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 The rule based categorization approaches such as associative classification have the capability 
to produce classifiers rival to those learned by traditional categorization approaches such as 
Naïve Bayes and K-nearest Neighbor. However, the lack of useful discovery and usage of 
categorization rules are the major challenges of rule based approaches and their performance is 
declined with large set of rules. Genetic Algorithm (GA) is effective to reduce the high 
dimensionality and improve categorization performance. However, the usage of GA in most 
researches is limited in the categorization preprocessing stage and its results is used to simplify 
the categorization process performed by other categorization algorithms. This paper proposed a 
hybrid GA rule based categorization method, named genetic algorithm rule based categorization 
(GARC), to enhance the accuracy of categorization rules and to produce accurate classifier for 
text mining. The GARC consists of three main stages; namely, search space determination, rule 
discovery with validation (rule generation), and categorization. The experimental results are 
carried out on three Arabic text datasets with multiple categories to evaluate the efficiency of 
GARC. The results show that a promising performance was achieved by using GARC for Arabic 
text categorization. The GARC achieves the best performance with small feature space in most 
situations.  
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1. Introduction 

Text categorization is a data mining technique that attempts to categorize text documents based on their 
contents (Harrag & Al-Qawasmah, 2010). The continuous updating of texts in several media needs an 
efficient mining technique to explore the useful knowledge. The traditional categorization techniques 
are the most frequently used for text categorization. These include the Support Vector Machine (SVM) 
(Mesleh, 2011; El-Halees, 2008), Naïve Bayes (NB) (Al-Saleem 2011), Neural Network (NN) and K-
Nearest Neighbor (KNN) (Abu Tair & Baraka, 2013; Bawaneh et al., 2008). The rule-based 
categorization techniques are rarely investigated for Arabic text categorization (Al-diabat, 2012; 
Khorsheed & Al-Thubaity, 2013). The research effort for this type is very limited when compared with 
other techniques, but rule-based techniques can achieve competitive results (Ghareb et al., 2016; Al-
diabat, 2012; Al-Saleem, 2011). The Associative Classification (AC) (Al-Radaideh et al., 2011; Al-
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Saleem, 2011), decision tree (DT) (C4.5) and One-Rule (Al-diabat, 2012; Thabtah, 2007; Thabtah et 
al. 2011, 2012) approaches, which categorize text documents based on categorization rules, have been 
used to categorize Arabic text in previous works. However, such studies have not specifically studied 
the impact of feature selection (FS) methods on the rule discovery process. In addition, when adopting 
rule-based approaches, many challenges should be addressed such as designing a discovery process 
that includes high-quality categorization rules mining and producing useful rules that cover all training 
text categories (Al-diabat, 2012; Al-Radaideh et al., 2011; Abbas et al., 2011; Abu Tair & Baraka, 
2013; Hattab & Hussein, 2012). Consequently, the lack of useful categorization rules that cover all text 
categories is a drawback and should be considered when a rule-based classifier is utilized for text 
categorization. Hence, the use of the GA as a categorization algorithm can create a new text classifier 
that combines several advantages. The utilization of the advantages of the GA is required as an 
alternative solution to discover useful categorization rules that have enough predictive power to 
discriminate different categories of textual datasets through the GA’s search capability.  

The GA is an evolutionary algorithm (population-based algorithm) that was first proposed by Holland 
(1975). It emulates the evolution process in nature and it is intended to conduct a search for an optimal 
solution to a given problem by mimicking natural selection. The GA constructs a population of 
solutions usually randomly and then applies genetic operators such as crossover and mutation to 
improve the solutions in order to find the optimal solutions of the given problem. Fig. 1 presents the 
main steps of the GA (Tan et al., 2008). When applying the GA as an FS method, the search space 
becomes the feature space. The GA starts by creating the initial population, which is composed of a set 
of feature subsets (chromosomes), where each subset represents one solution. The GA tries to evolve 
the best subset by selecting the best subsets (solutions) according to a selection strategy that depends 
on fitness function. The fitness function identifies the fittest subsets and these subsets survive into the 
next generation through crossover and mutation reproduction steps. The crossover operation takes two 
feature subsets (two parents) and reproduces them to create two new subsets (children), whereas the 
mutation operation modifies a single subset by changing some of the features’ values or replacing them 
randomly in that subset. The three most important aspects to consider when using a GA as a FS 
approach are the: (i) definition of the fitness function (evaluation), (ii) definition of the selection 
strategy, and (iii) definition and implementation of the crossover and mutation operators. 

