Decision Science Letters 9 (2020) 21-36

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

## Pugh matrix and aggregated by extent analysis using trapezoidal fuzzy number for assessing conceptual designs

## Olayinka Olabanji<sup>a\*</sup> and Khumbulani Mpofu<sup>a</sup>

| <sup>a</sup> Tshwane Universi | itv of Technology                     | Pretoria West | South Africa. | South Africa |
|-------------------------------|---------------------------------------|---------------|---------------|--------------|
|                               | · · · · · · · · · · · · · · · · · · · |               |               |              |

| CHRONICLE                     | A B S T R A C T                                                                                   |
|-------------------------------|---------------------------------------------------------------------------------------------------|
| Article history:              | Deciding conceptual stage of engineering design to identify an optimal design concept from a      |
| Received May 7, 2019          | set of alternatives is a task of great interest for manufacturers because it has an impact on     |
| Received in revised format:   | profitability of the manufacturing firms in terms of extending product demand life cycle and      |
| August 25, 2019               | gaining more market share. To achieve this task, design concepts encompassing all required        |
| Accepted August 25, 2019      | attributes are developed and the decision is made on the optimal design concept. This article     |
| August 25, 2019               | proposes the modeling of decision making in the conceptual design stage of a product as a multi-  |
| Keywords:                     | criteria decision making analysis. The proposition is based on the fact that the design concepts  |
| Conceptual design             | can be decided based on considering the available design features and various sub-features under  |
| Multicriteria Decision-making | each design feature. Pairwise comparison matrix of fuzzy analytic hierarchy process is applied    |
| Fuzzified Pugh Matrix         | to determine the weights for all design features and their sub-features depending on the          |
| Synthetic Extent Evaluation   | importance to the design features to the optimal design and contributions of the sub-features to  |
| Trapezoiaal juzzy number      | the performance of the main design features. Fuzzified Pugh matrices are developed for assessing  |
|                               | the availability of the sub-features in the design concept. The cumulative from the Pugh matrices |
|                               | produced a pairwise comparison matrix for the design features from which the design concepts      |
|                               | are ranked using a minimum degree of possibility. The result obtained show that the decision      |
|                               | process did not arbitrarily apportion weights to the design concepts because of the moderate      |
|                               | differences in the final weights.                                                                 |
|                               | © 2020 by the authors; licensee Growing Science, Canada-                                          |

## 1. Introduction

Decision making in engineering design towards selection of optimal design of a product or equipment still remains a major concern for manufacturers because they are usually interested in versatile designs that can be easily fabricated and gain market acceptance with a prolonged design life cycle before phasing out (Renzi et al., 2017; Olabanji, 2018). However, these designs cannot be totally achieved from the desk of conceptual designer alone but rather from collaboration with design experts' and decision-making team on conceptual design. An excellent strategy to achieve optimal conceptual design is usually to identify the design requirements from the users or market demand and also from the manufacturing point of view (Sa'Ed & Al-Harris, 2014). The identified requirements are matched with design features, and various sub-features that can be used to characterize the design as described by the decision-making process in engineering design (Fig. 1). In actual fact, having an all-encompassing design that satisfies all design requirements or features is a goal that seems not achievable because of the dynamic nature of the market that is swamped with diverse design due to

<sup>\*</sup> Corresponding author. E-mail address: <u>obayinclox@gmail.com</u> (O. Olabanji)

<sup>© 2020</sup> by the authors; licensee Growing Science, Canada. doi: 10.5267/j.dsl.2019.9.001

customers' requirements (Olabanji & Mpofu, 2014; Renzi et al., 2015; Toh & Miller, 2015). Given this, the design process usually involves the development of different design concepts based on functional requirements and design features. Hereafter, the decision-making team will collect the design concepts in order to select the optimal design concept (Okudan & Shirwaiker, 2006; Akay et al., 2011; Aikhuele, 2017). Decision making in the conceptual phase of engineering design usually involves an evaluation of the design alternatives based on the identified and grouped design features and subfeatures respectively (Green & Mamtani, 2004; Renzi et al., 2015). Two tasks that are usually done by design experts and decision-makers are assigning weights to the relative importance of the design features in the optimal design and assigning weights to the sub-features in order to ascertain and quantify their contributions to the performance of the design features (Girod et al., 2003; Arjun Raj & Vinodh, 2016; Chakraborty et al., 2017). Design expert decision for establishing weight of design features in optimal design has been a long-term source of information for creating comparison among design features and sub-features when trying to select an optimal design from a set of alternative design concepts (Derelöv, 2009; Hambali et al., 2009; Hambali et al., 2011). However, there is a need to establish an objective process for determining these weights in order to reduce further or eliminate the risk of subjective or bias judgment in the decision process. Further, there is a need to introduce a systematic approach to the computational process in determining the optimal design concept from the alternatives.



Fig. 1. Decision Making Process in Engineering Design

Multicriteria Decision Making Analysis (MDMA) has been applied in different field of science, engineering and management to address the problems of decision making in order to select an optimal alternative that will suit the decision-makers (Saridakis & Dentsoras, 2008; Baležentis & Baležentis, 2014). MDMA can be classified into two aspects, namely; Multi-Objective Decision Making (MODM) and Multi-Attribute Decision Making (MADM). The MODM models are employed to make a decision when there are fewer criteria to be considered for evaluation. In situations like this, the decision matrix is developed for the alternatives with minimal consideration on the weights and dimensions of the criteria. The MADM models are employed to solve the problem of decision making in situations where the effects of the criteria on the optimal alternative is of importance, and there are sub-criteria allotted to the criteria of evaluation (Okudan & Tauhid, 2008). In order to avoid bias in apportioning values to criteria of different dimensions, the fuzzy set theory is used to assign values to the linguistic terms used in ranking and rating the alternatives and criteria, respectively. In recent times, hybridizing MADM models to solve the problem of decision making has emerged as it provides an optimized decisionmaking process. Hybridized MADM models have been applied in different fields depending on the goal of the decision-makers and the importance attached to the decision-making process (Alarcin et al., 2014; Balin et al., 2016). However, the application of hybridized MADM to decision making at the conceptual stage of engineering design still requires attention. Although the Hybridized models provide an efficient and systematic procedure for selecting optimal alternative because they harness the computational advantage of two MADM models, but they pose a challenge of computational complexity. The complexity can be solved by converting the computational process into algorithms which can be developed into a program as a decision support tool.

