
* Corresponding author.
E-mail address: fsmaili@ub.edu.sa (F. Smaili)

© 2024 by the authors; licensee Growing Science, Canada.
doi: 10.5267/dsl.2024.4.001

Decision Science Letters 13 (2024) ***–***

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

A hybrid genetic-simulated annealing algorithm for multiple traveling salesman problems

F. Smailia*

aMechanical Engineering Department, College of Engineering, University of Bisha, Bisha 61922, Saudi Arabia
C H R O N I C L E A B S T R A C T

Article history:
Received: October 23, 2023
Received in revised format:
March 2, 2024
Accepted: April 4, 2024
Available online:
April 4, 2024

 The Multiple Traveling Salesman Problem (MTSP) was able to model and solve various
theoretical and real-life applications. This problem is one of the many difficult issues that have
no perfect solution yet. In this paper, on the one hand genetic algorithms with different
combinations of operators and simulated annealing were used to solve the MTSP. On the other
hand, the genetic algorithm with the combination of operators that gave the best solutions of the
MTSP was hybridized with a Simulated Annealing algorithm. The simulation results showed
that the hybrid algorithm significantly outperforms most of the comparable methods in obtaining
the best-fitness solutions compared to the other methods in most of the test cases. In addition, by
scaling the fitness function according to the amplitude of tours, it was obvious that the non-
dominated front obtained by the hybrid algorithm was better than the non-dominated front
obtained by the other algorithms.

.by the authors; licensee Growing Science, Canada 4220©

Keywords:
MTSP
Genetic algorithm
Simulated annealing
Hybrid algorithm
Non-dominated front
Statistical Analyses

1. Introduction

Travelling Salesman Problem (TSP) is a well-studied problem in combinatorial optimization (Shmoys et al., 1985).There
exists no polynomial order algorithm for TSPs, which are NP-hard (Shmoys et al., 1985; Lin & Kernighan, 1973). Thus, it
is possible that the worst-case running time of any algorithm for the TSP increases exponentially with the number of cities
(Lin & Kernighan, 1973). Knowing the cities and the distance between them, the goal of the TSP problem is to minimize
the distance of a path traveled by a salesman who visits this set of cities exactly once, starting and ending in the same city.
Application of TSP is found in many areas such as logistics and transportation, semiconductor manufacturing, design of
hardware devices and radio electronic systems and computer networks (Filip & Otakar, 2011; Laporte, 1992).

The Multiple Travelling Salesman Problem (MTSP) is an extension of the famous TSP where each city is visited by exactly
one of m salesmen (Reinelt, 2003). A salesman starts and ends at the depot (which is one of the n cities). Minimizing the
total distance of all paths taken by the salesmen and the difference between the longest and shortest sub-tour are the goals
of the MTSP. Many real-life problems can be modeled as the MTSP, such as path planning (Yu et al., 2002), hot rolling
scheduling problem (Tang et al., 2000), distribution of emergence materials problem (Ming et al., 2014), UAVs planning
problem (Ann et al., 2015). Most existing literature on the MTSPs focuses on a single-objective, or considers the objectives
from two separate perspectives: for example, minimizing the total distance travelled and minimizing the longest travel
distance of a salesman. The second objective is a condition for balancing the sub tours, the workload among salesmen and
service time of each customer in practical situations. However, reducing only the total distance will result in highly
imbalanced sub-tours where one salesman serves most cities whereas each of the other salesmen serves one of the closer
cities to the depot. If we only consider the balance between sub-tours, this will unnecessarily increase the total travel
distances. Therefore, optimizing the total distance and the balance between sub tours are two conflicting goals which cannot
be considered separately. In the first part of this paper, the total distance of the salesman is taken as an objective function.

 2
In the second part, the difference between the longest route and the shortest route is used as an objective function to
determine a better non-dominated front.

The MTSP has been tackled using many different approaches; most of them are nature-inspired algorithms such as Genetic
Algorithms (GA), Ant Colony Optimization (ACO) and Gravitational Emulation Local Search (GELS). In addition, nearest-
neighbor based search algorithms such as 2-Opt, were frequently used to improve the quality of solutions obtained by other
algorithms. These methods proved to be efficient and provide reasonable solutions when implemented on their own. To the
best of our knowledge, no approach combining the above-mentioned algorithms has been applied to solve the
MTSP. However, there are some disadvantages in using traditional GA to solve MTSP, such as poor search-ability and low
convergence accuracy. At the same time, the hybrid algorithm has also received the attention of many experts and scholars.
On this basis, we combined GA and SA and proposed an improved genetic simulated annealing algorithm for solving MTSP,
improving the local search capabilities and the convergence of the GA.

The remainder of this paper is organized as follows: Section 2 illustrates some basic definitions and concepts, such as
distance matrix and MTSP modeling. Section 3 presents the description of the different used algorithms. In Section 4, some
experiments and a discussion are performed to show the effectiveness of algorithms and models. Finally, some basic
concluding remarks are discussed in Section 5.

2. Related Work

To solve MTSP, all practical algorithms can be classified into exact algorithms and heuristics. The choice of the algorithm
depends on the size of the problem, so to get an optimal solution for small-scale problems, exact algorithms are suitable.
For large-scale problems and due to the NP-hard nature of the MTSP, heuristic algorithms are more popularly employed.
For problems with less than 100 cities, the cutting-planes algorithm was used to optimally solve MTSP Laporte & Nobert,
1980). Various mutation and crossover operators for the MTSPs for the GA were designed and compared elsewhere (Li et
al., 2013). The results showed that proper operator design could boost the performance. An estimation of distribution
algorithm (EDA) with a gradient search was used to solve the MTSP in which an objective function was set as the weighted
sum of the total travelling costs of all salesmen and the highest travelling cost of any single salesman (Shim et al., 2012).
In the latter reference, the authors considered minimizing the longest cost to balance the workload between salesmen. The
same authors designed an insert, swap, and two-operator’s algorithm for enhancing the capability to escape from local
optimum points (Yousefikhoshbakht et al., 2013). In another method, five local search schemes were introduced to improve
the result without much increased time complexity (Soylu, 2015). An effective evolutionary algorithm, reinforced by a post-
optimization procedure based on path-relinking (PR), is used to deal with a bi-objective multiple travelling salesman
problems with profits (Labadie et al., 2014). Meanwhile, other evolutionary algorithms based on swarm intelligence are
used to solve the MTSP problem. A new acceleration particle swarm optimization was constructed to solve the MTSP
(Qiang & Kang, 2014), which can effectively overcome the premature convergence. Several multi-objective ACSs are
proposed to tackle MTSP from a bi-criteria perspective that require minimizing the total cost of travelled sub-tours while
achieving balanced sub-tours (Necula et al., 2015).
Moreover, the two-phase heuristic algorithm (TPHA) which combined K-means and modified GA was used for solving
MTSP subject to the workload balance (Xu et al., 2018). Based on a genetic algorithm, two new local operators Branch and
Bound and cross-elimination were effectively combined to find high-quality solutions within a short time for study of MTSP
(Lo et al., 2018). Another MTSP study in which a hybrid algorithm developed, integrating ACO, 2-Opt based GA
(AC2OptGA) and showed results that are outperforming other state-of-art techniques (Harrath et al., 2019). In addition,
suggesting an evolutionary NSGA-II algorithm, which effectively jumps from the local optimum, has been addressed to a
bi-objective MTSP model (Shuai et al., 2019). A comparative study of various GA crossover operators for MTSP can be
found in (Al-Omeer & Ahmed, 2019). Inspired by the existing works mentioned above, the work done in this paper further
improves the convergence of using GA to solve the MTSP with a hybrid of simulating operators.