Population = generate random population; 
Repeat the following until stopping criterion is reached 
Evaluate the fitness of each solution in the population; 
Create a new population by repeating the following steps: 
            Select two parents; 
            Apply genetic operators (crossover and mutation); 
            Update population; 
Go to evaluation step; 
End 

Fig. 1. Pseudocode for the traditional GA 
Several researchers have demonstrated the advantages of using a GA in a hybrid approach with filter 
FS methods to solve high dimensionality and FS problems (Gunal, 2012; Lei, 2012; Tsai et al., 2014; 
Uğuz, 2011; Uysal & Gunal, 2014; Gharib et al., 2009). Many hybrid approaches based on the GA have 
been proposed for text categorization in some recent works. For instance, Uysal and Gunal (2014) 
proposed a hybrid approach based on filter methods with GA and Latten Semantic Indexing, while Tsai 
et al. (2014) employed a biological evolution concept to improve the GA, and Uğuz (2011) proposed a 
hybrid approach based on information gain (IG) and the GA. Another combination of filter and GA 
was proposed by Gunal (2012), in which the features are first selected by four filtering methods, Chi 
Square (CHI), mutual information (MI), document frequency (DF) and IG, and combined together as 
an input for GA in the second stage. Fang et al. (2012) also investigated the performance of the 
combination of DF, IG, MI, CHI methods with the GA, while Lei (2012) employed the IG with the GA 
as an FS method for text categorization. These approaches are effective in reducing text dimensionality 
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and improving the performance of text categorization. However, usage of the GA is limited in the 
categorization preprocessing stage and its results are used to simplify the categorization process that is 
performed by other categorization algorithms. Hence, the use of the GA as a categorization algorithm 
can create a new text classifier that combines several advantages. Particularly, the GA can be 
considered a rule-based classifier; it can construct categorization rules efficiently for each text category 
due to its strength to reduce useless knowledge and combine category features that have the highest 
importance to discriminate the different text categories. Nevertheless, rule-based classifiers in general 
suffer from a lack of useful categorization rules, which degrades categorization performance especially 
with high dimensional textual datasets. Another problem is the huge number of categorization rules 
and their distribution among different categories of datasets, which has a direct impact on the 
categorization decision. In addition, the automatic discovery process of categorization rules is sensitive 
to noise in textual datasets. Therefore, this paper handles these challenges by utilizing the GA as a rule-
based text categorization algorithm.   

In this paper, the GA is employed to discover the categorization rules and build a text classifier directly 
from the extracted rules. The categorization rules are logical rules in the form: “If condition then 
category”, where the condition (rule body) is a set of features that discriminates the text category in a 
given dataset and the rule head is a predefined category in that dataset. This type of classifier produces 
competitive results to those of traditional probabilistic and similarity techniques. However, the major 
challenge of rule-based techniques is the discovery of useful categorization rules, and as they are 
sensitive to noise it is also difficult to identify the border between distinct categories within the same 
text dataset, and so the discovered rules may overlap different categories. In short, the problem is the 
lack of useful categorization rules that cover all portions of the studied text dataset and the ability of 
rules to discriminate the different categories of all the text categories. The proposed method addresses 
these problems by using GA to identify the rule conditions that have the highest fitness and highest 
rank to form useful categorization rules. The proposed method is called the Genetic Algorithm Rule-
based Classifier (GARC).  

The rest of this paper is organized as follows: Section 2 describes the proposed categorization method 
based on the GA. Section 3 presents the experimental results and a discussion and comparisons. Section 
4 contains an overall discussion of the best proposed methods and the findings in this research and 
compares the results of this research with those of related works. Finally, Section 5 summarizes this 
paper. 