This article proposes that, in order to have optimal decision-making at the conceptual stage of engineering design, it can be modelled as a multicriteria decision-making model. The design requirements are matched into design features and the design features are further divided into various sub-features. The optimal design concept is determined from Fuzzified Pugh Matrices (FPM) using all the design alternatives as a basis. The cumulative performance of the design alternatives is estimated using the weights of design features and sub-features that are obtained from fuzzified pairwise comparison matrices of Fuzzy Analytic Hierarchy Process (FAHP). Due to multifarious dimensions and units of the design features and sub-features and the aim of appropriately quantifying the imprecise information about the design alternatives, Trapezoidal Fuzzy Numbers (TrFN) are used to represent the linguistic terms for rating and ranking the design features are used to develop a pairwise comparison matrix from which the actual performance of the design alternatives is obtained using Fuzzy Synthetic Evaluation (FSE). In order to defuzzify and rank the TrFN of the FSE, it was reduced to a Triangular Fuzzy Number (TFN) then the degree of possibility that a design concept is better than the other is obtained from the orthocenter of three centroids of the plane figure under each TrFN.

#### 2. Methodology

In order to simplify the analysis, consider a framework for the developed MADM model as presented in Fig 2. Pairwise comparison matrices are needed for the sub-features and design features. The Fuzzy Synthetic Extent (FSE) of these comparison matrices are computed and used as weights of the design features, and sub-features in order to determine the cumulative TrFN for each design alternative from the Pugh matrices. The linguistic terms of the TrFN for the pairwise comparison matrices and Pugh matrices are different, and as such, they are described in Table 1. The cumulative TrFN from the Pugh matrices are also harnessed to create a pairwise comparison matrix for the design alternatives. FSEs are obtained for the design alternatives from the pairwise comparison matrices in the form of TrFN, which are further reduced to centroids of orthocenter in the form of Triangular Fuzzy Numbers (TFNs). The degree of possibility of is obtained from these orthocenters which provide weights for each of the alternative design concepts.



Fig. 2. Framework for the Fuzzified Pugh Matrix Model

In order to develop pairwise comparison matrices for the sub-features and design features, it is necessary to assign TrFN  $(M_x)$  to the elements of the matrices using linguistic terms. Consider *m* number of design alternatives  $(D_{Am})$  from which an optimal design will be chosen using *k* number of design features  $(D_{Fk})$  that are characterized by *n* number of sub-features  $(S_{Fn})$ . The membership function ' $\mu_m(x)$ ' of the trapezoidal fuzzy number  $M = \{p, q, r, s\}$  can be expressed by Eq. (1), as presented in Fig. 3; (Singh, 2015; Velu et al., 2017),

$$\mu_{m}(x) = \begin{cases} \frac{x-p}{q-p} & x \in [p, q] \\ 1 & x \in [q, r] \\ \frac{s-x}{s-r} & x \in [r, s] \\ 0 & \text{Otherwise} \end{cases}$$
(1)

where  $p \le q \le r \le s$  with orthocentres of three centroids  $(G_1, G_2, G_3)$  obtained from equations 2, 3 and 4 respectively as presented in Fig. 3. Judgement matrices of the form  $\tilde{Q} = \{\tilde{q}_{gi}^j\}$  can be developed for pairwise comparison matrices of the design features and sub-features. Where *j* and *i* represent columns and rows, respectively. In essence, the judgement matrix for the sub-features can be expressed in equation 5. Also, the comparison matrix for the design features can be described as presented in equation 6 (Somsuk & Simcharoen, 2011; Thorani et al., 2012; Zamani et al., 2014).

$$G_1 = \frac{p+2q}{3} = a \tag{2}$$

$$G_2 = \frac{q+r}{2} = b \tag{3}$$

$$G_3 = \frac{2r+s}{3} = c \tag{4}$$



Fig. 3. Representation of the TrFN with three centroids orthocentres

$$\begin{split} \tilde{S}_{F_n} \Big|_i &= \begin{pmatrix} \tilde{s}_{f1}^1 & \tilde{s}_{f1}^2 & \dots & \tilde{s}_{f1}^j \\ \tilde{s}_{f2}^1 & \tilde{s}_{f2}^2 & \dots & \tilde{s}_{f2}^j \\ \vdots & \vdots & & \vdots \\ \tilde{s}_{fi}^1 & \tilde{s}_{fi}^1 & \dots & \tilde{s}_{fi}^j \end{pmatrix} \end{split}$$
(5)  
$$\tilde{D}_{F_k} &= \begin{pmatrix} \tilde{d}_{f1}^1 & \tilde{d}_{f1}^2 & \dots & \tilde{d}_{f1}^j \\ \tilde{d}_{f2}^1 & \tilde{d}_{f2}^2 & \dots & \tilde{d}_{f2}^j \\ \vdots & \vdots & & \vdots \\ \tilde{d}_{fi}^1 & \tilde{d}_{fi}^1 & \dots & \tilde{d}_{fi}^j \end{pmatrix}$$
(6)

The FSEs for sub features' and design features pairwise comparison matrices can be obtained from Eq. (7) and Eq. (8), respectively. These FSEs represents the weights of the sub-features and design features

which can be represented as  $S_w^{f_n}$  and  $D_w^{f_i}$  respectively (Nieto-Morote & Ruz-Vila, 2011; Tian & Yan, 2013).

$$S_{w}^{f_{n}}\Big|_{i} = [F_{se}]_{\tilde{S}_{F_{n}}} = \sum_{j=1}^{s} s_{fi}^{j} \otimes \left[\sum_{i=1}^{k} \sum_{j=1}^{s} s_{fi}^{j}\right]^{-1}$$
(7)

$$D_{w}^{f_{k}} = [F_{se}]_{\tilde{D}_{f}} = \sum_{j=1}^{s} d_{fi}^{j} \otimes \left[ \sum_{i=1}^{k} \sum_{j=1}^{s} d_{fi}^{j} \right]^{-1}$$
(8)

The Pugh matrix is designed and formulated using all the design alternatives as a basis. This implies that there is m number of Pugh matrix since there is M number of design alternatives. The matrix can be expressed, as presented in equation 9. It is worthwhile to know that equation 9 represents when one of the design concepts is taken as baseline. Hence, for m number of design concepts, there will be m number of equation 9 (Muller, 2009, Muller et al., 2011).

Also, considering Eq. (9), for the design concept considered as a baseline, its sub aggregate takes the value of "*same*" (see Table 1). This implies that;

$$Ag_{sub}^{(k)}\Big|_{i}^{j} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}\Big|_{i=j=1}$$
(10)

Further, the sub aggregate of the comparison for a design feature can be obtained for the design concepts that are not considered as baseline. These aggregates can be derived from;

$$Ag_{sub}^{(k)} = \tilde{D}_{w}^{f(k)} \times \sum_{i=1}^{i=n} \left[ \tilde{S}_{w(k)}^{fn} * \tilde{P}_{gi}^{(k)j} \right]$$
(11)

The overall aggregate for the design concepts that are not considered as a baseline  $(D_{Ag})$  in a particular matrix can be obtained from the summation of the sub aggregates as presented in Eq. (12).

$$\tilde{D}_{Ag} = \sum_{k=1}^{k=k} Ag_{sub}^{(k)} \bigg|_{j=1, 2, \dots, m}$$
(12)