3. Modeling of the MTSP

Based on the number of depots, the MTSP problem can be divided into single-depot multiple TSP (SD-MTSP) and multi-
depot multiple TSP (MD-MTSP), the former means that the salesmen start from the same starting depot and the latter means
that the salesmen start from different starting depot. This paper mainly explores the two objectives SD-MTSP, where the
two objectives are conflicting. Usually, the problem can be described as follows: there is a set of n number of cities and m
number of salesmen, the set is expressed as D = {0, 1, 2, . . N } and V = {1, 2, . . . ,m}. Each salesman departs from the same
depot, takes a tour route and returns to the original starting city. Here we use cij for the distance between cities i and j, and
xijk for salesman k from cities i to j. The distance between cities is represented by matrix, known as distance matrix D =
(Dij), i, j = 1, 2,…, n, Furthermore, we can get the distance matrix C as follows:

F. Smaili / Decision Science Letters 13 (2024) 3

𝐷 =
⎣⎢⎢
⎢⎢⎢
⎡ 𝐷 … 𝐷 … 𝐷 … 𝐷 ()… … … … … … …𝐷 … 𝐷 … 𝐷 … 𝐷 ()… … … … … … …𝐷 … 𝐷 … 𝐶 … 𝐷 ()… … … … … … …𝐷() … 𝐷() … 𝐷() … 𝐷()()⎦⎥⎥

⎥⎥⎥
⎤

Usually, the diagonal elements of the distance matrix D are zeros, cij, represents the distance of travel from ith to jth city. The
distance D is said to be symmetric when Dij = Dji, ∀ (i, j) ∈ E and asymmetric otherwise. Each city will be visited exactly
once (except the starting point). Ideally, the total travel distance is minimized while the travel distance between salesmen
is as close as possible. The mathematical model is as follows: min 𝐹 = (𝑓 ,𝑓) (1)

𝑓 = 𝐶 𝑋

(2)

𝑓 = max 𝐶 𝑋 − min 𝐶 𝑋

(3)

where 𝑋 = 1, 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑘 𝑝𝑎𝑠𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗0, 𝑒𝑙𝑠𝑒 (4)

subject to

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧ 𝑋 = 1; ∀𝑗 = 1, … ,𝑛

𝑋 = 1; ∀𝑖 = 1, … ,𝑛
𝑋 = 𝑚;
𝑋 = 𝑚;
𝑋∈∈ ≥ 1; ∀𝑘 ∈ 𝑉,∀𝑆 ⊑ ∁.

(5)

Eq. (2) and Eq. (3) respectively represent two objective functions: the total distance of the salesman and the difference
between the longest route and the shortest route. What we need to do is to minimize both and . Eq. (5) represents the
constraint: all salesmen start from the same starting city 1. It is required that, except for the starting city, there is one and
only one salesman in each city passing through, and all salesmen return to their starting city. The final solution doesn’t
generate sub tours.

4. Proposed algorithm

On the one hand, Genetic Algorithm for different methods of selection operator, crossover operator and mutation operator
and simulated annealing is crucial for some heuristics algorithms to solve the NP-complete problems such as MTSP. On
the other hand, the combination of some algorithm strategies is more advantageous than one algorithm strategy. In addition,
different algorithm strategies usually take different effects for the same problem. As a result, and in the first part, double
methods of crossover and mutation strategies such as single point crossover, two-point crossover, random swap mutation
and reverse swap mutation are used with different combinations in solving MTSP. In the second part, the simulated
annealing algorithm is also used in solving MTSP. Finally, in the third part, we propose a hybrid Genetic-Simulated
Annealing Algorithm.

 4
4.1. Genetic Algorithm

A genetic algorithm is a search heuristic that is inspired by Charles Darwin's theory of natural evolution from about 50 years
ago (Bremermann et al., 1965). This algorithm reflects the process of natural selection where the fittest individuals are
selected for reproduction in order to produce offspring of the next generation. Their application to combinatorial
optimization problems has only recently become an actual research topic. In recent years, many articles and books on
evolutionary optimization of NP-hard problems have been published, in very different application domains such as
computer aided design, cryptanalysis, identification of systems, medicine, microelectronics, pattern recognition, production
planning, robotics, telecommunications (Bodenhofer, 2004). In 1975 Holland (1992) introduced genetic algorithms with a
problem search space represented as a collection of individuals. Representing character strings, these individuals are often
called chromosomes. The goal of using a genetic algorithm is to find the individual from the search space with the best
“genetic material”. The part of the search space to be examined is called the population and the quality of an individual is
measured with an evaluation function (fitness function).
First, the initial population is chosen and the quality of this population is determined. Then, at each iteration, the parents are
selected from the population. These parents produce children, which are added to the population. For all the newly created
individuals of the resulting population, there is a probability close to zero that they will “mutate”. In order to bring the
population back to its initial size, certain individuals are removed from the population according to a selection criterion.
Then an iteration of the algorithm is called generation. The crossover operator and the mutation operator are operators that
define the child production process and the mutation process respectively. Crossover and mutation perform different parts
in the genetic algorithm. The crossover should increase the average quality of the population. The mutation is necessary to
explore new states and helps the algorithm to avoid local optima.

Fig. 1. A flowchart of the genetic algorithm

By choosing an appropriate crossover and mutation operators, the probability that the genetic algorithm results in an almost
optimal solution in a reasonable number of iterations is increased. There can be various criteria for stopping algorithm. For
example, if it is possible to define previously the number of iterations needed. But the stopping criteria should normally
take into account the relationship between the average objective function versus the objective function of the best individual,
the uniformity of the population, as well as not producing an increase in the objective function of the best individual during
a fixed number of cycles. A large amount of research on the use of GA to resolve TSP or MTSP has been carried out
successfully with satisfactory results.For the MTSP, the fitness value equals the total travel distance of all salesmen.
Therefore, the optimal solution is found when the fitness value is minimized. The whole process of the proposed algorithm
is illustrated in Fig. 1. Termination criteria can be defined as a fixed number of generations, a fixed execution time, or an

Initial population generation

Fitness computation

Selection

Crossover

Mutation

Result exportation

No

Yes Check
termination?

F. Smaili / Decision Science Letters 13 (2024) 5

end time if no significant improvement can be made over previous generations. The steps of the genetic algorithm are
presented in Algorithm 1.

4.1.1. Chromosome Representation

A several ways were used to encode an MTSP solution into a chromosome, containing in the same chromosome (Tang et
al., 2000), two chromosomes (Malmborg, 1996), two-part chromosome (Carter & Ragsdale, 2006), Multi-Chromosome
Technique (Singh et al., 2018) etc. With the abundance of solution space, experimental results have demonstrated that the
two-part chromosome performs the best in terms of quality of solution and convergence speed. The two-part chromosome
technique reduces redundant solutions (Albayrak & Allahverdi, 2011; Brown et al., 2007; Carter & Ragsdale, 2006).
However, in this technique for the MTSP, regarding the first part of the chromosome there are n! possible permutations.
The second part of the chromosome represents a positive vector of integers (k1, k2,…, km), such that the sum of their
components must be equal to n. Therefore, the two-part chromosome representation is adopted in this work. In this method,
MTSP solution is represented by two parts of a chromosome of length n + m, where n is the number of cities and m is the
number of salesmen used in MTSP. The first part of the chromosome of length n represents a permutation (tour), of n cities,
in which each gene takes integer value ranging from 1 to n. Second part of the chromosome of length m gives the number
of cities assigned to each salesman. In this example, the first salesman will visit 2 cities as indicated in the second part of
the chromosome.

