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 Community detection has gained much attention during the past few decades. So many 
algorithms have been developed to tackle this problem. In previous related works the weight of 
the edges and directionality were not considered at the same time in the models. Considering 
weights and directionality makes the models more realistic and prevents the loss of information 
in the network. In this article, we propose an overlapping community detection algorithm for 
networks with weighted and directed edges. We used the concept of information flows among 
the vertices i.e. the more flows exist in a community, the stronger the community. We 
implemented the concept of flow using weighted closed flows starting from a given node and 
ending to the same node. By using the mentioned assumption we developed a new modularity 
measure called weighted flow modularity (WFM) based on M function modularity. In addition, 
we developed an overlapping score criteria which considers overlap in vertices and edges at the 
same time and is much faster in the terms of run time. We compared the community detection 
results in terms of accuracy and running time with Order statistics local optimization method 
(OSLOM) on 74 LFR benchmark networks using normalized mutual information score. We also 
implemented the community detection process using LCFE on real world datasets and evaluated 
the community detection results using EQ measure. The experimental analysis results show that 
the LCFE is more accurate in most cases and is competitive in other cases with OSLOM. 
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1. Introduction 
 

By development of information technology and trilling vast amounts of data in its beds the importance of social networks 
has been felt more than ever. Biological networks such as protein-protein interactions, online social networks, collaboration 
networks such as author’s citation networks are examples of social networks (Girvan & Newman, 2002). Social network 
analysis reveals fundamental and strong insights about the modern world. That’s why the amount of research conducted in 
the field of network science has been increased. One can simply describe a network as a set of nodes and edges depicting 
the interactions between them (Badiee & Ghazanfari, 2018). As an established fact in science of networks, the effect of the 
structure on the system is inescapable (Kermani, Badiee, Aliahmadi, Ghazanfari, & Kalantari, 2016). Some nodes in the 
network show a particular similarity to others. These nodes are divided into groups which are densely connected to each 
other while have sparse connections with other components of the network. The procedure in which one can find these 
groups is called community detection or clustering or graph partitioning and these groups are called clusters, partitions or 
communities. But still there is not a clear definition on the graph clustering problem both in undirected and directed graphs 
(Malliaros & Vazirgiannis, 2013). In this paper we will introduce an overlapping community detection algorithm for 
weighted and directed networks. The algorithm starts by calculating betweenness for every edge. Then based on the higher 
betweenness values the ends of the edge are selected as a local community, and the local communities will be expanded 
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through optimizing a modularity function called WFM. In the next step an overlapping score based on the similarity concept 
is introduced and communities with higher overlapping score will be merged. At the end, the homeless nodes are added to 
communities based on the value of their fitness. After the last phase, if a node is still homeless, we divide it into outlier 
group.  

This paper is organized as following: In the second part we have a literature review on community detection algorithms in 
weighted directed networks. In the third section we present the model and the algorithm. In the fourth section we have 
numerical example and in the fifth section we have a conclusion and suggestions for future works respectively.  
 
2. Literature review 
 
Dealing with edge directionality have been an issue for a long time and various methods have been proposed to tackle this 
problem. In many works for convenience the directed graph is transformed into the undirected version thus all the algorithms 
for undirected community detections can be applied. This approach is called naïve graph transformation (Malliaros & 
Vazirgiannis, 2013). This method causes a huge loss in data and many vital information could be ignored. In some works 
the graphs have been transformed to undirected ones but the directionality is somehow maintained. There are two different 
approaches to deal with directionality in this context. The first approach transforms (converts the symmetric adjacency 
matrix to an asymmetric one), the directionality to edge weight and keeps the graph as unipartite. For example a directed 
network can be symmetrized through a two stage process (Satuluri & Parthasarathy, 2011). The idea behind the two stage 
transformation originates from a fact that a clustering algorithm should not solely depend on the density of the nodes but 
also the similarity in incoming and outgoing edges should be taken into consideration. In the first step multiple ways for 
symmetrizing an asymmetric adjacency matrix is proposed and in the second step an ordinary community detection 
approach can be used. A network can be symmetrized based on its embedding which can be considered indirectly as a 
transformation to an undirected weighted network; Laplacian matrix can be considered as an embedding (Lai, Lu, & Nardini, 
2010b). Edge directionality can be extracted using a PageRank random walk and replace the directionality with edge weights 
(Lai, Lu, & Nardini, 2010a). The community detection process can be started using core nodes in the network and then, 
expanding the core nodes in their neighborhood to extract final community structure of the network (Long & Li, 2017).  