The overall aggregates obtained from the Pugh matrices are used to formulate a pairwise comparison matrix for the design concepts. The pairwise comparison matrix is o the form;

$$\begin{split} \tilde{A}g_{sub}^{(k)}\Big|_{1}^{1} & \tilde{D}_{Ag}\Big|_{1}^{2} & \cdots & \cdots & \tilde{D}_{Ag}\Big|_{1}^{m} \\ \tilde{D}_{Ag}\Big|_{2}^{1} & \tilde{A}g_{sub}^{(k)}\Big|_{2}^{2} & \cdots & \cdots & \tilde{D}_{Ag}\Big|_{2}^{m} \\ \vdots & \vdots & \ddots & \vdots & \vdots & ; m = \text{number of design concept} \end{split}$$
(13)  
$$\vdots & \vdots & \ddots & \vdots & \\ \tilde{D}_{Ag}\Big|_{m}^{1} & \tilde{D}_{Ag}\Big|_{m}^{2} & \cdots & \cdots & \tilde{A}g_{sub}^{(k)}\Big|_{m}^{m} \end{split}$$

Fuzzy Synthetic Evaluation values in the form of TrFN are also obtained for the design alternatives using Eq. (14).

$$\tilde{D}_{Am} = [F_{se}]_{\tilde{D}_{Am}} = \sum_{j=1}^{m} \tilde{D}_{Ag} \Big|_{m}^{m} \otimes \left[ \sum_{i=1}^{m} \sum_{j=1}^{m} \tilde{D}_{Ag} \Big|_{m}^{m} \right]^{-1}$$
(14)

Eq. (2) to Eq. (4) can be used to determine the orthocentres of the centroids of TrFNs for the FSE obtained in equation 14 (see Fig. 3). Consider the membership function of a trapezoidal fuzzy number  $M = \{p, q, r, s\}$ , applying Eq. (2) to Eq. (4), the three orthocentres of the centroids can be obtained in the form of TFN having a membership function  $\mu_g(y)'$  for  $G = \{a, b, c\}$ . This will represent the TFN value of the *mth* design concept. The minimum degree of possibilities  $(P_i \ge P_j)$  can be obtained for each design alternative from Eq. (15) and Eq. (16) in order to obtain their priority values (Somsuk & Simcharoen, 2011). The priority values will represent weight vectors that will be normalized from Eq. (17) before ranking the design concepts.

$$V(P_i \ge P_m) = heights (P_m \cap P_i) = \begin{cases} 1 & \text{if } b_i \ge b_m \\ 0 & \text{if } a_m \ge c_i \\ \frac{a_m - c_i}{(b_i - c_i) - (b_m - a_m)} & \text{otherwise} \end{cases}$$
(15)

min 
$$V(P \ge P_1, P_2, \dots, P_i)$$
 (16)

$$p_{i} = \frac{P_{i}'}{\sum_{i=1}^{m} P_{i}'}$$
(17)

## 3. Application

In order to verify the developed model, it was applied to decision making on four conceptual designs of liquid spraying machine. A decision tree is developed showing all the design features, sub-features and design concepts as presented in Fig. 4. Firstly, the fuzzified pairwise comparison matrix was developed for all the sub-features under each of the design features. The FSEs of the pairwise comparison matrices for the sub-features and design features were estimated from equations 7 and 8, respectively. An example of the fuzzified pairwise comparison matrix for maintainability is presented in Table 2. It is worthwhile to know that since there are eight design features, then eight matrices will be developed for all the design feature. In order to reduce the content of this article, only the FSEs of these matrices will be presented, as shown in Table 3 to Table 10. These FSEs are adopted as the weights of the sub-features and design features. The weights of the sub-features are presumed to be a function of their relative contributions to the performance of the design features, while the weights of the design features are expected to be their relative importance in the optimal design. Further, Pugh matrices are developed using the four design concepts as a baseline. An example of the Pugh matrices using concept one as a basis is presented in Table 11. These matrices were aggregated using the weights of the design feature and sub-features by applying equations 10 and 11. The aggregate TrFNs from the Pugh matrices using all the design concepts as a basis is also presented in Table 11. These aggregates are then applied to develop a pairwise comparison matrix for the design concepts as presented in Table 12.

#### Table 2

|     | Maintainability MN                                           |                                                           |                                                           |                                                           |                                                       |                                                          |  |  |  |  |
|-----|--------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
|     | RM                                                           | DM                                                        | MC                                                        | LP                                                        | MF                                                    | MS                                                       |  |  |  |  |
| RM  | 1 1 1 1                                                      | $\frac{7}{4} \frac{9}{4} \frac{11}{4} \frac{13}{4}$       | $\frac{4}{19} \frac{4}{17} \frac{4}{15} \frac{4}{13}$     | $1 \frac{3}{2} 2 \frac{5}{2}$                             | $\frac{4}{19} \frac{4}{17} \frac{4}{15} \frac{4}{13}$ | $\frac{2}{5} \frac{1}{2} \frac{2}{3} 1$                  |  |  |  |  |
| DM  | $\frac{4}{13} \frac{4}{11} \frac{4}{9} \frac{4}{7}$          | 1 1 1 1                                                   | $\frac{1}{4} \ \frac{2}{7} \ \frac{1}{3} \ \frac{2}{5}$   | $\frac{4}{13}$ $\frac{4}{11}$ $\frac{4}{9}$ $\frac{4}{7}$ | $\frac{2}{5} \frac{1}{2} \frac{2}{3} 1$               | $\frac{7}{4} \frac{9}{4} \frac{11}{4} \frac{13}{4}$      |  |  |  |  |
| МС  | $\frac{13}{4} \ \frac{15}{4} \ \frac{17}{4} \ \frac{19}{4}$  | $\frac{5}{2}$ 3 $\frac{7}{2}$ 4                           | 1 1 1 1                                                   | $\frac{5}{2}$ 3 $\frac{7}{2}$ 4                           | $\frac{1}{4} \frac{2}{7} \frac{1}{3} \frac{2}{5}$     | $1 \frac{3}{2} 2 \frac{5}{2}$                            |  |  |  |  |
| LP  | $\frac{2}{5} \frac{1}{2} \frac{2}{3} 1$                      | $\frac{7}{4} \frac{9}{4} \frac{11}{4} \frac{13}{4}$       | $\frac{1}{4} \ \frac{2}{7} \ \frac{1}{3} \ \frac{2}{5}$   | 1 1 1 1                                                   | $\frac{7}{4} \frac{9}{4} \frac{11}{4} \frac{13}{4}$   | $\frac{4}{13} \frac{4}{11} \frac{4}{9} \frac{4}{7}$      |  |  |  |  |
| MF  | $\frac{13}{4} \ \frac{15}{4} \ \frac{17}{4} \ \frac{19}{4}$  | $1 \frac{3}{2} 2 \frac{5}{2}$                             | $\frac{5}{2}$ 3 $\frac{7}{2}$ 4                           | $\frac{4}{13}$ $\frac{4}{11}$ $\frac{4}{9}$ $\frac{4}{7}$ | 1 1 1 1                                               | $\frac{1}{4} \frac{2}{7} \frac{1}{3} \frac{2}{5}$        |  |  |  |  |
| MS  | $1 \frac{3}{2} 2 \frac{5}{2}$                                | $\frac{4}{13}$ $\frac{4}{11}$ $\frac{4}{9}$ $\frac{4}{7}$ | $\frac{2}{5} \frac{1}{2} \frac{2}{3} 1$                   | $\frac{7}{4} \frac{9}{4} \frac{11}{4} \frac{13}{4}$       | $\frac{5}{2}$ 3 $\frac{7}{2}$ 4                       | 1 1 1 1                                                  |  |  |  |  |
| FSE | $\frac{5}{73}$ $\frac{1}{10}$ $\frac{14}{97}$ $\frac{4}{19}$ | $\frac{3}{50} \frac{1}{12} \frac{11}{94} \frac{7}{41}$    | $\frac{11}{70} \frac{11}{50} \frac{23}{76} \frac{23}{55}$ | $\frac{4}{49} \frac{7}{60} \frac{15}{91} \frac{5}{21}$    | $\frac{1}{8} \frac{4}{23} \frac{11}{46} \frac{1}{3}$  | $\frac{5}{48} \frac{13}{86} \frac{20}{93} \frac{13}{42}$ |  |  |  |  |