2. Proposed GARC Approach  

This section describes the use of the GA as a rule-based classifier (named GARC). In this categorization 
method, the GA is utilized as a learning technique that attempts to improve and generate categorization 
rules automatically for categorizing Arabic text datasets.  The basic elements of the GARC are 
population generation, fitness function, selection and GA operators (crossover and mutation). The 
objective of the proposed method is to discover the categorization rules by finding the best combination 
of rule features that are extracted from a given text dataset by using the GA search capability. The 
description of the GARC algorithm is presented in Fig. 2.  To construct the categorization rules using 
GARC, training text documents, which contain a set of features and their categories, are desired.  The 
input is a set of features for all categories and the output is a set of categorization rules for all categories. 
The GARC consists of three main stages: search space determination, rule discovery and validation 
(rule generation), and categorization. The features for each category are extracted in the first stage by 
employing a filter FS method; the method works on positive documents for each category in the training 
dataset and identifies the candidate features that determine the search space and they are used in the 
population generation process of the GARC. The GARC learning stage (rule discovery and validation) 
consists of many steps that are repeated t times according to the number of generations. At each 
generation, the best n chromosomes are saved, which are comprised of a set of best categorization rules. 
When the search is completed, the best chromosomes are ordered based on their fitness, the best N 
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chromosomes are selected and a dictionary is constructed that contains the categorization rules for all 
categories. After the learning process, the GARC is then used to categorize the new text documents 
which are unseen and not utilized in the learning process. The following subsections explain each stage 
of the GARC. 
GARC Algorithm  
Input: set of features F (fi, ci) for the training datasets with their known categories; number of generations; number of iteration, population size. Prior 
information: IG for all features. 
Output: set of categorization rules (f1& f2 ... & fn         ci) // (GARC classifier)  
Begin 
Stage 1: Determine the search space 
- Select a predefined number of features for each category to form the search space 

Stage 2:Rule discovery and validation   
While (iteration < max) 

 Create the population  from the selected feature space (Old-Pop) 

 Repeat the following until maximum number of generation: 

Step1: Evaluate the fittest of each chromosome in the population; 
             New- Pop = empty; 
            save the best  chromosomes of old Population  
        Step2: Create new population (New-Pop) 
            select parent1 and parent2 in Old-Pop using roulette wheel selection; 
            generate child1, child2 through crossover (parent1, parent2); 
            apply mutation; 
            add child1, child2 to new Population; 
            Old-Pop = New-Pop; 
            when reach the population size; go to step 1; 
 End-repeat; 
End while. 
Order the best chromosome based on their fitness values; 
Select the best N chromosomes;  
For each selected chromosome Ni 
     Divide Ni by category  
    Construct a dictionary (a set of rules) for each category (f1& f2& ... & fn         ci);  
    Add each category with their rules to global  dictionary (Ri        ci); 
    Eliminate redundancies from each rule and redundant rules;  
End for. 
For each extracted rule in global  dictionary: 
    Get the IG value of rule condition (features) & compute rule support  
    Order & Prune rules based on IG & support  
   Update the global  dictionary (return the best categorization rules that form GARC); 
End for. 
Stage 3: Categorization using GARC 
- Use the discovered categorization rules to assign the test documents to their favored categories, 

- Evaluate categorization performance  

End. 

Fig. 2. Stages of the proposed GARC 

2.1 Search space determination  
 

In this stage, the search space, which comprises a set of features and their categories, is determined 
based on feature extraction. A set of features is selected after text preprocessing using filter FS methods 
to reduce the search space and to reduce the randomization effect and computational cost. Three 
selection methods are employed for this purpose: the class discriminating measure (CDM) (Chen et al., 
2009) and odd ratio (OR) (Mladenic & Grobelnik, 1999) and term frequency-inverse document 
frequency (TF-IDF) (Salton & Buckley, 1988). The mathematical symbolization of these methods 
which is computed for each feature f in a category ci are as follows: 

log ( | )
( | )

i

i

P f cCDM
P f c

=  , (1) 
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where P(f|ci) is the percentage of documents in the category ci and feature f occurs at least once; ( | )iP f c


is the percentage of documents that belong to category ci and does not contain feature f; ( | )iP f c  is the 
percentage of documents that does not belong to category ci but contains feature f; ( | )iP f c

   is the 
percentage of documents that does not belong to category ci and does not contain feature f; N is the 
total number of training documents in the collection; and TF (f, ci) is the frequency of feature f in 
category ci. 

2.2 Rule discovery and validation  
 

The GARC performs the search process over the search space to generate the categorization rules in 
four stages; initialization (population generation), rule evaluation and selection, crossover and mutation 
and finally rule revision. The components needed to construct rules using GARC are explained in the 
following sub-sections.  