In the second category the directionality is modeled through converting the graph to a bipartite network. In some works a 
scheme is used to transform the directed graph to an undirected bipartite graph ((Guimerà, Sales-Pardo, & Amaral, 2007; 
D. Zhou, Schölkopf, & Hofmann, 2005). In some other works an objective function is developed to tackle the directionality 
in graph clustering. In previous works the nature of the directed network was changed but in these methods, objective 
functions are developed to directly deal with the clustering problem of directed networks. In the first category a modularity 
function is developed for directed networks. Modularity is a criteria for assessing the quality of clusters (Newman & Girvan, 
2004). The modularity function is generalized for directed networks based on reducing the initial size of the network while 
keeping the modularity intact (Arenas, Duch, Fernández, & Gómez, 2007). A modularity function for directed networks 
based on the original modularity was introduced and supposed that the modularity can be expressed through eigenvalues 
and eigenvectors of a specific matrix called modularity matrix (Leicht & Newman, 2008). LinkRank algorithm emphasizes 
on the edges other than nodes in the process of community detection (Kim, Son, & Jeong, 2010). The scalable Louvain 
algorithm with maximizing the modularity was extended and thus a brand new community detection algorithm was 
developed for directed networks (Dugué & Perez, 2015). Regularize asymmetric non-negative matrix factorization 
(RANMF) was developed which is based on an objective function with pairwise comparison of nodes (Tosyali, Kim, Choi, 
& Jeong, 2019). a consensus clustering algorithm for directed networks called ConClus which is comprised of three sub 
algorithms was developed. The algorithm mostly relies on a fitness function and a neural network providing intervals as 
resolution parameters (Santos, Carvalho, & Nascimento, 2016). An overlapping community detection algorithm for directed 
networks based on edge betweenness modularity and pagerank was proposed (Sathiyakumari & Vijaya, 2018). another 
overlapping community detection algorithm for directed networks which uses a Gamma-Poisson block model was 
introduced. The model can also be generalized for undirected networks by means of making the block model matrix as 
symmetric (Gao, Liu, & Miao, 2018). A multi-objective optimization model for clustering the heterogeneous weighted 
networks through key nodes identification with overlapping communities was introduced (Kalantari, Ghazanfari, Fathian, 
& Shahanaghi, 2020).  

Some approaches are based on nature inspired algorithms. a consensus genetic based algorithm was used to detect 
communities in directed networks (Mathias, Rosset, & Nascimento, 2016). In another work Bio-inspired algorithms was 
used for detecting communities in weighted directed networks (Osaba et al., 2018). An ant colony based algorithm for 
overlapping community detection was introduced (X. Zhou, Liu, Zhang, Liu, & Zhang, 2015). Although Optimization of 
an objective function and using nature inspired algorithms can be classified in one category, we’d rather to split them in 
two different categories because of uniqueness of problem solving approach in nature inspired algorithms.  So far the most 
of the algorithms under study did not take the effect of edge weights into account. A new local clustering coefficient is 
proposed for weighted and directed networks which captures the presence of triangles as well as weights (Clemente & 
Grassi, 2018). An algorithm in which impact factors of in-degree and out-degree are considered and the directed weighted 
degree is used to measure the importance of a node (Liu, Qin, Yun, & Wu, 2011). In Table 1 we summarized the algorithms 
based on the method they have used to tackle the community detection problem in weighted and directed networks. As it 
can be shown, the number of algorithms that took edge weight into consideration in the algorithm is too low.  It is important 
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to mention that our algorithm is an extension to the algorithm proposed in  (Xing, Fanrong, Yong, & Ranran, 2015). This 
algorithm is designed for undirected and unweighted networks. We extended the algorithm for weighted and directed 
networks, meanwhile we developed a new modularity function called  Weighted Flow Measure (WFM) fitted for weighted 
and directed graphs and a new overlapping score which considers the similarity between edges and nodes of two given 
communities at the same time. 