Fuzzy Synthetic Evaluation Matrix for Sub features of Maintainability



Fig. 4. Decision Tree for Optimal Design of Liquid Spraying Machine

| Table 3         |                          |         |          |                |
|-----------------|--------------------------|---------|----------|----------------|
| Fuzzy Synthetic | <b>Evaluation Matrix</b> | for Sub | features | of Reliability |

|     | Reliability RE                                        |                                                             |                                                                |                                                             |                                                             |  |  |  |  |  |  |
|-----|-------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
|     | RF                                                    | UL                                                          | DC                                                             | RD                                                          | RS                                                          |  |  |  |  |  |  |
| FSE | $\frac{7}{46} \frac{1}{5} \frac{5}{19} \frac{22}{63}$ | $\frac{2}{11} \ \frac{9}{37} \ \frac{31}{96} \ \frac{3}{7}$ | $\frac{5}{67} \ \frac{10}{99} \ \frac{13}{95} \ \frac{17}{89}$ | $\frac{2}{49} \ \frac{1}{20} \ \frac{1}{16} \ \frac{1}{12}$ | $\frac{11}{56} \ \frac{3}{11} \ \frac{7}{19} \ \frac{1}{2}$ |  |  |  |  |  |  |

|     | Flexibility FY                                          |                                                       |                                                              |                                                       |                                                               |  |  |  |  |  |  |
|-----|---------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|
|     | СР                                                      | SP                                                    | SB                                                           | CU                                                    | ML                                                            |  |  |  |  |  |  |
| FSE | $\frac{2}{15} \frac{5}{27} \frac{25}{97} \frac{17}{46}$ | $\frac{3}{17} \frac{14}{57} \frac{1}{3} \frac{1}{13}$ | $\frac{1}{9} \ \frac{11}{70} \ \frac{7}{32} \ \frac{11}{36}$ | $\frac{2}{45} \frac{1}{18} \frac{1}{14} \frac{3}{31}$ | $\frac{1}{7} \ \frac{17}{82} \ \frac{23}{79} \ \frac{20}{49}$ |  |  |  |  |  |  |

# Table 4 Fuzzy Synthetic Evaluation Matrix for Sub features of Flexibility

## Table 5

| Fuzzy S      | Fuzzy Synthetic Evaluation Matrix for Sub features of Operation |                                                              |                                                              |                                                          |                                                             |                                                              |  |  |  |  |
|--------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| Operation OP |                                                                 |                                                              |                                                              |                                                          |                                                             |                                                              |  |  |  |  |
|              | WF                                                              | AS                                                           | SL                                                           | EU                                                       | DT                                                          | РМ                                                           |  |  |  |  |
| FSE          | $\frac{9}{98} \ \frac{9}{70} \ \frac{13}{73} \ \frac{1}{4}$     | $\frac{1}{10} \ \frac{6}{41} \ \frac{6}{29} \ \frac{12}{41}$ | $\frac{7}{74} \ \frac{1}{7} \ \frac{19}{92} \ \frac{19}{62}$ | $\frac{9}{47} \frac{17}{63} \frac{22}{59} \frac{15}{29}$ | $\frac{3}{49} \ \frac{3}{35} \ \frac{5}{41} \ \frac{2}{11}$ | $\frac{3}{62} \ \frac{4}{57} \ \frac{8}{79} \ \frac{12}{79}$ |  |  |  |  |

## Table 6

Fuzzy Synthetic Evaluation Matrix for Sub features of Manufacturing

|     | Manufacturing MA                                             |                                                             |                                                              |                                                             |                                                       |                                                        |  |  |  |  |  |
|-----|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
|     | AP                                                           | ОМ                                                          | MT                                                           | IP                                                          | PI                                                    | РМ                                                     |  |  |  |  |  |
| FSE | $\frac{5}{63} \ \frac{5}{41} \ \frac{17}{95} \ \frac{6}{23}$ | $\frac{7}{39} \ \frac{21}{82} \ \frac{5}{14} \ \frac{1}{2}$ | $\frac{3}{52} \ \frac{7}{79} \ \frac{5}{38} \ \frac{12}{61}$ | $\frac{3}{64} \ \frac{4}{59} \ \frac{4}{41} \ \frac{9}{62}$ | $\frac{4}{97} \frac{1}{18} \frac{5}{63} \frac{9}{71}$ | $\frac{2}{11} \frac{1}{4} \frac{31}{90} \frac{11}{23}$ |  |  |  |  |  |

## Table 7

Fuzzy Synthetic Evaluation Matrix for Sub features of Assembly and Disassembly

|     | Assembly and Disassembly AD                           |                                                              |                                                              |                                                      |                                                             |  |  |  |  |  |  |
|-----|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
|     | NC                                                    | AP                                                           | AC                                                           | AM                                                   | TAD                                                         |  |  |  |  |  |  |
| FSE | $\frac{3}{71} \frac{1}{19} \frac{2}{29} \frac{7}{79}$ | $\frac{2}{21} \ \frac{7}{55} \ \frac{3}{17} \ \frac{11}{46}$ | $\frac{1}{9} \ \frac{14}{89} \ \frac{7}{31} \ \frac{14}{45}$ | $\frac{5}{36} \frac{1}{5} \frac{2}{7} \frac{13}{34}$ | $\frac{4}{17} \ \frac{27}{91} \ \frac{4}{9} \ \frac{7}{12}$ |  |  |  |  |  |  |