Since all salesmen must depart from and return to the depot (V0), then this city is outside the chromosome to minimize
memory space. Fig. 2 shows a chromosome representing the MTSP solution (where n = 10 and m = 3), in which n cities are
represented by natural numbers between 0 and n−1, and 0 represents the central city. Among them, the chromosome consists
of two parts: the first part is the arrangement of n−1 natural numbers; the second part is m−1 break points, which divides
the first part into m groups, each group is represented by a salesman. As well as Fig. 3 shows the details of calculation of
total distance, thus the total distance of n cites is divided over three salesmen, the result of the division indicates the position
i of the end of the part of route of salesman number 1, the position i of the end of the part of route of the second salesman
is indicated by two thirds of the total distance and so on.
In order to more intuitively display the route of each salesman represented by the chromosome code, we assume that the
relative positions of the 10 cities are as shown in the left of Fig. 4, and the solution corresponding to the chromosome in
Fig. 3 is as shown in the right of Fig. 4.

From this, the visiting cities’ permutation of the first salesman is 0 (Depot)→ 2→ 8→ 0 (Depot). The visiting cities’
combination of the second salesman is 0 (Depot)→ 1→ 7→ 4→ 6→ 0 (Depot). Finally, the visited cities’ combination of
the third salesman is 0 (Depot) → 3→ 5→ 9→ 0 (Depot).

Algorithm 1
Pseudocode of Genetic Algorithm
1. PS; // Population Size
2. NER; // Number of Elite Routes
3. Initialization: Randomly generate a population.
4. Estimation of Fitness & Arrangement: Estimate fitness of individuals and sort them with
fitness value.
5. Crossover Population Method (population)
6. CP: Crossover Population; // generate new population
7. for i from 0 to NER do
8. CP← population;
9. for i from NER to PS do
10 chromosome1 ← Call Tournament selection Method (population).chromosome(0);
11 chromosome2 ← Call Tournament selection Method (population).chromosome(0);
12. CP.chromosome(i) ← Call Single Point Crossover Method(chromosome1,
chromosome2);
13. return CP ;
14. Mutate Population Method (MutatePopulation)
15. MP: Mutate Population; // generate new population
16. for i from NER to PS do
17. MP. chromosome (i) ← Call Random Swap Mutation Method(chromosome);
18. return MP;
19. Evolve Population Method (Evolve Population)
20. return Call Mutate Population Method (Call Crossover Population Method (Evolve Population));

 6

Fig. 2. Two parts chromosome technique for a 10 city MTSP with three salesmen

4.1.2. Parameter Selection
4.1.2.1. Population capacity

According to the schema theorem, with the increase of the population size, the genetic operators will deal with more patterns,
and we will have a greater chance of finding the optimal solution (Altenberg, 1995). However, with the increase in the
number of schemas, the computational load will be higher and the efficiency of the genetic algorithm will be lower.

4.1.2.2. Crossover probability

With higher crossover probability, the new structures in the population will appear faster. If the crossover probability is too
high, the better structures cannot be well retained, so the loss rate of those good genes will accelerate. On the contrary, with
lower crossover probability, the individuals will hardly exchange their genes, so the evolution velocity will be slower (Eiben
et al., 1999).

Fig. 3. Example of calculation of total distance of three salesmen for 10 cities MTSP.

2 1 7 4 6 3 5 8 9

Salesman 1 Salesman 2 Salesman 3

2 4 3

Cities per
Salesman Cities

Total distance

2 1 7 4 6 3 5 8 9

1 7 4 6 0

Total distance
of salesman N°2

0 3 5 9 0 0

Total distance
of salesman N°3

2 8 0 0

Total distance
of salesman N°1

2 1 7 4 6 3 5 8 9 0 0 0 0

Total distance of three salesmen.

2 1 7 4 6 3 5 8 9

Total
distance/3

Total
distance/3

Total
distance/3

i position for
salesmanN°3

i position for
salesmanN°2

i position for
salesmanN°1

F. Smaili / Decision Science Letters 13 (2024) 7

4.1.2.3. Mutation probability

With lower mutation probability, the gene will be less likely to change, so the next generation will have less genetic
variation. If mutation probability is too high, the genetic algorithm will turn to a random search (Bagchi & Pal, 2011).

4.1.3. Genetic Operators

In GA, Genetic operators are essential to evolve the chromosomes. They significantly influence the search ability and
convergence speed. However, the choice of proper genetic operators is essential to prevent premature convergence, that is
to say the solution is stuck in a local optimum.

Fig. 4. The relative position of the city and one of its solutions

4.1.3.1. Selection Operator

Selection is the process of choosing two parents from the population for crossing. The purpose of selection is to emphasize
fitter individuals in the population in hopes that their offsprings have higher fitness. Chromosomes are selected from the
initial population to be parents for reproduction. Selection is a method that randomly picks chromosomes out of the
population according to their evaluation function. The higher the fitness function, the more chance an individual has to be
selected (Deepa & Sivanandam, 2010). The roulette wheel selection method is widely used as a selection operator. In this
method, the expectation of each individual being selected is proportional to its fitness value. If the fitness value of each
individual is greatly different, the probability of the best individual being selected will increase exponentially, that means,
the survival chance of the best individual will be much greater than the worst individual. As the probability of the worst
individual being selected decreases, the diversity of the population will also decline rapidly. The steps of the roulette wheel
selection method are presented in Algorithm 2.

Tournament Selection is a very popular method and in order to enhance the diversity of the population, we adopt the
tournament selection method. There is a brief instruction about the method: randomly select a certain number of individuals
from the current population, compare their fitness values and select two individuals with the largest fitness values to be
parents for the next generation, create the next generation of individuals, and repeat the process until a new population
meets the conditions. But the tournament selection method may converge prematurely to a local optimum. The steps of the
tournament selection method are presented in Algorithm 3.

Algorithm 3
Pseudocode of tournament selection Method
1.TS: tournament selection;// size of population
2.Generate Tournament population; // new population of TS size
3. for i from 0 to TS do
4. Tournament population ← select randomly chromosome from population;
5.sort Tournament population;
6. return Tournament population;

Algorithm 2
 Roulette Wheel selection Method(population)
1.RWS: Roulette Wheel selection; // size of population
2.Generate Roulette Wheel population; // new population of RWSsize
3. for i from 0 to RWS do
4.Roulette Wheel population ← select best chromosome from population;
5.sort Roulette Wheel population;
6. return Roulette Wheel population;

1

2

4

0
3

7
5

6

8

9

1

2

4

0 3

7
5

6

8

9

 8
4.1.3.2. Crossover Operator

Parent-centric and mean-centric operators are two main approaches of crossover development. The first approach generates
offspring near each of the parents whereas the second approach generates offspring solutions near the centroid of the parents,
which is close to the mean of the participating parents. The most famous crossover operators are described in the following
paragraph (Mool, 2016). In this paper, we discuss two classic examples.