Table 1  
A brief review on community detection algorithms in weighted and directed networks based on the method, community 
type and network type  

Paper Network  Communities 
Method and process 

naive Directionality to 
weights 

Converting 
to bipartite 

Objective 
function 

Nature 
inspired 

)Long & Li, 2017( Directed 
Unweighted Overlapping  □   ■  □  □  □ 

(Tosyali et al., 2019) Directed  
Unweighted Disjoint  □  □  □  ■  □ 

(Mathias et al., 2016) Directed 
Unweighted Disjoint  □  □  □  □  ■ 

(X. Zhou et al., 2015) Weighted 
Directed Disjoint  □  □  □  □  ■ 

(Osaba et al., 2018) Directed 
Unweighted Overlapping  □  □  □  □  ■ 

(Santos et al., 2016) Directed 
Unweighted Overlapping  □  □  □  ■  □ 

(Sathiyakumari & Vijaya, 2018) Directed 
Unweighted Overlapping  □  □  □  ■  □ 

(Gao et al., 2018) 
Directed 

Undirected 
Unweighted 

Overlapping  ■  □  □  ■  □ 

(Guimerà et al., 2007) Directed 
Unweighted Disjoint  □  □  ■  □  □ 

(D. Zhou, Huang, & Schölkopf, 
2005) 

Directed 
Unweighted Disjoint  □  □  ■  □  □ 

(Clemente & Grassi, 2018) Directed 
Weighted Disjoint  □  □  □  ■  □ 

(Liu et al., 2011) Directed  
Weighted Disjoint  □  □  □  ■  □ 

(Kalantari et al., 2020) Undirected 
Weighted Overlapping  □  □  □  ■  □ 

This Work Directed 
Weighted Overlapping  □  □  □  ■  □ 

 

 3. Model  

We use the graph ( , )G V E=  to model the weighted and directed network in which V is the set of nodes and E is the set 
of weighted directed edges between the nodes. As it can be seen from Fig. 1, In this model we normalize the edge weights 
by dividing each edge weight to the maximum edge weight. 
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Fig. 1. The network model under study 

4. Algorithm 

In this section we present the algorithm. The algorithm is designed for overlapping community detection in weighted and 
directed networks and is called LCFE. First we present the notations used in the algorithm pseudocode. 



  550

4.1 LCFE pseudocode notations 

The notations and the parameter definition of the LCFE can be seen in Table 2. 

Table 2 
Parameter notations used in the algorithm 

Parameter  Description 
,G V E=  A network in which V denotes the set of vertices and E represents the weighted and directed edges 

n mA ×  Adjacency matrix of the graph which can be asymmetric due to the existence of directed edges  

LC The set of local communities  
( )Com i  Set of communities which node i belong to 

( )N i  Neighbors of the node i 

( )iN C  The communities which have common nodes with community iC  

iV  Set of nodes in the community i 

in
iE  Set of inner edges in community i 

( )NC i  Communities which contain the neighbors of node i 

c  Set of final communities 

( ),i jv vθ  A binary parameter. 1 when iv and jv both belong to a community and 0 otherwise.  

( ),i jv vλ  A binary parameter. 1 if only on of  iv  and jv belong to a community. 

cψ  Summation of edge weights of a closed cycle in a community. 

, ( )u v eρ  Number of shortest paths that connect nodes u and v by crossing edge e  

, ( )u v eρ  Number of shortest paths that connect nodes u and v  

( )B e  Centrality of edge e  
 

4.2 LCFE Steps  
 
LCFE begins with certain edges, sets the ends of the edge as local communities and expands the local communities. In the 
second step the local communities are expanded through a modularity function optimization. In the third step the local 
communities are merged based on a certain criterion. And finally in the fourth step the communities are refined through 
assigning the homeless nodes to detected communities.  