## Table 8

| Fuzzy Sy           | Fuzzy Synthetic Evaluation Matrix for Sub features of Life Cycle Cost |                                                      |                                                          |                                                        |                                                          |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| Life Cycle Cost LC |                                                                       |                                                      |                                                          |                                                        |                                                          |  |  |  |  |  |  |
|                    | DA                                                                    | SR                                                   | RC                                                       | ОС                                                     | SC                                                       |  |  |  |  |  |  |
| FSE                | $\frac{9}{58} \frac{20}{97} \frac{26}{95} \frac{10}{27}$              | $\frac{2}{35} \frac{7}{87} \frac{1}{9} \frac{2}{13}$ | $\frac{5}{47} \frac{10}{67} \frac{13}{63} \frac{15}{52}$ | $\frac{11}{48} \frac{14}{45} \frac{5}{12} \frac{5}{9}$ | $\frac{3}{34} \frac{11}{95} \frac{12}{79} \frac{16}{79}$ |  |  |  |  |  |  |

## Table 9

Fuzzy Synthetic Evaluation Matrix for Sub features of Functionality

| Functionality FU |                                                              |                                                       |                                                     |                                                      |                                                                 |                                                      |  |  |  |  |
|------------------|--------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
|                  | SF                                                           | FM                                                    | ST                                                  | MT                                                   | ТМ                                                              | LD                                                   |  |  |  |  |
| FSE              | $\frac{5}{49} \ \frac{5}{36} \ \frac{5}{26} \ \frac{16}{61}$ | $\frac{3}{82} \frac{4}{85} \frac{5}{78} \frac{6}{67}$ | $\frac{1}{8} \frac{9}{58} \frac{8}{33} \frac{1}{3}$ | $\frac{4}{51} \frac{1}{9} \frac{10}{63} \frac{2}{9}$ | $\frac{16}{85} \ \frac{16}{61} \ \frac{26}{71} \ \frac{31}{63}$ | $\frac{4}{51} \frac{7}{59} \frac{3}{17} \frac{1}{4}$ |  |  |  |  |

## Table 10

Fuzzy Synthetic Evaluation Matrix for the Design Features

|                    | Design Features                          |                                                      |                                                          |                                                             |                                                              |                                                        |                                                      |                                                             |  |  |  |
|--------------------|------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--|--|--|
|                    | MA                                       | AD                                                   | FU                                                       | LC                                                          | MN                                                           | RE                                                     | ОР                                                   | FT                                                          |  |  |  |
| FSE $\frac{2}{19}$ | $\frac{6}{41} \frac{18}{89} \frac{2}{7}$ | $\frac{5}{46} \frac{3}{19} \frac{2}{9} \frac{6}{19}$ | $\frac{3}{29} \frac{14}{95} \frac{13}{63} \frac{16}{55}$ | $\frac{3}{55} \ \frac{3}{37} \ \frac{2}{17} \ \frac{9}{52}$ | $\frac{2}{33} \ \frac{3}{34} \ \frac{11}{87} \ \frac{9}{49}$ | $\frac{5}{91} \frac{4}{49} \frac{7}{59} \frac{15}{86}$ | $\frac{5}{73} \frac{4}{39} \frac{3}{20} \frac{2}{9}$ | $\frac{2}{79} \ \frac{3}{89} \ \frac{1}{21} \ \frac{4}{55}$ |  |  |  |

30

| Table 11       |             |          |         |          |            |
|----------------|-------------|----------|---------|----------|------------|
| Fuzzified Pugh | Matrix usin | g Design | Concept | one as a | a baseline |