• Single point crossover:

This operator detects one crossover point at random position before splitting parents at this crossover point thereby
producing offspring by exchanging tails (Holland, 1975). The range of the common crossover probability is [0.2; 1.0].

• N-point crossover:

This operator is a generalization of the single point crossover (Eshelman, 1997). The n crossover points are picked randomly
from the parent chromosomes, after which the genes in between points are swapped between the parents organisms. In this
paper, we adopt the path representation method. If we continue to use the single or two-point crossover method, there will
be an illegal route, which means each city may appear twice or more in this route, so the final solution cannot be considered
as a feasible solution. In order to solve this problem, we adopt the order insert crossover method. There is a brief instruction
about the method: randomly select single or two crossover positions, select the cities before the single crossover positions
or between the two crossover positions from parent p1 or p2 by referring to crossover rate (if the random number is higher
than the crossover rate, select p1 and vice versa), save the relative order of the cities in rest parent, and generate the child
o, which is a new individual. For example (shown in Fig. 5) take 7 cities 1,2,3,…..,7. We already have parents p1,p2:

Fig. 5. Example of crossover operations: (a) the single point crossover and the order insert crossover method and (b) the
two-point crossover and order insert crossover method

For part (a), the random number selected superior to crossover rate and randomly selected single crossover position number
4 (the fourth gen 4) from p1, the cities before the single crossover position should remain unchanged. For other rest positions
in o, if the cities in p2 never exist in o, insert them one by one according to the order of p2.
For part (b), the random number selected is inferior to crossover rate and randomly select two crossover positions 3,5 (the
third gene e and the fifth gene d) from p2, the cities between the two crossover positions should remain unchanged. For
other rest positions in o, if the cities in p1 never exist in o, insert them one by one according to the order of p1. The steps of
the single Point crossover method and the two-point crossover method are presented in Algorithm 4 and Algorithm 5,
respectively.

Algorithm 4
Pseudocode of Single Point Crossover Method
1.CR :Crossover Rate;
2.CC : Crossover Chromosome;
3. if (Random Number < CR)
4.select chromosome2;
5. else
6.select chromosome1;
7. end if
8. RP : Random Position (0 to n) for selected chromosome;
9. for i from 0 to RP do
10. CC ← selected chromosome;
11. for i from RP+1 to n do
12.CC ← non selected chromosome for gene never exist in CC one by one;
13. return CC;

(a)

b f e a d c g

e b d f c a g

c g e a d f b

(b)

e b d f c a g

c g e a d f b

1p

2p

1p

2p

e b d f c g a o o

F. Smaili / Decision Science Letters 13 (2024) 9

4.1.3.3. Mutation Operator
Various studies on varieties of mutation techniques have been carried out to improve the performance of FA in recent years
(Tang & Tseng, 2013). To change the genes of the offspring and to increase the diversity of the population is the main
purpose of mutation operation.To avoid premature convergence, the mutation process enables GAs to jump out of local or
sub-optimal solutions (Mooi, 2016).

Fig. 6. Random swap operator Fig.7. Reverse swap operator

Regarding the first part of the chromosome, there are two mutation operators, the random swap operator and the reverse
swap operator. For the random swap operator, we select two distinct random positions (Gi and Gj), where i ≠ j, then we
swap the genes in these two positions (Banzhaf, 1990; Beed et al., 2017). For the reverse swap operator, we select two
separate random positions to define the segment, and then we reverse the position of the genes inside the segment
(Grefenstette, 2013).

Algorithm 5
Pseudocode of Two-Point Crossover Method
1. CR : Crossover Rate;
2. CC : Crossover Chromosome;
3. if (Random Number < CR)
4. select chromosome2;
5. else
6. select chromosome1;
7. end if
8. RP1 : Random Position (0 to n) for selected chromosome;
9. RP2 : Random Position (0 to n) for selected chromosome;
10. if (RP1< RP2)
11.for i from RP1 to RP2 do
12.CC ← selected chromosome;
13.for i from 0 to RP1-1 do
14.for j from RP2+1 to n do
15.CC ← non selected chromosome for gene never exist in Crossover
chromosome one by one;
16.endif
17.return CC;

Algorithm 6
Pseudocode of Random Swap Mutation Method
1. MR : Mutation Rate;
2. RP : Random Position (0 to n) for chromosome;
3. if (Random Number < MR)
4. for i from 0 to n do
5. if (i == RP)
6. Switch the gene pattern in the chromosome;
7.endif
8. endif
9.return chromosome;

Algorithm 7
Pseudocode of Random Reverse Swap Mutation Method
1. MR : Mutation Rate;
2. RP1 : Random Position (0 to n) for chromosome;
3. RP2 : Random Position (0 to n) for chromosome;
4. if (Random Number < MR and RP1< RP2 and RP2< MR)
5. Reverse gene pattern in chromosome from RP1 to RP2
8. endif
9.return chromosome;

Reverse

2 1 6 4 7 3 5

2 1 7 4 6 3 5

Swap

2 1 6 4 7 3 5

2 1 7 4 6 3 5

 10

Fig. 8. A flowchart of the simulated annealing algorithm

In this paper, the path representation is adopted for encoding, but traditional simple mutation will lead to a duplication or
loss of cities. So we adopt the mutation operators mentioned before. Because the random swap and the reverse swap methods
only exchange pre-existing values, it will never create a list which has missing or duplicate values when compared to the
original (Beed et al., 2017). Examples in Fig. 6 and Fig. 7, respectively showed a brief instruction about these operators.
The steps of the random swap mutation method and the Random Reverse Swap Mutation Method are presented in Algorithm
6 and Algorithm 7, respectively.

4.2. Simulated annealing Algorithm

Simulated annealing (SA) is an iterative search method inspired by the annealing of metals (Mooi, 2016; Banzhaf, 1990).
The algorithm performs a stochastic search in the partial state space starting with an initial solution and armed with adequate
perturbation and evaluation functions. With probability controlled by a parameter called temperature (T), uphill moves are
sometimes accepted. The probability of acceptance of uphill moves decreases as T decreases. By increasing the temperature,
the search becomes more and more random, while at low temperature the search becomes almost greedy. At zero
temperature, the search becomes totally greedy (Kirkpatrick et al., 1983; Černý, 1985). The basic principle of the algorithm
is the Metropolis procedure, which simulates the annealing process at a given temperature T (Metropolis et al., 1953). This
procedure is named after the scientist who devised a similar scheme to simulate a collection of atoms in equilibrium at a
given temperature.