2.2.1 Initialization stage  
 

In the initialization stage, a population is generated randomly from the selected feature space that is 
determined in the initial stage. The population interties (chromosomes) are selected as the starting point 
of the search process, and each chromosome is comprised of a set of features that are distributed among 
all categories of the dataset. Thus, each chromosome represents a number of rules (candidate rules) 
equivalent to the number of categories in the dataset. For example, if there are five categories in a given 
dataset, then each chromosome will be composed of five rules, one rule for each category.  

2.2.2 Rule and population evaluation  
 

For the rule and population evaluation step, the rule accuracy in terms of F-measure is employed and 
then the fitness function, which determines the fitness of each chromosome in the population, is 
calculated accordingly. As mentioned above, each chromosome is comprised of a set of rules for all 
categories, thus each individual chromosome is considered to be a classifier. Each chromosome is 
divided to N parts based on the number of categories in the training dataset, and each part represents 
one rule for exactly one category. To evaluate each rule, the F-measure is used to identify the positive 
and negative text documents in the training dataset; in other words, it measures the match between a 
given rule and documents that are associated with a given category. The rule accuracy is computed for 
each rule R that belongs to a category c inside a chromosome I as defined in Eq. (1). The chromosome 
accuracy is the sum of the rules’ accuracy divided by the number of rules. Thus, the fitness of each 
chromosome is computed based on chromosome accuracy and size as defined in Eq. (2). The best 
chromosomes found at each generation are saved and they are also used in the mutation operation to 
increase algorithm convergence and maintain the categorization rules that have high accuracy. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅) = 2 (𝑡𝑝)  𝑡𝑓𝑝 + 𝑡𝑝 + 𝑓𝑛 

(4) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑐ℎ𝑟𝑜𝑚) = 𝑍 × ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅)𝑅 + (1 –  𝑍) × (1 / 𝑠𝑖𝑧𝑒 (𝑐ℎ𝑟𝑜𝑚) 
(5) 

where Accuracy (R) is the accuracy of a given rule, tp is the number of positive documents that match 
fully or partially the rule for given category, tfp is the total number of documents that match the rule, 



  42

fn is the number of negative documents (from other categories) that do not match the rule, R is the 
number of rules in the chromosome, size (chrom) is the number of associated features with the rules 
that are presented by this chromosome, and Z is a control parameter in the interval  [0,1] that determines 
the importance of chromosome accuracy and size in the fitness function.   

2.2.3 Selection for reproduction  
 

The selection of chromosomes for reproduction is based on fitness proportionate with the roulette wheel 
selection method (Uğuz, 2011). In this method, the probability of selecting a chromosome y for 
reproduction is calculated as follows: 𝑃 (𝑦) =  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑦)∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑦), (6) 

where Fitness (y) is the fitness value of chromosome y, and n is the population size. 

2.2.4 Crossover and mutation  
 

A crossover operator produces two children chromosomes from two parent chromosomes that are 
selected in the reproduction stage. The crossover and mutation are applied for the categorization rules 
of each chromosome based on chromosome partitioning, weight of each part and rule accuracy instead 
of using fixed probability rate for chromosomes to be crossover or mutated. The chromosome 
partitioning in the crossover is based on the number of rules in each parent. A one-point crossover for 
each rule is employed, where each rule is divided into two parts. The weight of each part is calculated 
as the cumulative weight value of the features in this part based on the feature frequency and document 
frequency approach. The features of each category (i.e. the rule associated features) in each parent are 
ordered based on their weight, so the weight is obtained and the cumulative rule weight is computed 
and then the best two parts of each rule are concatenated together to form a new rule in the new 
chromosome (first child) and the other two parts form the second rule in the second child. This process 
is repeated for each rule for each parent and the crossover operation continues until the two parents are 
combined. The mutation operation performs changes after crossover to new chromosome interties 
(rules) based on rule accuracy.  For each rule r that belongs to a category ci in a chromosome y, if the 
average accuracy of the original parents is lower than a given threshold, then the rule is mutated by 
replacing a specific number n of its associated features that have low weights by an equivalent number 
of features from the best found chromosome in the previous generations where the features also belong 
to category ci and are not associated with the mutated rule. Thus, the subject chromosome is mutated 
by replacing some of the features that are associated with each rule in this chromosome.        