| Design Features                                              | Sub-Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | Desig                                                           | n Concepts                                          |                                                                 |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|
| Design reatures                                              | Sub-reatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concept 1                                                         | Concept 2                                                       | Concept 3                                           | Concept 4                                                       |
|                                                              | AP (5/63 5/41 17/95 6/23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 1 1 1 1                                                         |
| Manufacturing                                                | OM (7/39 21/82 5/14 1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1                                                           | 7/4 9/4 11/4 13/4                                               | 1 3/2 2 5/2                                         | 5/2 3 7/2 4                                                     |
| 2 6 18 2                                                     | MT (3/52 7/79 3/58 12/61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 7/4 9/4 11/4 13/4                                               | 13/4 15/4 17/4 19/4                                 | 13/4 15/4 17/4 19/4                                             |
| $19 \overline{41} \overline{89} \overline{7}$                | IP (3/64 4/59 4/41 9/62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 5/2 3 7/2 4                                                     |
| 19 11 09 7                                                   | P1 (4/97 1/18 5/63 9/71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 5/2 3 7/2 4                                                     | 13/4 15/4 17/4 19/4                                 | 7/4 9/4 11/4 13/4                                               |
|                                                              | PM (2/11 1/4 31/90 11/23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 13/4 15/4 17/4 19/4                                             | 13/4 15/4 17/4 19/4                                 | 5/2 3 7/2 4                                                     |
| Assembly and                                                 | NC (3//1 1/19 2/29 //79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 5/2 3 7/2 4                                                     | 13/4 15/4 1//4 19/4                                 | 5/2 3 //2 4                                                     |
| Disassembly                                                  | AP (2/21 //55 3/17 11/46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 5/2 5 //2 4                                                     | 5/2 3 //2 4                                         | 7/4 9/4 11/4 13/4                                               |
| 5 3 2 6                                                      | AC $(1/9 \ 14/89 \ 1/51 \ 14/45)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   | 15/4 15/4 1//4 19/4                                             | $1 \ 5/2 \ 2 \ 5/2 \ 5/2 \ 4$                       | 1 1 1 1                                                         |
| 46 19 9 19                                                   | AM(5/50 + 1/5 + 2/7 + 15/54)<br>TAD (4/17 - 27/01 - 4/0 - 7/12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | 5/2 2 7/2 4                                                     | 3/2 $3//2$ $4$                                      |                                                                 |
|                                                              | $\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$ | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 7/4 $9/4$ $11/4$ $13/4$                             | 1 3/2 2 5/2                                                     |
| Ennetionality                                                | FM(3/82) 4/85 5/78 6/67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 7/4 9/4 11/4 13/4                                   | $1 \frac{3}{2} \frac{2}{2} \frac{5}{2}$                         |
|                                                              | ST (1/8 - 9/58 - 8/33 - 1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 13/4 15/4 17/4 19/4                                 | 7/4 9/4 11/4 13/4                                               |
| 3 14 13 16                                                   | MT (4/51 1/9 10/63 2/9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 5/2 3 7/2 4                                                     |
| 29 95 63 55                                                  | TM (16/85 16/61 26/71 31/63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 13/4 15/4 17/4 19/4                                 | 7/4 9/4 11/4 13/4                                               |
|                                                              | LD(4/51 7/59 3/17 1/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1 1                                                           | 1 1 1 1                                                         | 1 1 1 1                                             | 1 1 1 1                                                         |
| Life Cycle                                                   | DA (9/58 20/97 26/95 10/27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1                                                           | 7/4 9/4 11/4 13/4                                               | 1 3/2 2 5/2                                         | 5/2 3 7/2 4                                                     |
| Cost                                                         | SR (2/35 7/87 1/9 2/13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 5/2 3 7/2 4                                         | 7/4 9/4 11/4 13/4                                               |
| 3 3 2 0                                                      | RC (5/47 10/67 13/63 15/32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 1 3/2 2 5/2                                                     |
| $\frac{5}{5}$ $\frac{5}{25}$ $\frac{2}{15}$ $\frac{7}{52}$   | OC (11/48 14/45 5/12 5/9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 7/4 9/4 11/4 13/4                                   | 1 3/2 2 5/2                                                     |
| 55 37 17 52                                                  | SC (3/34 11/95 12/79 16/79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1                                                           | 1 1 1 1                                                         | 1 1 1 1                                             | 1 1 1 1                                                         |
|                                                              | RM (5/73 1/10 14/79 4/19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 1 1 1 1                                                         | 1 1 1 1                                             | 1 1 1 1                                                         |
| Maintainability                                              | DM (3/50 1/12 11/94 7/41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 5/2 3 7/2 4                                         | 7/4 9/4 11/4 13/4                                               |
| 2 3 11 9                                                     | MC (11/70 11/50 23/76 23/55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 13/4 15/4 17/4 19/4                                             |
| $\frac{1}{22}$ $\frac{1}{24}$ $\frac{1}{87}$ $\frac{1}{40}$  | LP (4/49 7/60 15/91 5/21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 13/4 15/4 17/4 19/4                                 | 1 3/2 2 5/2                                                     |
| 35 54 67 49                                                  | MF (1/8 4/23 11/46 1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 5/2 3 7/2 4                                         | 7/4 9/4 11/4 13/4                                               |
|                                                              | MS (5/48 13/86 20/93 13/42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1                                                           |                                                                 |                                                     |                                                                 |
| Reliability                                                  | RF (7/46 1/5 5/19 22/63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 5/2 3 7/2 4                                                     | 7/4 9/4 11/4 13/4                                   | 1 3/2 2 5/2                                                     |
| 5 4 7 15                                                     | UL(2/11 9/37 31/96 377)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | 5/2 3 7/2 4                                                     | 5/2 3 //2 4                                         | 1 3/2 2 5/2                                                     |
| $\frac{3}{21} + \frac{7}{40} + \frac{7}{50} + \frac{13}{26}$ | DC(5/67 + 10/99 + 13/95 + 17/89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   | //4 9/4 11/4 13/4                                               | //4 9/4 11/4 13/4                                   | 5/2 3 //2 4                                                     |
| 91 49 59 86                                                  | RD(2/49 - 1/20 - 1/16 - 1/12)<br>RS(11/56 - 2/11 - 7/10 - 1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 1 1 1 1<br>12/4 15/4 17/4 10/4                                  | 5/2 2 7/2 4                                         | 1 $1$ $1$ $1$ $17/4$ $0/4$ $11/4$ $12/4$                        |
|                                                              | CP(2/15, 5/27, 25/97, 17/46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 1 1                                                           | 1 3/2 2 5/2                                                     | 7/4  9/4  11/4  13/4                                | 5/2 3 7/2 4                                                     |
| Flexibility                                                  | $SP(3/17 \ 14/57 \ 1/3 \ 6/13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 5/2 3 7/2 4                                                     |
| 5 4 3 2                                                      | SB (1/9 11/70 7/32 11/36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 7/4 9/4 11/4 13/4                                   | 1 1 1 1                                                         |
| $\frac{1}{73}$ $\frac{1}{30}$ $\frac{1}{20}$ $\frac{1}{0}$   | CU (2/45 1/18 1/14 3/31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1                                                           | 1 1 1 1                                                         | 1 1 1 1                                             | 1 1 1 1                                                         |
| 15 57 20 7                                                   | ML (1/7 17/82 23/79 20/49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 13/4 15/4 17/4 19/4                                 | 7/4 9/4 11/4 13/4                                               |
|                                                              | WF (9/98 9/70 13/73 1/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 5/2 3 7/2 4                                         | 13/4 15/4 17/4 19/4                                             |
| Operation                                                    | AS (1/10 6/41 6/29 12/41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 1 1 1 1                                                         | 1 1 1 1                                             | 1 1 1 1                                                         |
| 2 3 1 4                                                      | SL (7/74 1/7 19/92 19/62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 5/2 3 7/2 4                                                     | 5/2 3 7/2 4                                         | 1 1 1 1                                                         |
| $\frac{2}{70} \frac{3}{80} \frac{1}{21} \frac{1}{55}$        | EU (9/47 17/63 22/59 15/29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1                                                           | 1 1 1 1                                                         | 1 1 1 1                                             | 1 1 1 1                                                         |
| 19 89 21 33                                                  | DT (3/49 3/35 5/41 2/11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 5/2 3 7/2 4                                         | 5/2 3 7/2 4                                                     |
|                                                              | PM (3/62 4/57 8/79 12/79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1                                                           | 13/4 15/4 17/4 19/4                                             | 7/4 9/4 11/4 13/4                                   | 1 3/2 2 5/2                                                     |
| Comula                                                       | TEN Comment 1 on havin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   | 13 105 88 229                                                   | 13 128 305 61                                       | 44 19 58 439                                                    |
| Cumula                                                       | uve IFN Concept I as basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   | $15 \ \overline{52} \ \overline{19} \ \overline{22}$            | $16 \ \overline{67} \ \overline{68} \ \overline{6}$ | $\overline{73}$ $\overline{13}$ $\overline{17}$ $\overline{56}$ |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41 131 75 208                                                     |                                                                 | 41 40 269                                           | 1 55 103 50                                                     |
| Cumula                                                       | tive TFN Concept 2 as basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{41}{50}$ $\frac{131}{00}$ $\frac{73}{20}$ $\frac{206}{25}$ |                                                                 | $\frac{41}{77}$ $\frac{40}{21}$ $\frac{209}{20}$ 7  | $\frac{1}{2}$ $\frac{33}{12}$ $\frac{103}{22}$ $\frac{39}{2}$   |
|                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79 98 23 27                                                       |                                                                 | 77 31 88                                            | 2 43 33 8                                                       |
| <b>a</b> .                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49 103 279 316                                                    | 23 17 39 655                                                    |                                                     | 43 13 113 111                                                   |
| Cumula                                                       | tive IFIN Concept 3 as basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80 67 76 37                                                       | $\overline{35}$ $\overline{11}$ $\overline{11}$ $\overline{82}$ |                                                     | $\frac{1}{74}$ $\frac{1}{9}$ $\frac{1}{13}$ $\frac{1}{14}$      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 41 201 76                                                      | 70 270 200                                                      | 10 162 400 012                                      | ,. , 15 14                                                      |
| Cumula                                                       | tive TFN Concept 4 as basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{52}{41}$ $\frac{41}{501}$ $\frac{301}{76}$                 | $\frac{79}{2}$ 2 $\frac{378}{398}$                              | <u>19</u> <u>163</u> <u>409</u> <u>812</u>          |                                                                 |
|                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75 25 80 9                                                        | 92 83 39                                                        | 24 88 96 85                                         |                                                                 |