4.2.1 Step1: calculating the edge betweenness centrality  
 
First step is calculating the edge betweenness of all edges in the graph by considering the weights. The more central an edge 
the stronger the communities developed from it. This step is a new contribution to (Xing et al., 2015) because the edges are 
not chose randomly in order to community expansion. The centrality criteria is the one developed in (Girvan & Newman, 
2002):  

( )
,

,{ , } 2

( )
( ) u v

V u vu v

e
B e

ρ
σ

∈

=   (1) 

As we know, the weight affects the numbers of shortest paths between two nodes, so in order to relax the negative effect on 
the intensity concept i.e. edge weights we sort the edge betweenness values in ascending order. Here is the pseudocode of 
this step: 
 

Pseudocode 1: Edge Betweenness matrix 
Step 1: Calculating the edge betweenness Centrality Matrix 

Input: Network ,G V E=  

Output: Edges Sorted by value of betweenness | | | |V VBM ×    

    for { }iv V∈  

        for { }j iv V≠ ∈  

        

( )
,

,{ , } 2

( )
( ) i j

i ji j

v v

V v vv v

e
B e

ρ
σ

∈

=   

        end for  
    end for 
sort BM in ascending order  
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4.2.2 Step 2: Local communities 

After calculating edge betweenness for each edge, the algorithm starts by the edges with the first edge in BM and assigns 
its ends as the local community, then the common neighbors of the ends will be drawn out. After that a new modularity 
function will determine whether a common neighbor node will be joined to the community or not. 

Definition 1. Weighted Flow Modularity (WFM):  
 
This modularity function is mostly based on the popular M function modularity. But due to the existence of directionality 
and the assumption of stronger communities in directed graphs have stronger information cycles, we extended the M 
function as following:  
 

( )
( )

int
. ,

. ,
i j

c

i j

ij i jv vernal
c ijij

external ij i jv v

A v vMWFM A
M A v v ψ

θ
ψ

λ ∈
= + = +




 (2) 

 In the Eq. (3), internalM is the summation of edge weights that are inside a community and externalM is the summation of 

edge weights that are outside of a community. Finally cψ is Summation of edge weights of a closed cycle in a community. 
A common neighbor which makes a closed cycle starting from itself and ending to itself will have more chance to join the 
local community because it increases the flow of information to the existing nodes of local community and itself. After 
clarification on the WFM, it is time to scrutinize the pseudocode for the local community detection step of the algorithm. 
Here is the pseudocode: 
 

Pseudocode 2: Local Community Detection 
Step 2: Detecting Local Communities 

Input: Network ,G V E= , 
| | | |V VBM ×

, { }L C =  

Output: local communities 1 2{ , , ..., }kLC LC LC LC=    
      for e B M∈ & e IE∉   
        { , }temp eLC a b=  

          if ( ) ( )Com a Com b φ∩ = &{ , }ea b LC∉  

             ( ) ( ) { , }NC N a N b a b= ∩ −  

               for { }v NC∈   
                   if ( ) ( )temp tempWFM LC v WFM LC∪ ≥  

                        { }temp tempLC LC v= ∪   

                        IE  = IE ∪ ( )tem pe L C    

                    end if 
               end for 
          end if 
     

tempLC LC LC= ∪  

    end for 
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 Fig. 2. Local Community Expansion 
   

For better clarification of this step, consider the following example using Fig. 2. Suppose uve  is the starting edge probed 
from step 1. Nodes u and v make up the first local community. WFM for this community is equal to 0.13. On the other hand 
the neighbor nodes set is { , , , }a b c d . Now every node in the neighboring set will be added to the local community. If it 
increases the amount of WFM, then it will be added to the community. First candidate is node a, WFM value for local 
community with a is equal to 2.33 which is larger than the amount of WFM before joining a. so the local community will 
be { }, ,u v a . It can be seen that the significant increase in the amount of WFM is due to existence of a closed cycle 
starting from a. If the b is added to the local community the value of WFM with b will be 5.82 which is larger than the value 
of WFM for the community before joining b, so node b will be added to the local community. By adding node d, the value 
of WFM will be 5.78 which is smaller than the previous amount. It can be seen that node d does not initiate a closed cycle 
of information with the current nodes of the local community. Finally node c will be added to the local community. We can 
see that the amount of WFM by joining node c will be rised to 6.24. So node c will be added to the local community. At the 
end of this process we can see that the local community expanded to { }, , , ,u v a c b . This step of the algorithm 
continues till all of the edges has been investigated. 
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4.2.3. Step 3: Local Community Merging 
 