2.2.5 Rule revision: ranking and pruning 
 

Further operations are applied to the best found chromosomes. The chromosomes are ordered based on 
their fitness values and the best N chromosomes (those with the highest ranks) are selected.  
Consequently, the categorization rules are extracted for each category of the dataset. Each selected 
chromosome is divided into x groups based on the number of rules that are already associated with their 
given categories in the dataset. Thus, a local dictionary is built for each category comprising a set 
categorization rules for each category and a global dictionary is also built comprising all extracted 
categorization rules with their known categories. Furthermore, the categorization rules are ordered and 
reduced to a reasonable number of rules according to local information gain (IG) and rule support. The 
initial rule pruning is applied locally for each rule by removing feature redundancies. The redundant 
rules that belong to the same category are also discarded. Hence, the IG is calculated for each revised 
rule by computing the IG of each feature with respect to its labeled category. The IG value of each rule 
is the summation of all IG values of rule features as defined in Eq. (4).  
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For example, the IG of rule (Ri   →    c1) in the template  (if f1, f2, f3 → c1)  is IG (f1, c1) + IG (f2, c1) 
+ IG (f3, c1). 

𝐼𝐺 (𝑅) = 𝑃(𝑓, 𝑐)  × 𝑙𝑜𝑔 𝑃(𝑓, 𝑐)𝑃(𝑓) × 𝑃(𝑐)   

(7) 

In Eq. (7), f is the total number of features in rule R, P (f, c) is the probability of a feature f given 
category ci, P (f) is the probability of feature occurrence in the dataset, P(c) is the probability of 
category ci, which is computed as the ratio of documents belonging to ci with respect to all the 
documents in the dataset.  

The rule support is the percentage of documents for a given category in the training dataset that include 
the features of a given rule. The rules for each category are ordered according to the following 
procedure: 

For a given two rules, R1 and R2, R1 has a higher rank than R2 if: 
• IG (R1) > IG (R2),  
• Else if IG (R1) = IG (R2) but support (R1) > support (R1). 

In addition, after rule ordering, rule pruning is also applied based on rule support and IG values, where 
the rules that have the smallest IG values and have support of less than 5% are eliminated from the 
rules list. Thus, the strong rules contribute to the final categorization in the categorization (testing) 
stage. 

2.3 Categorization using GARC  
 

The rules that are discovered are used for categorizing new documents in the test dataset, which are 
comprised of test documents for all categories. The purpose here is to assess the precision of the GARC 
in making categorization decisions based on a list of rules. The testing process is performed based on 
a set of categorization rules that are ordered in a decision list for all categories; the document to be 
classified is matched with this list of rules, the category of rules that partially or fully matches the test 
document is then assigned to the test document. When the returned rules belong to many categories, 
majority voting is used; this method biased to the highest number of category rules that cover the test 
document to be categorized, where the document is assigned to the category that has the largest number 
of matched rules (Ghareb et al., 2014). 

3. Experimental Results and Evaluation 
 

The experiment was carried out on three Arabic text datasets: Al-jazeera text dataset (D1), Akhbar Al-
Khaleej text dataset (D2), and Al-waten text dataset (D3) (Abbas et al., 2011; Chanter & Corne, 2011; 
Ghareb et al., 2016), Table 1 shows the distribution of documents into the different categories for each 
dataset. The datasets were partitioned into training and test datasets without overlap. In the case of D1, 
80% was used for GARC learning and 20% for testing and in the cases of D2 and D3, 70% was used 
for GARC learning and 30% for testing. The experiment tested the capability of the GARC method to 
discover useful categorization rules and produced a highly accurate categorization. Table 2 presents the 
experimental setup for assessing the performance of the GARC algorithm. Three FS methods (TF-IDF, 
MCDM and OR2) were used to determine the search space; the size of the search space that was used 
in the first stage ranges from 1000 to 5000 features. In the second stage, the population size was set to 
32 chromosomes and when the search was completed the best 32 chromosomes were returned. After 
that, a set of categorization rules was extracted and utilized for categorization. The maximum number 
of rules was restricted by the number of chromosomes in the population; each category had 32 rules 
and the discovered rules were also revised according to IG and rule support. For the fitness function, 
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the control parameter (Z) was set to 85%, which means chromosome accuracy was given higher 
importance than chromosome size. The proposed method was implemented in a C# programming 
environment, and all experiments were performed on a PC with an Intel(R) Core™ i3 processor, 2.27 
GHz, 4 GB RAM, and Windows 7 operating system. The performance evaluation measures included 
the macro average of precision, recall and F-measure (Mesleh, 2011). The classifier size was also 
considered in terms of the number of categorization rules for each experimental dataset. 