Generate initial solution CurS and
calculate the Fitness (CurS)

Generate new solution NewS and calculate
the new Fitness(NewS)

∆𝑓 = 𝑓(NewS) − 𝑓(CurS)

Decrease slightly
the temperature

Accept the new solution
based on Metropolis

Terminate the computational process
and store the optimal solution

No Yes ∆𝑓
Accept the new solution NewS =CurS, 𝑓(NewS) = 𝑓(CurS)

Is the
iteration

Is the
stopping

Yes

Yes

No

No

F. Smaili / Decision Science Letters 13 (2024) 11

Algorithm 8
Pseudocode of Simulated annealing Algorithm
initial temperature T0, minimum temperature Tmin, probability of temperature drop;
1. Generating an initial solution CurS;
2. BestS← CurS;
3. Computing the value of the Fitness function 𝑓(CurS) and f(xbest);
4. i ← 0;
5. Ti ← T0;
6. while Ti>Tmin do
7. ∆f ← f(NewS) – f(BestS);
8. if ∆f < 0 then
9. BestS ← NewS;
10. endif
11. if ∆f > 0 then
12. p ← 𝑒∆ ;
13. if c ← random[0,1] ≥ p then
13. BestS ← NewS;
14. else
15. BestS ← BestS;
16. endif
17. endif
18. i ← i + 1;
19. return chromosome;

Fig. 9. A flowchart of the hybrid algorithm

Is the
resultsatisfied

Yes

No

GA-Mechanism

Initial population generation

SA-Mechanism

Updated population

Sorted Individuals in the
population

Updated population

Optimal solution

 12

Temperature is initialized to a value T0 at the beginning of the procedure, and is slowly reduced; the parameter α is used to
achieve this cooling. The Metropolis procedure uses the procedure Neighbor to generate a local neighbor NewS of any
given solution S. The function Fitness returns the fitness of a given solution S. If the fitness of the new solution NewS is
better than the fitness of the current solution Sc, then the new solution is accepted, and we do so by setting CurS = NewS.
If the fitness of the new solution is better than the best solution (BestS) seen thus far, then we also replace BestS by NewS.
If the new solution has a lower fitness in comparison to the original solution CurS, Metropolis will accept the new solution
on a probabilistic basis. A random number is generated in the range 0 to 1. If this random number is smaller than , where
∆fitness = fitness(NewS) - fitness(CurS), and T is the current temperature, the inferior solution is accepted. This criterion
for accepting the new solution is known as the Metropolis criterion. From Fig. 8, we can see that the Metropolis procedure
is very important for SA to find the optimal solution. The SA algorithm needs to start from a high temperature (T). However,
if this initial value of T is too high, it causes a waste of processing time. The initial temperature value should be such that
it allows virtually all proposed uphill or downhill moves to be accepted. The temperature parameter is initialized using the
procedure described in (Wong & Liu, 1986). The parameter α for updating the temperature is user specified. In our
implementation α takes the value of 0.05. At each updated value of the temperature, a number of state transitions are made
so as to reach the probabilistic steady state. The perturb mechanisms employed are similar to the mutation operators in GA.
The stopping criterion is when the final T < 0.001. The steps of the SA algorithm are shown as in Fig. 9.

4.3. Hybrid algorithm

SA operator is a local search operator (Eglese, 1990), which searches for the optimal solution more effectively due to its
high local search ability. By generating some neighborhood solution in some mechanism, the near-optimal feasible solution
can be incessantly updated until obtaining the optimal solution. For this reason and in order to produce a good solution, a
GA combined with SA operator is presented. The motivation behind the development of this algorithm is to take advantage
of the high convergence rate of SA on GA for MTSP. The complete process of the proposed algorithm is shown in Fig. 9.
For solving MTSP with m cities, the hybrid approach uses the same population of GA which is randomly generated. Hybrid
GA-SA algorithm is explained in Algorithm 9. Individuals of population obtained from GA are sorted in descending order
of fitness, and fittest individuals are delivered to SA operators. The SA processes will be used to improve the results by
using the nearest solution technique. If no improvement results are obtained in the ten consecutive iterations, then the best
memorized population from SA will be moved to the GA to repeat the above process.

5. Experiments

This section first introduces bi-objective symmetric MTSP instances and corresponding parameter settings in Sec. 5.1. Then
experiments results and the statistical analysis are implemented in Sec. 5.2.

5.1. Datasets and parameters

For the sake of contrastive analysis, the problem set contains 5Bi-objective symmetric MTSP instances with the numbers
of cities ranging from 10 to 100. The benchmark details are listed in Table 1. All selected parameters values for GA and SA
have been chosen empirically and are listed in Table 2. All experiments were implemented in Java on a CPU Intel Core i5-
8250 with 1.8 GHz and 8 GB of RAM. The different algorithms used in this paper are described in Table 3.

Table 1
Parameters of the benchmark problems

Instances No of cities Number of salesmen
GSA10
GSA30
GSA50
GSA70
GSA100

10
30
50
70

100

3 / 5 /7

Table 2
Parameters for GA and Simulated Annealing Algorithm

Parameters Values
Population Size
Random Swap Rate
Reverse Swap Rate
Crossover Rate
Initial temperature
Minimum Temperature
Rate of Cooling

500
25%
50%
40%
999
0.99
0.05

Algorithm 9
Pseudocode of Hybrid algorithm
1. Initialization: Randomly generate a population.
2. Estimation of Fitness & Arrangement: Estimate fitness of individuals and sort them with fitness value.
3. GA-Mechanism: Apply the classical genetic algorithm on the individuals of the population and produce new population.

A. Selection: Employ proportionate selection to build a mating pool.
B. Crossover: Employ order-based crossover to create new offspring.
C. Mutation: Perform mutation on new offspring via scamble operator.

4. SA-Mechanism: Apply the SA on best individuals to update their position.
5. Repeat: Start from step 2 until termination criterion is not satisfied.

F. Smaili / Decision Science Letters 13 (2024) 13

Table 3
Description of used algorithm

Algorithm Description
GASCSM

GASCRSM
GATCSM

GATCRSM
SA

HGSA

Genetic algorithm with single point crossover and swap mutation.
Genetic algorithm with single point crossover and reverse swap mutation.
Genetic algorithm with two point crossover and swap mutation.
Genetic algorithm with two point crossover and swap reverse mutation.
Simulated Annealing.
Hybrid Genetic-Simulated Annealing Algorithm.

5.2 Results and analysis

In this section, we present experimental results and carry out statistical analyses. All experiments are implemented in the
same environment to enable fair comparisons between all algorithms. Four genetic algorithms with different combinations
of crossover and mutation operators are formulated. Also a simulated annealing and one of the best efficient of four
algorithms previously described is hybridized with simulated annealing algorithm. This experiment aims to compare the
performance of the operators under different numbers of salesmen. Therefore, we set the maximum number of generations
to a fixed value, which is used as a termination criterion. In order to wipe off the computational fluctuation, all results in
our experiments are averaged over 40 times.

5.2.1. Experimental Results

The results are reported in Table 4. Hybrid Genetic-Simulated Annealing Algorithm obtains the best-fitness solution
compared to other settings in most of the test cases. The fitness is defined as the sum of the salesmen’s path distance, which
is the smaller the better. The average fitness values are improved by 19.5%, 17.5%, and 20.57% with 3, 5 and 7 salesmen
respectively compared to the results of GASCSM. From the experiment, we observed that HGSA works poorly with a small
ratio of the number of cities. That means that for each salesman visiting, it is more likely to be a short path. We estimate
that this type of path can reach a local optimum during the GA stage because the fitness function is the total distance of all
salesmen. Hence, since the number of cities is low, applying HGSA will not be helpful, as the overall optimization of MTSP
requires an exchange of cities between salesmen.

To stimulate HGSA, a threshold for HGSA can be introduced. When the fitness improvement obtained by HGSA is below
a threshold (k%), it will be disabled for some cycles. This will help save time and avoid creating troubles to find a better
solution by exchanging cities. The cooling operators rate for simulated annealing and HGSA algorithms can also be settled
to different problems. If the application is urgent, HGSA can be turned off to get acceptable results in the fastest way. If the
computational resources and the time are adequate, the application is critical in terms of cost, the use of both operators will
bring the best benefit to the result.