## Table 12

FSE Aggregating the comparison and Ranking the Design Concepts

|           | Concept 1                                                          | Concept 2                                                         | Concept 3                                                       | Concept 4                                                     |
|-----------|--------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Concept 1 | 1 1 1 1                                                            | $\frac{13}{15} \ \frac{105}{52} \ \frac{88}{19} \ \frac{229}{22}$ | $\frac{13}{16}  \frac{128}{67}  \frac{305}{68}  \frac{61}{6}$   | $\frac{44}{73}  \frac{19}{13}  \frac{58}{17}  \frac{439}{56}$ |
| Concept 2 | $\frac{41}{79}  \frac{131}{98}  \frac{75}{23}  \frac{208}{27}$     | 1 1 1 1                                                           | $\frac{41}{77}  \frac{40}{31}  \frac{269}{88}  7$               | $\frac{1}{2}  \frac{55}{43}  \frac{103}{33}  \frac{59}{8}$    |
| Concept 3 | $\frac{49}{80} \ \frac{103}{67} \ \frac{279}{76} \ \frac{316}{37}$ | $\frac{23}{35}  \frac{17}{11}  \frac{39}{11}  \frac{655}{82}$     | 1 1 1 1                                                         | $\frac{43}{74}  \frac{13}{9}  \frac{113}{13}  \frac{111}{14}$ |
| Concept 4 | $\frac{52}{75}  \frac{41}{25}  \frac{301}{80}  \frac{76}{9}$       | $\frac{79}{92}$ 2 $\frac{378}{83}$ $\frac{398}{39}$               | $\frac{19}{24}  \frac{163}{88}  \frac{409}{96}  \frac{812}{85}$ | 1 1 1 1                                                       |

|                                          | Concept 1                                                    | Concept 2                                                  | Concept 3                                                 | Concept 4                                                  |
|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| FSE                                      | $\frac{3}{98}  \frac{10}{77}  \frac{47}{81}  \frac{137}{56}$ | $\frac{1}{42}  \frac{1}{10}  \frac{30}{67}  \frac{48}{25}$ | $\frac{2}{75}  \frac{10}{89}  \frac{1}{2}  \frac{36}{17}$ | $\frac{1}{32}  \frac{12}{91}  \frac{53}{91}  \frac{17}{7}$ |
| Orthocenter of<br>centroids<br>(a, b, c) | $\frac{3}{31} \ \frac{207}{583} \ \frac{208}{173}$           | $\frac{47}{630} \ \frac{43}{157} \ \frac{931}{992}$        | $\frac{15}{179} \ \frac{109}{356} \ \frac{53}{51}$        | $\frac{53}{539} \ \frac{5}{14} \ \frac{109}{91}$           |

 Table 12

 FSE Aggregating the comparison and Ranking the Design Concepts (Continued)

Fuzzy synthetic extent values are also obtained from the comparison matrix of the alternative design concepts in Table 15 in terms of TrFN, and the orthocenters of centroids of these values are derived by applying Eq. (2) to Eq. (4). Considering the orthocenters obtained in Table 15, the degree of possibility of  $P_i = (a_i, b_i, c_i) \ge P_n = (a_m, b_m, c_m)$  can be expressed by applying Eq. (15) as follows;

$$V(D_{A1} \ge D_{A2}) = 1; \text{ Since } b_1 > b_2$$
 (18)

$$V(D_{A1} \ge D_{A3}) = 1; \text{ Since } b_1 > b_3$$
 (19)

$$V(D_{A1} \ge D_{A4}) = \frac{\left(\frac{53}{539} - \frac{208}{173}\right)}{\left(\frac{207}{583} - \frac{208}{173}\right) - \left(\frac{5}{14} - \frac{53}{539}\right)} = \frac{528}{531}$$
(20)

Following the same manner, the degree of possibilities for all other design concepts can be obtained from Eq. (15). The results obtained for the analysis of minimum degree are as follows

$$\min V(D_{A1} \ge D_{A2}, D_{A3}, D_{A4}) = \min V\left(1, 1, \frac{528}{531}\right) = \frac{528}{531}$$
(21)

$$\min V(D_{A2} \ge D_{A1}, D_{A3}, D_{A4}) = \min V\left(\frac{197}{216}, \frac{344}{357}, \frac{111}{122}\right) = \frac{111}{122}$$
(22)

$$\min V(D_{A3} \ge D_{A1}, D_{A2}, D_{A4}) = \min V\left(\frac{617}{649}, 1, \frac{240}{253}\right) = \frac{240}{253}$$
(23)

$$\min V(D_{A4} \ge D_{A1}, D_{A2}, D_{A3}) = \min V(1, 1, 1) = 1$$
(24)

In essence, the weight vector for the design concepts can be written as;

$$\begin{bmatrix} D_{A1}(Concept \ 1) = \frac{528}{531} \\ D_{A2}(Concept \ 2) = \frac{111}{122} \\ D_{A3}(Concept \ 3) = \frac{240}{253} \\ D_{A4}(Concept \ 4) = 1 \end{bmatrix}$$
(25)

Normalizing the weight vector by applying Eq. (17) yields the overall weight for each of the design concepts alongside with their rankings (Eq. (26)). These weights are presented in Fig. 5 in order to see the performance of all the design concepts.





Fig. 5. Ranking of Design Concepts

#### 4. Conclusion

Considering the results obtained from the decision process (Fig. 5), the developed model has been able to identify a design concept as the optimal design. Although the difference between the optimal design concept and the second design alternative is minimal, the trend in the difference of final weights of the design concepts shows that the decision process does not apportion values to the design concepts arbitrarily. This can be proven from the weights of concepts three and two because there is also a reasonable difference between the final weight of the optimal design concept to these two design concepts. The closeness in final weights of the design concepts can also be attributed to the involvement of the weights of design features and sub-features in determining the cumulative TrFN of the design concepts. The involvement of these weights tends to neutralize the effects of over scoring a concept.

Likewise, the idea of using all the design concepts as baselines also provide a case for all the design alternative to be compared among each other. Further, the usage of all the design alternative as baseline also provides computational integrity in terms of the final aggregates available for all the design concepts considering the weights of the design features and sub-features. Contrary to the conventional Pugh matrix evaluation, where the final values of the alternatives are direct cumulative of scores, the model presented in this article further compares this aggregate in order to eliminate the effect of over scoring a concept by bias through the use of FSEs for the pairwise comparison of the alternative design. Finally, the determination of the final weights of the design concepts from the degree of possibility further compares the design concepts rather than defuzzifying the TrFNs of the design concepts.