Table 1  
Distribution of the experimental text datasets 

 D1 D2 D3 
category  # documents  category # documents category # documents 
Economy 300 Economy 273 Religion 3860 
Politics 300 Sports 429 Economy 3468 
Sport 300 Local news 720 Sports 4550 
Science 300 International news 286 Culture 2782 
Art 300 Total  1708 International news 2035 
Total  1500 # words 746,307 Total 16695 
# words 389,766 - - # words 8,351,615 

 

Table 2  
Experimental setup for GARC method  

Search space 1000 to 5000 features Number of iterations  40 
Population size 32 Number of generations 5 
Fitness function Combine chromosome accuracy and size Rule ordering & pruning Based on IG and rule support  
Selection method Roulette wheel Final N best chromosomes 32 
Crossover Based on parent division and rules weight  Maximum number of rules 32 × number of text categories 
Mutation Replace 20 features based on parents’ accuracy   

 

3.1 Results of GARC for Multi Search Spaces 
 

This section presents the computational results of the GARC. Specifically, it determines the 
effectiveness of the GARC in improving the categorization process based on a set of useful 
categorization rules. Table 3 shows the performance of the GARC for each dataset (D1, D2 and D3) 
when the search space (feature space) was identified based on the top ranked features using CDM. As 
can be seen from Table 3, the GARC achieved the highest average for all measures with D1, the highest 
macro average of recall and F-measure for D1 were obtained when 3000 of the top ranked features 
were used, while the highest macro average of precision was obtained with 4000 features. In the case 
of D2, the highest macro average of recall and F-measure were achieved when 4000 of the top ranked 
features were used; however, for D3, the GARC achieved the best performance with 1000 features. In 
addition, the GARC achieved the highest precision for both D1 and D2 when 1000 of the top ranked 
features were used. On average, the GARC performed best for D1 followed by D3 and the lowest 
average was obtained for D2.     

Table 3  
Performance of GARC (macro average %) for each dataset based on the top ranked features using CDM 

 D1 D2 D3 

Search 
space 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1000 90.768 90.166 90.466 85.933 74.322 79.707 93.142 85.343 89.072 
2000 90.391 90.403 90.397 85.209 76.322 80.522 86.228 73.067 79.104 
3000 90.862 90.779 90.820 80.136 75.831 77.924 86.651 76.557 81.292 
4000 91.117 89.905 90.079 84.315 79.729 81.958 86.426 80.079 83.132 
5000 89.305 88.975 89.139 79.897 76.312 78.064 84.087 73.187 78.259 

Average 90.4886 90.0456 90.1802 83.098 76.5032 79.635 87.3068 77.6466 82.1718 
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The GARC performance with two other FS methods (OR and TF-IDF) was also examined. Table 4 and 
Table 5 show the performance of the GARC for each dataset (D1, D2 and D3) when the search space 
was identified based on the top ranked features that were selected by using OR and TF-IDF, 
respectively. From the above tables it can be seen that the GARC achieved the best results on D1 with 
both FS methods. In addition, the GARC performed well with a small feature space in most situations. 
For example, the GARC obtained the best macro average of precision (91.394%), recall (93.73%) and 
F-measure (92.547%) with TF-IDF when 1000 of the top ranked features were used.  

Table 4  
Performance of GARC (macro average %) for each datasets based on the top ranked features using OR 

 D1 D2 D3 

Search 
space 

Precision Recall F- 
measure 

Precision Recall F-measure Precision Recall F-measure 

1000 83.223 82.796 83.009 76.717 77.405 77.059 83.707 71.649 77.209 
2000 82.520 81.709 82.113 76.078 74.489 75.275 80.694 69.373 74.607 
3000 84.447 83.363 83.902 72.802 73.091 72.946 79.449 66.205 72.225 
4000 82.431 81.92 82.175 73.255 74.692 73.967 81.230 67.586 73.782 
5000 84.274 83.770 84.021 74.637 74.876 74.757 76.014 63.847 69.401 

Average 83.379 82.7116 83.044 74.6978 74.9106 74.8008 80.2188 67.732 73.444 

 
Table 5  
Performance of GARC (macro average %) for each dataset based on the top ranked features using TF-IDF 