Regarding the multi-objective MTSP problem, we changed the objective function (fitness function) of all algorithms to plot
the graphs of the variation of the difference between the longest sub-tour and the shortest sub-tour (amplitude of tours) as a
function of total distance of tours. In all the following figures, the abscissa represents the total distance of tours and the
ordinate represents the amplitude of tours. In Fig. 10, it is obvious that the non-dominated front obtained by HGSA is better
than the non-dominated front edge obtained by all other algorithms. The former solution tends to have less total distance
and lower difference. Compared with the other five algorithms, the solution from our algorithm can dominate most of the
solutions obtained by the other methods, especially the instance GSA100-m7. In GSA30-m7, our result is to show a clear
advantage in the objective of minimizing the total distance, but not very good in minimizing the balance.

As shown in GSA100-m7, combining HGSA and SA still performs better than the other algorithms at the same number of
iterations. In Figure 8, the results of three instances of the genetic algorithm with different operators have relatively poor
performance and it is obvious that our algorithm HGSA can get a better non-dominated front.

In Fig. 11, our algorithm HGSA also gets a better non-dominated front, especially in the GSA100-m3 example, where our
non-dominated solution set reflects a good diversity. Since HGSA is based on the search of shortest distance accurately for
each iteration for genetic algorithm and for each rate of cooling for simulated annealing algorithm, our results do not perform
well in the extreme case of minimizing the balance in some instances. To see the effect of the number of salesmen and the
number of cities on the algorithm results and by comparing the results of Fig. 10 and Fig. 11, it appears that our algorithm
is efficient in increasing the number of cities as it’s not affected by the number of salesmen. In general, the non-dominated
front derived from our algorithm is closer to the origin than the non-dominated solution set obtained by any of the other
five algorithms, the results we obtain simultaneously are of good diversity and can provide more options to decision makers.

.

 14

Table 4
Fitness comparison with different algorithm and number of salesmen

Number of salesmen 3 5 7
Problem Algorithm Best Avg Worse Time (s) Best Avg Worse Time (s) Best Avg Worse Time (s)

GSA10

GASCSM 1840 2026 2310 0.261 2250 2396 2510 0.239 2710 2905 3320 0.27
GASCRSM 1840 2122 2360 0.192 2290 2475 2670 0.244 2770 2917 3280 0.275
GATCSM 1860 2034 2280 0.189 2250 2428 2670 0.221 2750 2872 3060 0.258
GATCRSM 1890 2084 2390 0.204 2310 2493 2640 0.214 2710 3043 3300 0.254
SA 1780 1823 1850 1.949 2210 2230 2250 4.1 2710 2710 2710 5.027
HGSA 1780 1807 1840 7.297 2210 2230 2250 3.736 2710 2710 2710 19.793

GSA30

GASCSM 5087 5429 5730 0.754 5594 5871 6225 1.264 6021 6287 6476 1.682
GASCRSM 4903 5509 6187 0.777 5389 5866 6907 1.179 5362 6153 7040 1.696
GATCSM 5251 5427 5682 0.66 5384 5871 6139 1.126 6043 6266 6556 1.543
GATCRSM 4462 5152 6267 0.744 5206 5868 6769 1.14 5558 6137 6832 1.568
SA 4364 4551 4695 13.711 4941 5081 5180 21.57 5380 5463 5517 35.199
HGSA 4271 4345 4416 247.665 4778 4895 4970 85.881 5287 5349 5414 123.285

GSA50

GASCSM 7351 7564 7957 2.99 7058 7823 8248 6.83 7837 8305 9653 7.846
GASCRSM 6688 7501 8447 2.95 7199 7789 8905 4.919 7666 8172 9294 9.305
GATCSM 7033 7584 7946 2.847 7677 7909 8261 4.496 7729 8243 8578 8.416
GATCRSM 6910 7315 9005 3.757 7743 8398 9028 6.291 7378 8082 9250 10.303
SA 6158 6409 6555 62.387 6520 6694 6882 115.533 6948 7075 7221 160.366
HGSA 5900 6061 6180 975.754 6473 6585 6720 784.127 6437 6569 6689 431.028

GSA70

GASCSM 10069 10386 10766 8.634 10185 10790 11222 15.689 10737 11134 11600 28.702
GASCRSM 9669 10501 11624 8.703 9954 11037 11975 16.497 10379 11359 12490 22.22
GATCSM 10046 10371 10701 10.272 10506 10878 11336 18.245 10368 11142 11597 20.391
GATCRSM 9530 10499 11386 8.005 10290 11054 12133 14.18 9857 10726 12386 20.088
SA 8419 8813 9127 195.212 9213 9361 9431 347.013 9198 9689 9982 512.763
HGSA 8401 8578 8718 2830.079 9010 9186 9350 1898.746 9170 9345 9410 2005.148

GSA100

GASCSM 16087 16656 17145 43.038 16284 16915 17390 75.276 16795 17521 19614 86.741
GASCRSM 15769 16776 18096 35.126 15653 16583 18757 73.611 15512 17032 19345 91.061
GATCSM 15985 16594 16945 39.749 16274 17005 17404 69.093 16621 17339 18036 96.137
GATCRSM 15895 16533 17795 31.233 15973 17040 18664 69.863 16403 17461 18799 96.992
SA 13618 13871 14212 813.488 14163 14569 14897 1427.573 14372 14818 15083 2041.302
HGSA 12949 13321 13583 51842.682 13430 14094 14260 5159.875 13858 14446 14800 7693.246

F. Smaili / Decision Science Letters 13 (2024) 15

Fig. 10. Non-dominated fronts for GSA100-m7, GSA70-m7 and GSA30-m7 instances

Fig. 11. Non-dominated fronts for GSA100-m5 and GSA100-m3 instances

5.2.2 Statistical Analyses

In order to verify that the HGSA algorithm is statistically superior to other algorithms, this section performs statistical
analyses according to (García et al., 2009). Table 5 shows the average value of fitness in different scales of instances. Table
6 gives the rankings of different algorithms on the various datasets based on results in Table 5.

In Table 5, symbols G1 – G9 denote six instances taken in these statistical analyses.The values in Table 6 indicate the
ranking results of six algorithms from best to worst based on the average fitness value (the sum of the salesmen’s path
distance) summarized in Table 5 of three instances GSA50, GSA70 and GSA100. R represents the average of all rankings
on nine datasets for each algorithm. For example, the ranking R of HGSA can be calculated as, R = (1 + 1 +1 + 1+ 1 + 1)
/9= 1.