In essence, modelling the decision-making process for identification of optimal design concept from a set of alternatives can be modelled as an MCDA by hybridizing different MADM models. Hybridizing the fuzzy synthetic extent analysis of the FAHP model and fuzzifying the conventional Pugh matrix using all the alternatives as a basis has been able to identify a design concept as the optimal design. The method is suitable for decision making in conceptual engineering design because the final values of the design concepts representing the weights of their performance are moderately different. This indicates that the comparison was done based on the relative availability of the design concepts. Also, the idea of determining the weights of design features and sub-features from pairwise comparison matrices limits the possibility of having bias judgement from decision-makers or design engineers. This is possible because the fuzzy pairwise comparison matrix is built based on the relative importance of the design features in the optimal design and contributions of the sub-features to the performance of the main design features.

#### Acknowledgement

The authors would like to thank the anonymous referees for constructive comments on earlier version of this paper.

#### References

- Aikhuele, D. (2017). Interval-valued intuitionistic fuzzy multi-criteria model for design concept selection. *Management Science Letters*, 7(9), 457-466.
- Akay, D., Kulak, O., & Henson, B. (2011). Conceptual design evaluation using interval type-2 fuzzy information axiom. *Computers in Industry*, *62*(2), 138-146.
- Alarcin, F., Balin, A., & Demirel, H. (2014). Fuzzy AHP and Fuzzy TOPSIS integrated hybrid method for auxiliary systems of ship main engines. *Journal of Marine Engineering & Technology*, 13(1), 3-11.
- Arjun Raj, A. S., & Vinodh, S. (2016). A case study on application of ORESTE for agile concept selection. *Journal of Engineering, Design and Technology*, 14(4), 781-801.
- Baležentis, T., & Baležentis, A. (2014). A survey on development and applications of the multi-criteria decision making method MULTIMOORA. *Journal of Multi-Criteria Decision Analysis*, 21(3-4), 209-222.
- Balin, A., Demirel, H., & Alarcin, F. (2016). A novel hybrid MCDM model based on fuzzy AHP and fuzzy TOPSIS for the most affected gas turbine component selection by the failures. *Journal of Marine Engineering & Technology*, 15(2), 69-78.
- Chakraborty, K., Mondal, S., & Mukherjee, K. (2017). Analysis of product design characteristics for remanufacturing using Fuzzy AHP and Axiomatic Design. *Journal of Engineering Design*, 28(5), 338-368.
- Derelöv, M. (2009). On Evaluation of Design Concepts: Modelling Approaches for Enhancing the Understanding of Design Solutions (Doctoral dissertation, Linköping University Electronic Press).
- Girod, M., Elliott, A. C., Burns, N. D., & Wright, I. C. (2003). Decision making in conceptual engineering design: an empirical investigation. *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217*(9), 1215-1228.
- Green, G., & Mamtani, G. (2004). An integrated decision making model for evaluation of concept design. *Acta Polytechnica*, 44(3).
- Hambali, A., Sapuan, S. M., Ismail, N., & Nukman, Y. (2009). Application of analytical hierarchy process in the design concept selection of automotive composite bumper beam during the conceptual design stage. *Scientific Research and Essays*, 4(4), 198-211.

- Hambali, A., Sapuan, S. M., Rahim, A. S., Ismail, N., & Nukman, Y. (2011). Concurrent decisions on design concept and material using analytical hierarchy process at the conceptual design stage. *Concurrent Engineering*, 19(2), 111-121.
- Muller, G. (2009). Concept selection: theory and practice. *White paper of SESG meeting. sl: Buskerud University College*.
- Muller, G., D. Klever, H. H. Bjørnsen & M. Pennotti (2011). Researching the application of Pugh Matrix in the sub-sea equipment industry by. <u>CSER</u>.
- Nieto-Morote, A., & Ruz-Vila, F. (2011). A fuzzy AHP multi-criteria decision-making approach applied to combined cooling, heating, and power production systems. *International Journal of Information Technology & Decision Making*, 10(03), 497-517.
- Okudan, G. E. & R. A. Shirwaiker (2006). A multi-stage problem formulation for concept selection for improved product design. 2006 Technology Management for the Global Future-PICMET 2006 Conference, IEEE.
- Okudan, G. E., & Tauhid, S. (2008). Concept selection methods-a literature review from 1980 to 2008. *International Journal of Design Engineering*, 1(3), 243-277.
- Olabanji, O. M. (2018). Reconnoitering the suitability of fuzzified weighted decision matrix for design process of a reconfigurable assembly fixture. *International Journal of Design Engineering*, 8(1), 38-56.
- Olabanji, O. M., & Mpofu, K. (2014). Comparison of weighted decision matrix, and analytical hierarchy process for CAD design of reconfigurable assembly fixture. *Procedia CIRP*, 23, 264-269.
- Renzi, C., Leali, F., & Di Angelo, L. (2017). A review on decision-making methods in engineering design for the automotive industry. *Journal of Engineering Design*, 28(2), 118-143.
- Renzi, C., Leali, F., Pellicciari, M., Andrisano, A. O., & Berselli, G. (2015). Selecting alternatives in the conceptual design phase: an application of Fuzzy-AHP and Pugh's Controlled Convergence. *International Journal on Interactive Design and Manufacturing (IJIDeM)*, 9(1), 1-17.
- Sa'Ed, M. S., & Al-Harris, M. Y. (2014). New product concept selection: an integrated approach using data envelopment analysis (DEA) and conjoint analysis (CA). *International Journal of Engineering* & *Technology*, 3(1), 44.
- Saridakis, K. M., & Dentsoras, A. J. (2008). Soft computing in engineering design–A review. Advanced Engineering Informatics, 22(2), 202-221.
- Singh, P. (2015). A Novel Method for Ranking Generalized Fuzzy Numbers. *Journal of Information Science Engineering*, *31*(4), 1373-1385..
- Somsuk, N., & Simcharoen, C. (2011). A fuzzy AHP approach to prioritization of critical success factors for six sigma implementation: Evidence from the electronics industry in thailand. *International Journal of Modeling and Optimization*, 1(5), 432-437.
- Thorani, Y. L. P., Rao, P. P. B., & Shankar, N. R. (2012). Ordering generalized trapezoidal fuzzy numbers using orthocentre of centroids. *International Journal of Algebra*, 6(22), 1069-1085.
- Tian, J., & Yan, Z. F. (2013). Fuzzy analytic hierarchy process for risk assessment to generalassembling of satellite. *Journal of applied research and technology*, 11(4), 568-577.
- Toh, C. A., & Miller, S. R. (2015). How engineering teams select design concepts: A view through the lens of creativity. *Design Studies*, *38*, 111-138.
- Velu, L. G. N., Selvaraj, J., & Ponnialagan, D. (2017). A new ranking principle for ordering trapezoidal intuitionistic fuzzy numbers. *Complexity*, 2017.
- Zamani, S., Farughi, H., & Soolaki, M. (2014). Contractor selection using fuzzy hybrid AHP-VIKOR. *International Journal of Research in Industrial Engineering*, 2(4), 26-40.



 $\bigcirc$  2020 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).