine-tuned and hybridized with pattern search, provides significantly improved performance 
compared to other configurations. 

 
Fig. 3. Response surface 
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Table 11 
Central composite design (CCD) of experiment and corresponding responses 

Exp. Real factors Responses 
 Hybrid function Population size Crossover rate Cost Computational time Generations 
1 Pattern search 50 0.4 238059.22 11.12 50 
2 Pattern search 50 0.8 238059.22 6.11 50 
3 Pattern search 150 0.4 238059.22 171.10 42 
4 Pattern search 150 0.8 238059.22 72.27 51 
5 Trust region 50 0.4 237200.38 12.15 99 
6 Trust region 50 0.8 237200.38 7.04 99 
7 Trust region 150 0.4 237396.00 180.61 99 
8 Trust region 150 0.8 237311.70 73.64 99 
9 Pattern search 100 0.6 238059.22 16.78 51 

10 Trust region 100 0.6 237200.40 17.74 99 
11 Quasi-Newton 50 0.6 237200.40 9.52 99 
12 Quasi-Newton 150 0.6 237306.10 126.83 99 
13 Quasi-Newton 100 0.4 237200.40 22.37 99 
14 Quasi-Newton 100 0.8 237200.40 13.41 99 
15 Quasi-Newton 100 0.4 237200.40 22.20 99 
16 Quasi-Newton 100 0.4 237200.40 22.41 99 
17 Quasi-Newton 100 0.4 237200.38 21.85 99 
18 Quasi-Newton 100 0.4 237200.38 21.02 99 
19 Quasi-Newton 100 0.4 237200.40 23.43 99 
20 Quasi-Newton 100 0.4 237200.40 22.66 99 
21 Quasi-Newton 100 0.4 237200.38 27.63 99 
22 Quasi-Newton 100 0.4 237200.40 26.99 99 
23 Quasi-Newton 100 0.4 237200.40 29.32 99 
24 Quasi-Newton 100 0.4 237200.40 28.89 99 

 
4. Analysis of Results 
 

The mixed-integer linear programming (MILP) model developed for this study consists of 180 decision variables, 301 inequality 
constraints, and 15 equality constraints. The optimal solution was obtained in 51 generations, resulting in a minimum total cost of 
$263,260, with the algorithm terminating after 22.90 seconds of execution time.  

 
Table 11  
Values of binary variables 

    s=1 s=2 s=3 s=4 s=5 s=6 

t=1 
m=1 0 0 1 1 0 0 
m=2 0 0 1 1 0 1 
m=3 0 0 1 0 0 0 

t=2 
m=1 0 0 1 1 0 0 
m=2 0 0 1 1 0 1 
m=3 0 0 1 0 0 0 

t=3 
m=1 0 0 1 0 0 0 
m=2 0 0 1 1 0 0 
m=3 0 0 1 0 0 0 

t=4 
m=1 0 0 1 0 0 0 
m=2 0 0 1 1 0 0 
m=3 0 0 1 0 0 0 

t=5 
m=1 0 0 1 1 0 0 
m=2 0 0 1 1 0 0 
m=3 0 0 1 0 1 0 

 

Table 12  
Quantity of AISI 304 steel (kg) supplied by suppliers to man-
ufacturers in all time periods 

    s=1 s=2 s=3 s=4 s=5 s=6 

t=1 
m=1 0 0 3,500 1,000 0 0 
m=2 0 0 2,000 2,500 0 800 
m=3 0 0 3,800 0 0 0 

t=2 
m=1 0 0 3,500 500 0 0 
m=2 0 0 2,000 2,500 0 200 
m=3 0 0 4,350 0 0 0 

t=3 
m=1 0 0 3,250 0 0 0 
m=2 0 0 2,000 2,050 0 0 
m=3 0 0 4,000 0 0 0 

t=4 
m=1 0 0 3,080 0 0 0 
m=2 0 0 2,000 2,050 0 0 
m=3 0 0 4,400 0 0 0 

t=5 
m=1 0 0 3,500 1,600 0 0 
m=2 0 0 700 2,500 0 0 
m=3 0 0 4,500 0 300 0 

 

 

Table 11 presents the values of the binary decision variables, which indicate whether supplier s is selected by manufacturer m in 
time period t for the supply of AISI 304 steel used to produce surgical instruments. A value of “1” denotes selection, while “0” 
indicates otherwise. The supplier selection process was influenced by multiple factors, including the distance between the supplier 
and manufacturer, the supplier’s maximum capacity and order fulfillment limit, the rejection rate of materials, and the allowable 
delivery time for each shipment. Table 12 shows the values of continuous variables, representing the amount of AISI 304 steel 
supplied by selected suppliers to manufacturers in time period “t”. 
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4.1 Performance evaluation of proposed methodology  
 
To evaluate the performance of the proposed algorithm, the proposed IHGA is compared with other widely used solvers and 
optimization algorithms. The problem is solved using four alternative approaches: PSO, branch and bound, the interior point 
method, and a standard genetic algorithm (GA) without fine-tuning. The performance of the IHGA is assessed relative to these 
methods based on three key criteria: total cost, computational time, and the number of generations required to reach convergence. 
Table 13 presents the comparative results for all algorithms applied to the same problem instance. 
 