 D1 D2 D3 

Search 
space 

Precision Recall F- 
measure 

Precision Recall F-measure Precision Recall F-measure 

1000 91.394 93.730 92.547 70.633 72.802 71.701 85.287 80.605 82.879 
2000 87.976 91.315 89.614 67.181 66.872 67.026 83.048 76.408 79.589 
3000 84.699 72.045 77.862 81.025 68.737 74.377 82.458 78.658 80.513 
4000 86.837 76.182 81.161 81.108 69.519 74.868 84.477 74.644 79.257 
5000 84.290 74.677 79.193 75.828 68.538 71.998 81.112 59.994 68.973 

Average 87.0392 81.5898 84.0754 75.155 69.2936 71.994 83.2764 74.0618 78.2422 

 

Comparing the results of the GARC in Table 4 and Table 5 with those in Table 3, it can be seen that 
the GARC always exhibited the best performance with CDM (Table 3) for all text datasets. It achieved 
the best macro average of precision for both D2 and D3 (85.933%,  93.142%) with a small feature 
subset (1000 features) and the best macro average of recall and macro-average F-measure when the 
number of features was 1000 in the case of D3 and 4000 features in the case of D2. The results indicate 
that satisfactory performance was achieved by using the GARC for Arabic text categorization. The 
GARC was able to work better with a small feature space (i.e. 1000 features) and achieve the best 
performance in most situations. A possible explanation for this result is that the number of 
categorization rules for this level of feature size was smaller than that of other feature spaces. Also, the 
number of features in each rule was smaller than that of other feature spaces. This indicates that when 
the number of categorization rules is increased the performance decreases because a large number of 
rules participate in the categorization decision, which results in categorization mistakes; however, in 
general the categorization mistakes were reduced by GRAC because it restrict the number of rules in 
the categorization decision. The next section discusses the classifier size in terms of the number of 
categorization rules. 

3.2 GARC Size 
 

The number of categorization rules for each of the FS methods for each text dataset is plotted in Fig. 3. 
As shown in this figure, the number of categorization rules increases as the number of features 
increases. The number of rules at each level of feature size is slightly different between FS methods, 
but it should be noted that the length of rules is different where each rule has its own associated features. 
With respect to categorization performance, the best performance was achieved with the smallest 
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number of rules in most cases with all text datasets. This means that the proposed GARC was able 
produce useful rules with a small feature subset that were able to make an accurate categorization. The 
GARC generated the smallest number of rules with TF-IDF on D1 and D2 and with MCDM on D3. 

   
(a) Classifier size for D1 (b) Classifier size for D2 (c) Classifier size for D3 

Fig. 3. GARC size with three FS methods for each dataset 

In summary, the GARC was able to produce a limited number of categorization rules that have good 
predictive power to differentiate the categories of text and achieve promising results for Arabic text 
categorization. Regarding the problem of lack of useful categorization rules, the proposed method was 
able to discover categorization rules that have good predictive power to discriminate text categories. 
As the results indicate, the proposed method was able to reduce feature dimensionality and produce 
revised and useful categorization rules at the same time. In the literature, some of the rule inductions 
such as AC and One-Rule classifier fail to discover rules for all text categories. In addition, in some 
cases, the AC generates a large number of rules that are unbalanced for all categories, thus 
categorization performance in those cases declines. However, the proposed GARC ensured that all the 
training text categories were covered by the discovered rules. Another advantage of the GARC is its 
capability to reduce the number of categorization rules and at the same time reduce the number of 
features associated with each rule. To sum up, the experimental results show that the GARC method 
has the capability to produce efficient categorization rules with promising results in terms of 
categorization performance and classifier size. 

3.3 Comparison of the GARC with the Associative Classification Approach 
 

In this section, the computational results of the GARC are compared with Associative Classification 
(AC); both methods are rule-based categorization algorithms. A set of categorization rules was 
discovered by each method, then revised and used for categorization. The same settings of the GARC 
parameters (Table 2) were used, while the parameters of the AC were as follows: 10% for minimum 
support and 50% for minimum confidence. A detailed description of AC can be found in (Thabtah, 
2007; Al-Radaideh et al., 2011; Ghareb et al., 2014). The majority voting method was utilized by both 
the GARC and AC in the categorization phase to determine the valid categories for new test documents. 
The comparison was based on categorization performance, classifier size and modeling time in terms 
of the total time needed for categorization with each method. The GARC was also compared with 
another version of the AC when the CDM and GA were employed as a preprocess of AC to reduce 
feature dimensionality. 