Extracted local communities from step 2 are relatively small and cannot be considered as the final community structure of 
the network. On the other hand they are not so much overlapping. So in this step we developed a novel overlapping score 
in which considers the overlapping in nodes and edges at the same time. Before that we will have a review on the base 
overlapping scores on which we developed our own:  
Definition 2. Overlapping score (OS) was first introduced in (Nguyen, Dinh, Nguyen, & Thai, 2011). This score is 
parameter free and requires only the local topological information of the network. Here is the equation:  

{ } { }( , )
min , min ,

in in
i ji j

i j in in
i j i j

E EV V
OS C C

V V E E

∩∩
= +  (3) 

Definition 3. Later on, the equation (3) was extended in (Xing et al., 2015) to the following form:  

{ } ( ) { }( , ) 1
min , min ,

in in
i ji j

i j in in
i j i j

E EV V
WOS C C

V V E E
α α

∩∩
= + −  (4) 

In this new form, a parameter α is added to the fraction because some networks have more overlapping score in nodes 
rather than edges.  
Definition 4. A similarity index was introduced in (Carley, 1991). The main idea behind this similarity index is that “Friends 
tend to be similar”. The equation describing this index is as following:  

1( , )
log[ ( )]SharedItems

similarity A B
frequency sharedItem

=   (5) 

Definition 5. Based on what have reviewed, we developed a novel overlapping score called logarithmic overlapping score 
(LOS). The equation for LOS is as follows:  

1 1( , ) (1 )
log(| |) log(| |)i j in in

i j i j

LOS C C
V V E E

α α= + −
∩ ∩

 (6) 

LOS is tunable through different values of α . 
After illustration on LOS, the pseudocode of step 3 is as following: 
 
Pseudocode 3: Community Merging 

Step 3: local community merging  
Input: Local communities 1 2{ , ,..., }kLC LC LC LC=  
Output: Communities 1 2{ , ,..., }nC C C C=  
01. C LC=  
02. _ {}Tabu list =  
03. for iC C∈  
05.      if  _iC Tabu list∉  
06.          / iC C C=   
07.                 for jC C∈  

08.                     if _jC Tabu list∉ and ( ),i jLOS C C β≥  

10.                           ( ) { },i i jUnion C C C=  

11.                           ( )i i iC Union C C= ∪  

12.                           ( )' '/ iC C Union C=  

13.                           ( )_ _ iTabu list Tabu list Union C= ∪  
15.                     end if 
16.                 end for   
17.     end if 
18.     for iu C∈  
19.           update ( )Com u  
20.     end for 
21.     ' '/ iC C C=  
22. end for 
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In the pseudocode above, β  is a tunable parameter. The larger the value of β  the less communities combined.  

Step 4: Community Refinement  
 
After merging communities there might be nodes that are left without communities. Now that the communities are large 
enough, the possibility of these nodes to join a community is higher because they have a better chance to form closed cycles. 
At the end of this step every node that hasn’t joined a community is called an outlier.  
In order for a node which is out of community to join a community we define a criteria called node fitness:  
 
Definition 6. The value of fitness for a node as calculated as following:  
 

{ } { }( ,{ }) C node C nodeFitness C node WFM WFM∪ −= −  (7) 
 
By joining the node to the community C, if the fitness value us strictly larger than 0, then node will be joined to the 
community. The pseudocode of this step is as following: 
 
Pseudocode 4: Community Refining 

Step 4: Community refining  
Input: Merged Communities from step 3  
Output: Final Community structure of the network 
02. {}Outlier =  
03.  for ( )u V and Com u φ∈ =  
04.        for ( )iC NC u∈  
05.               if ( ,{ }) 0iFitness C u >  

06.                  { }i iC C u= ∪  

07.                  { }( ) ( )Com u Com u i= ∪  
08.               end if  
09.        end for  
10.        if ( )Com u φ=  

11.           { }Outlier Outlier u= ∪  
12.        end if  
13.  end for 

 
5. Numerical example and benchmarking 
 
5.1 Algorithm for Generating Benchmark networks 
 
For the purpose of benchmarking we used the algorithm introduced in (Lancichinetti & Fortunato, 2009). The algorithm is 
specifically designed for testing overlapping community detection algorithms in weighted and directed networks. 
  
5.2 Run time settings and environment 
 
The simulations have been carried out on a laptop with Intel(R) Core(TM) i5 m48 @ 2.67GHz 2.66 GHz processor and 
3.87 GB Memory under Win8 operating system. The source code of the algorithm of this article is written in Python 3.7. 
The benchmark algorithm has its own software package developed.  
 