12000 13000 14000 15000 16000 17000 18000 19000 20000
0

100

200

300

400

500

600

700

800

900

 HGSA
 SA
 GATCSM
 GATCRSM
 GASCSM
 GASCRSM

A
m

pl
itu

de
 o

f t
ou

rs

Total distance of tours

GSA100-m7

9000 10000 11000 12000 13000
0

100

200

300

400

500

600

700

800

900
GSA70-m7

 HGSA
 SA
 GATCSM
 GATCRSM
 GASCSM
 GASCRSM

A
m

pl
itu

de
 o

f t
ou

rs

Total distance of tours

5000 5500 6000 6500 7000 7500 8000
0

100

200

300

400

500

600
GSA30-m7

 HGSA
 SA
 GATCSM
 GATCRSM
 GASCSM
 GASCRSM

A
m

pl
itu

de
 o

f t
ou

rs

Total distance of tours

12000 14000 16000 18000 20000 22000
0

100

200

300

400

500

600

700

800

900
GSA100-m5

 HGSA
 SA
 GATCSM
 GATCRSM
 GASCSM
 GASCRSM

A
m

pl
itu

de
 o

f t
ou

rs

Total distance of tours

12000 13000 14000 15000 16000 17000 18000 19000 20000
0

100

200

300

400

500

600

700

800

900
GSA100-m3

 HGSA
 SA
 GATCSM
 GATCRSM
 GASCSM
 GASCRSM

A
m

pl
itu

de
 o

f t
ou

rs

Total distance of tours

 16

Fig. 12. The Bonferroni-Dunn's graph corresponding to results of Table 6. The horizontal line represents the value which
equals to the sum of the ranking of control algorithm (i.e., HGSA) and the corresponding CD. Thos bars which exceed this
line are the associated to an algorithm with worse performance than HGSA
Table 5
The comparison of measure of fitness value obtained by algorithms in different instances. From left to right, these instances
are GSA50-m3, GSA50-m5, GSA50-m7, GSA70-m3, GSA70-m5, GSA70-m7, GSA100-m3, GSA100-m5, and GSA100-
m7

Algorithm G1 G2 G3 G4 G5 G6 G7 G8 G9
GASCSM
GASCRSM
GATCSM
GATCRSM
SA
HGSA

7564
7501
7584
7315
6409
6061

7823
7789
7909
8398
6694
6585

8305
8172
8243
8082
7075
6569

10386
10501
10371
10499
8813
8578

10790
11037
10878
11054
9361
9186

11134
11359
11142
10726
9689
9345

16656
16776
16594
16533
13871
13321

16915
16583
17005
17040
14569
14094

17521
17032
17339
17461
14818
14446

First, by Eq. (6), the statistics can be made in Friedman test (i.e. 𝜒). Rj represents the rank of diverse algorithms. N and k
express the number of datasets and algorithms, respectively. According to Eq. (6), the 𝜒 of Table 6 is calculated to be
32.128. The degree of freedom of Table 6 can be obtained from the records in Chi-square table, i.e., k - 1 =5 and 𝜒 . =
11.071. Because 32.128 > 11.071, within the confidence interval of 95%, these algorithms in Table 6 show significant
differences.
 𝜒 = 12𝑁𝑘(𝑘 + 1) 𝑅 − 𝑘(𝑘 + 1)4

(6)

Second, according to the significant differences among these algorithms, the Bonferroni-Dunn's test can be utilized to prove
the specific distinction between two algorithms.This rule, whether the difference value between two algorithms in ranking
is greater than the critical difference, is used as the evaluation criterion (denoted as CD). For a multiple comparison, α and
qα are the confidence level and threshold obtained by checking the Z table, respectively.Therefore, we can conclude that
q0:05 = 2.935 (where P = k (k - 1) / 2 = 15) for Table 6. According to Eq. (7), we can get the critical values at the 95%
confidence levels, i.e., CD0,05= 2.588.
 𝐶𝐷 = 𝑞 𝑘(𝑘 + 1)6𝑁

(7)

Since the performance of two algorithms is obviously different and that ranking difference is larger than CDα, it can be
conclude that HGSA is better than GASCSM, GASCRSM, GATCSM, GATCRSM and SA with α = 0,05 (95% confidence)
based on Fig. 12.
 𝑍 = 𝑅 − 𝑅()

(3)

HGSA SA GASCSM GASCRSM GATCSM GATCRSM
0

1

2

3

4

5

6

- - - - - - CD = 2.588 α = 0.05

Ra
nk
in
g

F. Smaili / Decision Science Letters 13 (2024) 17

Finally, Holm's and Hochberg's methods are used to further compare the differences between two algorithms. To compare
algorithms i and j, the statistic is calculated (denoted as zvalue) by Eq.(8). Generally, the ranking result is listed in reverse
order. More Specifically, according on the z values, searching the normal distribution table can gain an unadjusted p
(expressed as Up). From BDpi= min{vi;1}, Bonferroni-Dunn p (expressed as BDp) can be computed, where vi= (k - 1)Upi.
From Hpi= min{vi;1}, Holm p (denoted as Hp) can be computed, where vi= max{(k - j)Upj: 1 ≤ j ≤ i}. From HBpi=max{(k -
j)Upj : 1 ≥ j ≥ i}, Hochberg p (expressed as HBp) can be computed.

Table 6
The ranking obtained based on Table 3. The value means the ranking result of these algorithms in each instance.

According to Holm's and Hochberg's procedures, Table 7 reports the statistical results of the data in Table 6.We can get the
value of z by Eq. (8). Through searching and comparing the value of z and the value in the normal distribution table, we
can obtain the probabilistic error estimation of a comparison (i.e., p-value).unadjusted p in Table 7 is p-valued squared.
However, it does not consider the remaining comparisons, when p-value is in multiple comparisons. Adjusted p-value
(APVs) considers multiple tests and can be used directly as the sumptive p-value in the multiple algorithm comparison
range.Bonferroni-Dunn p (BDp), Holm p (Hp) and Hochberg p (HBp) represent the three calculated APVs. According to
such a comparison, we can conclude that HGSA is better than other comparison algorithms at the 95% confidence level.

Table 7
The p-value on datasets G1 - G9 (HGSA is the control algorithm), which reports statistical results of Table 4.

HGSA vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p
GASCSM
GATCSM

GASCRSM
GATCRSM

SA

4.03
4.03
3.90
3.90
1.13

0
0

0.000099
0.000099

0.2417

0
0

0.000495
0.000495

1

0
0

0.000297
0.000297

0.2417

0.2417
0.2417
0.2417
0.2417
0.2417

6. Conclusion

In this paper, a novel MTSP solving hybrid algorithm, called Hybrid Genetic-Simulated Annealing Algorithm (HGSA) has
been proposed and developed. The crossover and mutation operators have been successfully deployed to generate four
algorithms of the genetic algorithm. Then one of the best efficient of four algorithms previously described was hybridized
with a simulated annealing algorithm. We also compared the performance of HGSA with the other proposed algorithms.

The Simulated Annealing operator increased the diversity of individuals, which could enhance the exploration space and
avoid falling into the local optimum. According to such comparisons in the statistical analyses, it is easy to reach the
conclusion that HGSA is better than other comparison algorithms at the 95% confidence level.

Also, the total travel distance and the difference between the longest sub-tour and the shortest one represented two
conflicting objectives. Our algorithm (HGSA) was tested and compared with other five algorithms. The comparison results
showed that the efficiency of diversity was realized for both of the two objective functions of our algorithm.

For future work, the proposed method can be further improved by using novel crossover and mutation operators that are not
classic. Furthermore, the operators can be applied to other variations of MTSP problems, like multiple depots MTSP to find
a better solution efficiently.

Acknowledgment
The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for
supporting this work through the Fast-Track Research Support Program.

Conflicts of interest
Author declares no conflicts of interest.

References
Albayrak, M., & Allahverdi, N. (2011). Development a new mutation operator to solve the traveling salesman problem by

aid of genetic algorithms. Expert Systems with Applications, 38(3), 1313-1320.

Algorithm G1 G2 G3 G4 G5 G6 G7 G8 G9 Ranking R
GASCSM
GASCRSM
GATCSM
GATCRSM
SA
HGSA

5
4
6
3
2
1

4
3
5
6
2
1

6
4
5
3
2
1

4
6
3
5
2
1

3
5
4
6
2
1

4
6
5
3
2
1

5
6
4
3
2
1

4
3
5
6
2
1

6
3
4
5
2
1

4.555
4.444
4.555
4.444

2
1

 18

Al-Omeer, M. A., & Ahmed, Z. H. (2019, April). Comparative study of crossover operators for the MTSP. In 2019
International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.