Table 13  
Comparison of results of the proposed algorithm with results of other algorithms 

Algorithm Solver package Performance measures 
Cost ($) Computational time (s) 

IHGA MATLAB R2017a 263260 22.91 
GA MATLAB R2017a 266740 61.29 
Branch and bound CPLEX 2016 261370 37.32 
Interior point MATLAB R2017a 259038 43.95 
PSO MATLAB R2017a 275080 18.37 

 
4.2 Comparison of solutions 
 

To compare the results of the algorithms, the solutions must be evaluated relative to the other solutions. Percentage relative gap 
analysis is performed to assess each performance measure of each algorithm. Imran et al. (2017) used Equation (40) for percentage 
gap efficiency to compare algorithms. Table 14 provides the basis for drawing conclusions about the relative performance of each 
algorithm, enabling a comparison across multiple performance metrics. A ranking approach is employed to evaluate and classify 
the algorithms systematically. Each algorithm is assigned a score on a five-point scale for every performance measure—where a 
score of five represents the best performance and a score of one represents the poorest. This scoring allows for a comprehensive 
assessment of overall performance across all criteria. The rankings derived from this evaluation are summarized in Table 18, 
which presents the comparative performance of each algorithm based on cost, computational time, and number of generations. 

%𝐺𝐺𝑟𝑟𝑟𝑟 =
𝐴𝐴𝑉𝑉𝑟𝑟𝑟𝑟 − 𝐵𝐵𝑉𝑉𝑟𝑟

𝐴𝐴𝑉𝑉𝑟𝑟𝑟𝑟
× 100 (40) 

 
Table 14 
The percentage gap of each performance measure for each algorithm. 

Algorithm Solver package Performance measures 
Cost ($) Computational time (s) 

IHGA MATLAB R2017a 1.60 0.00 
GA MATLAB R2017a 2.89 62.62 
Branch and bound IBM CPLEX 2016 0.89 38.61 
Interior point MATLAB R2017a 0.00 47.87 
PSO MATLAB R2017a 5.83 13.12 

 
It is evident from Table 18 that the IHGA outperforms all other algorithms, demonstrating superior performance across all evalu-
ated criteria. This enhanced performance is attributed to the optimal balance of cost minimization, reduced computational time, 
and fewer generations required for convergence. Combining fine-tuning and hybridization in the IHGA leads to more efficient 
and effective optimization results for the case study problem.  
 
Table 18  
Score of each algorithm against all performance measures 

Performance measures Algorithms 
IHGA GA Branch & bound Interior point PSO 

Cost ($) 3 2 4 5 1 
Computational time 5 1 3 2 4 
Total score 8 3 7 7 5 

 
4.3 Usefulness of findings  
 
The results obtained in this research are useful for purchasing, marketing, finance, supply chain, and production managers. Flex-
ibility and profitability are two significant benefits of this model.  
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4.3.1 Flexibility  
 
Traditional multi-period supply chain models are based on current raw materials and transportation prices. Fluctuations in changes 
in the price of raw materials, transportation, and overhead affect the future costs of a supply chain. Therefore, modeling supply 
chains with contango and backwardation for predicting future costs would make any supply chain flexible enough to tackle un-
certain demands with uncertain changes in supply chain costs caused by uncertain fluctuations in oil prices, raw material prices, 
and the increasing salaries of employees. Many businesses have failed because of poor resistance to contango and backwardation 
phenomena around commodities or services in the market. Supply chain planning with contango and backwardation effects pro-
vides a high level of flexibility to manufacturers, enabling manufacturers to meet customer demand with the highest profit margin. 
Future planning in coordination with predicted costs under uncertain changes in the variability of commodities or services must 
be considered as an essential purchasing decision at a strategic level.  
 
4.3.2 Profitability  
 
Supply chain planning considering contango and backwardation effects has benefits of maintaining or increasing profit margins 
in each period. Many companies sign contracts with customers around the price of products, and fluctuations in production costs 
greatly affect companies' profit margins. Companies must consider contango and backwardation effects for all commodities and 
services involved in their supply chains to maintain or increase profit margins. This research urges supply chain, purchasing, 
finance, marketing, and production managers to keep an eye on fluctuating prices of commodities and services, affecting overall 
supply chain costs in upcoming periods. The findings also persuade managers to identify factors that affect the prices of commod-
ities or services over time, as these factors vary across time with the highest levels of uncertainty.  
 
5. Conclusion 
 
This research is conducted in three distinct phases. In the first phase, the contango-backwardation effects are incorporated into a 
MILP model to minimize total supply chain costs. An integrated polynomial regression fuzzy method is proposed to capture the 
uncertainty inherent in future cost forecasts. This approach models the forecasted values and the uncertainty associated with those 
predictions. The second phase introduces a novel IHGA is proposed. In the third phase, a real-world case study involving a group 
of surgical instrument manufacturers is used to validate the model. Each experiment, as designed through RSM, is executed using 
the GA. The RSM findings yield optimal parameter settings: a crossover rate of 0.157, a population size 100, and pattern search 
as the most effective hybrid function. The IHGA, applied with these settings, delivers the best results for the problem set. The 
IHGA is compared with other algorithms, namely, a standard genetic algorithm (GA), PSO, interior point, and branch and bound, 
using MATLAB and CPLEX solvers to evaluate its effectiveness. The comparative results confirm that the IHGA outperforms 
the alternatives regarding computational time, solution cost, and number of generations. The findings of this research emphasize 
the importance of incorporating contango and backwardation effects in supply chain planning. Models that account for uncertainty 
and cost fluctuations enhance flexibility and profitability in decision-making. Future research could explore strategic outsourcing 
decisions in multi-echelon, multi-period, and multi-product supply chain networks, further extending the contango and backward-
ation modeling scope. 
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