5.3 Evaluation Criteria of the LCFE 
 
We will test the algorithm performance with normalized mutual information (NMI) for benchmark networks since the 
community structure of the LFR networks are already known and EQ measure for the real world networks. Considering the 
fact that, the true community structure of most real networks is unknown, we utilize the EQ measure to evaluate the 
performance of the algorithms. This measure is calculated through Eq. (8): 
 

1 ,

1 1
2 2

c

k
u v

uv
c u v C u v

d d
EQ A

m O O m= ∈

 = − 
 

   (8) 

m is the number of edges; uO and vO   are the number of communities that incorporate the nodes u and v; ,u vA shows the 
adjacency. The greater the EQ value is, the better community detection result. 
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5.4 Parameters used in benchmark networks  
 
The mentioned algorithm for generating benchmark networks gets the parameters shown in Table 3 as inputs and generates 
a network based on the input values. 
 
Table 3 
Benchmark generator algorithm parameters 

Parameter Description   
N Number of nodes  t1 Minus exponent for the degree sequence 
k Average degree t2 Minus exponent for the community distribution 

maxk Maximum degree minc Minimum community size 
mut Mixing parameter for topology  maxc Maximum community size 

Muw Mixing parameter for weights on Number of overlapping nodes 
Beta Exponent for weight distribution om Number of memberships for overlapping nodes  

 
5.5 Experimental results on synthetic networks  

In this section, we evaluate the algorithm from two points of view. The first one for the accuracy and the second one for 
algorithm run time. 

5.5.1 Experiments for accuracy evaluation 

In this section, we generated 64 synthetic networks divided into 16 groups each containing 4 networks. All groups share the 
common parameters N, k, maxk, beta, t1 and t2. All networks in each group share all parameters except for the number of 
overlapping nodes. We extracted the community structures with LCFE algorithm and Order Statistics Local Optimization 
Method OSLOM (Lancichinetti, Radicchi, Ramasco, & Fortunato, 2011). In Table 6 the synthetic network groups for 
accuracy evaluation of LCFE is listed. The comparison results are shown in Fig. 2. It can be seen from Fig. 3 to Fig. 18t hat 
the LCFE is dominant over OSLOM in most cases. 

5.5.2 LCFE run time evaluation  

In this part of the evaluation process, we generated 10 different benchmark networks. From 100 nodes to 1000 nodes. It can 
be seen from Fig. 19 that LCFE is quite better than OSLOM in most cases and is competitive in other cases. 

5.6 Experimental results on Real world networks  

We implemented the LCFE on 10 real world weighted and directed networks from KONECT project. A brief description 
of these networks can be seen in Table 4. We used EQ measure in order to evaluate the quality of the community detection 
that carried out by LCFE and OSLOM. The more the EQ measure, the better the community detection result. EQ measure 
evaluation results on real world networks are listed in Table 5. 

 
Table 4 
Real World Networks 

Network Edges Nodes 
Adolescent health 12969 2539 
High School 366 70 
Residence Hall 2672 217 
Seventh Grades 376 29 
US Airports 28236 1504 
Florida Ecosystem Dry 2137 128 
Florida Ecosystem Wet 2106 127 
Macaques 1187 62 
Bison 314 26 
Rhesus 111 16 

 

Table 5 
EQ measure Comparison between OSLOM and LCFE on 
10 Real World Networks 

Network OSLOM LCFE 
Adolescent health 0.369 0.4125 
High School 0.7452 0.7698 
Residence Hall 0.6341 0.5269 
Seventh Grades 0.325 0.374 
US Airports 0.485 0.436 
Florida Ecosystem Dry 0.6635 0.721 
Florida Ecosystem Wet 0.6896 0.7136 
Macaques 0.8526 0.6923 
Bison 0.3654 0.5498 
Rhesus 0.3699 0.4779 

 

 