Altenberg, L. (1995). The schema theorem and Price's theorem. In Foundations of genetic algorithms (Vol. 3, pp. 23-49).
Elsevier.

Ann, S., Kim, Y., & Ahn, J. (2015). Area allocation algorithm for multiple UAVs area coverage based on clustering and
graph method. IFAC-Papers OnLine, 48(9), 204-209.

Bagchi, P., & Pal, S. (2011, April). Controlling crossover probability in case of a genetic algorithm. In International
Conference on Advances in Information Technology and Mobile Communication (pp. 287-290). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Banzhaf, W. (1990). The “molecular” traveling salesman. Biological Cybernetics, 64(1), 7-14.
Beed, R. S., Sarkar, S., Roy, A., & Chatterjee, S. (2017, December). A study of the genetic algorithm parameters for solving

multi-objective travelling salesman problem. In 2017 International conference on information technology (ICIT) (pp.
23-29). IEEE.

Bodenhofer, U. (2004). Genetic algorithms: theory and applications.
Bremermann, H. J., Rogson, M., & Salaff, S. (1965). Search by evolution. Biophysics and Cybernetic Systems, 157-167.
Brown, E. C., Ragsdale, C. T., & Carter, A. E. (2007). A grouping genetic algorithm for the multiple traveling salesperson

problem. International Journal of Information Technology & Decision Making, 6(02), 333-347.
Carter, A. E., & Ragsdale, C. T. (2006). A new approach to solving the multiple traveling salesperson problem using genetic

algorithms. European journal of operational research, 175(1), 246-257.
Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm.

Journal of optimization theory and applications, 45, 41-51.
Deepa, S. N., & Sivanandam, S. N. (2010). Introduction to genetic algorithms. Springer.
Eglese, R. W. (1990). Simulated annealing: a tool for operational research. European journal of operational research, 46(3),

271-281.
Eiben, Á. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions

on evolutionary computation, 3(2), 124-141.
Eshelman, L. J. (1997). Crossover operator biases: Exploiting the population distribution. In Proceedings of the 7th

International Conference on Genetic Algorithms (pp. 354-361).
Filip, E., & Otakar, M. (2011). The travelling salesman problem and its application in logistic practice. WSEAS Transactions

on Business and Economics, 8(4), 163-173.
García, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-parametric tests for analyzing the

evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization.
Journal of Heuristics, 15, 617-644.

Grefenstette, J. J. (Ed.). (2013). Genetic algorithms and their applications: proceedings of the second international
conference on genetic algorithms. Psychology Press.

Harrath, Y., Salman, A. F., Alqaddoumi, A., Hasan, H., & Radhi, A. (2019). A novel hybrid approach for solving the
multiple traveling salesmen problem. Arab Journal of Basic and applied sciences, 26(1), 103-112.

Holland, J. H. (1975). Adption in natural and artifieial system.
Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-

680.
Labadie, N., Melechovsky, J., & Prins, C. (2014). An evolutionary algorithm with path relinking for a bi-objective multiple

traveling salesman problem with profits. Applications of Multi-Criteria and Game Theory Approaches: Manufacturing
and Logistics, 195-223.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algorithms. European Journal
of Operational Research, 59(2), 231-247.

Laporte, G., & Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen problem. Journal of the Operational
Research society, 31, 1017-1023.

Li, J., Sun, Q., Zhou, M., & Dai, X. (2013, October). A new multiple traveling salesman problem and its genetic algorithm-
based solution. In 2013 IEEE international conference on systems, man, and cybernetics (pp. 627-632). IEEE.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations
research, 21(2), 498-516.

Lo, K. M., Yi, W. Y., Wong, P. K., Leung, K. S., Leung, Y., & Mak, S. T. (2018). A genetic algorithm with new local
operators for multiple traveling salesman problems. International Journal of Computational Intelligence Systems, 11(1),
692-705.

Malmborg, C. J. (1996). A genetic algorithm for service level based vehicle scheduling. European journal of operational
research, 93(1), 121-134.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by
fast computing machines. The journal of chemical physics, 21(6), 1087-1092.

Ming, L. I. U., & Pei-yong, Z. H. A. N. G. (2014). New hybrid genetic algorithm for solving the multiple traveling salesman
problem: an example of distribution of emergence materials. Journal of Systems & Management, 23(2), 247.

Mooi, L. S. (2016). Crossover and mutation operators of real coded genetic algorithms for global optimization problems.

F. Smaili / Decision Science Letters 13 (2024) 19

Necula, R., Breaban, M., & Raschip, M. (2015, November). Tackling the bi-criteria facet of multiple traveling salesman
problem with ant colony systems. In 2015 IEEE 27th international conference on tools with artificial intelligence
(ICTAI) (pp. 873-880). IEEE.

Qiang, N., & Kang, F. J. (2014). A hybrid particle swarm optimization for solving vehicle routing problem with stochastic
demands. Advanced Materials Research, 971, 1467-1472.

Reinelt, G. (2003). The traveling salesman: computational solutions for TSP applications (Vol. 840). Springer.
Shim, V. A., Tan, K. C., & Tan, K. K. (2012, June). A hybrid estimation of distribution algorithm for solving the multi-

objective multiple traveling salesman problem. In 2012 IEEE congress on evolutionary computation (pp. 1-8). IEEE.
Shmoys, D. B., Lenstra, J. K., Kan, A. R., & Lawler, E. L. (Eds.). (1985). The traveling salesman problem (Vol. 12). John

Wiley & Sons, Incorporated.
Shuai, Y., Yunfeng, S., & Kai, Z. (2019). An effective method for solving multiple travelling salesman problem based on

NSGA-II. Systems Science & Control Engineering, 7(2), 108-116.
Singh, D. R., Singh, M. K., Singh, T., & Prasad, R. (2018). Genetic algorithm for solving multiple traveling salesmen

problem using a new crossover and population generation. Computación y Sistemas, 22(2), 491-503.
Soylu, B. (2015). A general variable neighborhood search heuristic for multiple traveling salesmen problem. Computers &

Industrial Engineering, 90, 390-401.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in

Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282.
Tang, P. H., & Tseng, M. H. (2013). Adaptive directed mutation for real-coded genetic algorithms. Applied Soft Computing,

13(1), 600-614.
Wong, D. F., & Liu, C. L. (1986, June). A new algorithm for floorplan design. In 23rd ACM/IEEE Design Automation

Conference (pp. 101-107). IEEE.
Xu, X., Yuan, H., Liptrott, M., & Trovati, M. (2018). Two phase heuristic algorithm for the multiple-travelling salesman

problem. Soft Computing, 22, 6567-6581.
Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Modification of the ant colony optimization for solving the

multiple traveling salesman problem. Romanian Journal of Information Science and Technology, 16(1), 65-80.
Yu, Z., Jinhai, L., Guochang, G., Rubo, Z., & Haiyan, Y. (2002, June). An implementation of evolutionary computation for

path planning of cooperative mobile robots. In Proceedings of the 4th World Congress on Intelligent Control and
Automation (Cat. No. 02EX527) (Vol. 3, pp. 1798-1802). IEEE.

 20

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