6. Discussion and conclusion  

In this article, we developed an overlapping community detection algorithm for weighted and directed networks. The main 
contributions of this work are using sorted edges as initiators of community detection process, developing a new modularity 
function called weighted flow modularity based on M function and weighted flow cycles, a new overlapping score which 
considers overlapping between nodes and edges at the same time. We generated 81 LFR benchmark in order to evaluate the 
various aspects of the developed algorithm in terms of accuracy, run time and parameter selection. We evaluated the 
community detection results on LFR benchmarks using normalized mutual information. Then the performance of the 
algorithm was evaluated using EQ measure on real world networks. In all cases, the performance of the algorithm was 
compared with Order Statistical Optimization Method (OSLOM). LCFE was dominant over OSLOM in most cases and 
was competitive in other cases. 
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Table 6 
16 Groups of LFR Networks 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 
N 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 
K 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

MAXK 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 
MUT 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 
MUW 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4 
BETA 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

T1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
T2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

MINC 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 
MAXC 25 25 25 25 25 25 25 25 50 50 50 50 50 50 50 50 

OM 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 
ON 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 0-75 

  

Fig. 3. NMI score comparison for LCFE and OSLOM for first group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

Fig. 4. NMI score comparison for LCFE and OSLOM for second group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

  

Fig. 5. NMI score comparison for LCFE and OSLOM for third group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

Fig. 6. NMI score comparison for LCFE and OSLOM for fourth group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

  
Fig. 7. NMI score comparison for LCFE and OSLOM for fifth group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

Fig. 8. NMI score comparison for LCFE and OSLOM for sixth group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 
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Fig. 9. NMI score comparison for LCFE and OSLOM for seventh group 
of LFR Networks with number of overlapping nodes ranging from 0 to 
75 

Fig. 10. NMI score comparison for LCFE and OSLOM for eighth group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

  
Fig. 11. NMI score comparison for LCFE and OSLOM for nineth group 
of LFR Networks with number of overlapping nodes ranging from 0 to 
75 

Fig. 12. NMI score comparison for LCFE and OSLOM for tenth group of 
LFR Networks with number of overlapping nodes ranging from 0 to 75 

 
 

Fig. 13. NMI score comparison for LCFE and OSLOM for eleventh 
group of LFR Networks with number of overlapping nodes ranging from 
0 to 75 

Fig. 14. NMI score comparison for LCFE and OSLOM for twelveth group 
of LFR Networks with number of overlapping nodes ranging from 0 to 75 

  

Fig. 15. NMI score comparison for LCFE and OSLOM for thirteenth 
group of LFR Networks with number of overlapping nodes ranging from 
0 to 75 

Fig. 16. NMI score comparison for LCFE and OSLOM for fourteenth 
group of LFR Networks with number of overlapping nodes ranging from 0 
to 75 

0.45

0.65

0.85

0 25 50 75

NM
I S

co
re

Numver of Overlapping Nodes

LFR Networks Group 7

LCFE OSLOM

0

0.5

1

0 25 50 75

NM
I S

co
re

Number of Overlapping Nodes

LFR Networks Group 8

LCFE OSLOM

0.4

0.6

0.8

1

0 25 50 75

NM
I S

co
re

Number of Overlapping Nodes

LFR Networks Group 9

LCFE OSLOM

0.6

0.8

1

0 25 50 75

NM
I S

co
re

Number of Overlapping Nodes

LFR Networks Group 10

LCFE OSLOM

0.7
0.8
0.9

1

0 25 50 75

NM
I S

co
re

Number of Overlapping Nodes

LFR Networks Group 11

LCFE OSLOM

0.5
0.7
0.9

0 25 50 75

NM
I S

co
re

Number of Overlapping Nodes

LFR Networks Group 12

LCFE OSLOM

0.3

0.5

0.7

0.9

1.1

0 25 50 75

LFR Networks Group 14

LCFE OSLOM

0.3

0.8

1.3

0 25 50 75

NM
I S

co
re

Number of Overlapping Nodes

LFR Networks Group 13

LCFE OSLOM



E. Mohebiju and M. Ghazanfari / Decision Science Letters 9 (2020) 
 

557

  

Fig. 17. NMI score comparison for LCFE and OSLOM for fifteenth 
group of LFR Networks with number of overlapping nodes ranging from 
0 to 75 

Fig. 18. NMI score comparison for LCFE and OSLOM for sixeenth group 
of LFR Networks with number of overlapping nodes ranging from 0 to 75 

 
 

 
 

Fig. 19. Run Time Analysis of LCFE and OSLOM 
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