Table 6  
Comparison of GARC with ACs based on the categorization performance (macro average F-measure %) 

 GARC AC1 AC2 
 Performance (Fmacro) Performance (Fmacro) Performance (Fmacro) 
 Min Max Avg. Min Max Avg. Min Max Avg. 

D1 89.14 90.82 90.18 59.11 88.31 77.16 57.12 90.28 73.77 
D2 77.92 81.96 79.64 59.54 68.10 64.33 61.67 78.29 71.58 
D3 78.26 89.07 82.17 73.63 82.19 77.21 64.74 84.73 74. 81 

 

Table 6 shows the comparison of GARC performance with two variations of AC: AC with CDM (AC1) 
and AC with CDM-GA (AC2). In addition, Table 7 shows the size of the GARC compared with the 
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two variations of AC. The comparison between the GARC and AC was carried out based on their 
results in terms of minimum (Min.), maximum (Max.) and average (Avg.) of categorization 
performance and classifier size when the CDM was used to determine the search space for the GARC 
and AC. The categorization performance was measured in terms of macro-average F-measure (F-
macro), while the classifier size was measured in terms of number of categorization rules. The 
categorization performance results in Table 6 show that the GARC outperformed the AC methods and 
achieved the best min, max and average of macro average F-measure with all datasets. The AC1 method 
achieved the second highest average in the case of D3. The performance of both variations of AC 
declined with large feature subsets due to the lack of useful categorization rules and because a large 
number of rules were used for categorization. The proposed GARC avoided this limitation by revising 
the rules more times and restricting the number of rules that could participate in the categorization 
decision. Overall, from the comparison results, it is clearly demonstrated that the performance of the 
proposed GARC was better than that of the AC approaches.  In addition, the proposed GARC was more 
efficient in terms of classifier size. As shown in Table 7, the size of the GARC is smaller than the ACs 
and it is reasonable for all datasets. The average number of rules with the GARC did not exceed 130; 
whereas in the case of the ACs a large number of rules was generated, which had an adversely impact 
on categorization performance.  

Table 7  
Comparison of GARC and ACs based on the classifier size 

 GARC AC1 AC2 
 Classifier size│#Rules│ Classifier size│#Rules│ Classifier size│#Rules│ 
 Min Max Avg. Min Max Avg. Min Max Avg. 

D1 108 146 130 92 647 275 201 1770 930 
D2 81 119 105 118 263 154 122 1266 483 
D3 99 140 121 112 438 204 95 3219 1352 

 

The comparison between the GARC and AC approaches in terms of time consumption is demonstrated 
in Fig. 4.  

 

Fig. 4. Comparison of time consumption (minute) for GARC and AC approaches for each dataset 

The results show that the GARC outperformed both AC1 and AC2. This is because the GARC generates 
the categorization rules and performs categorization in a reasonable time with all datasets compared to 
AC1 and AC2. The long period of time required when using AC1 and AC2 is because a large set of 
frequent features has to be generated, especially with large feature subsets, through an iterative search 
for each dataset, which requires a lot of time for rule discovery, so they produce a large set of 
categorization rules and this adversely affects the performance of both ACs, as discussed earlier. 
However, the GARC performs a search for rules that have higher accuracy through its capability to 
isolates rules that have low predictive power. Thus the GARC was able to reduce the search space and 

0

10

20

30

40

50

D1  D2  D3

Ti
m

e 

Dataset

GARC
AC1
AC2



  48

discover the categorization rules rapidly. On average, it is clear from the results that the proposed 
GARC was able to perform better than the AC approach. This is because the categorization rules that 
are generated by the GARC are revised more than those generated by AC1  and AC2 . In addition, in 
the case of the GARC, the number of rules that contribute to the categorization decision is limited, 
which reduces the errors during final categorization. Also, the categorization rules are strongly related 
to text categories through the objective function of the GARC, which determines the accuracy of the 
rules and also reduces rule sizes. Moreover, the GARC reduces the time needed for rule generation and 
categorization. In conclusion, the GARC was able to efficiently address the problem of the lack of 
useful categorization rules as it achieved the best performance combined with a reasonable size of 
classifier.   

3.4 Comparison with Other related work   

The experimental results proved that the GARC is better than ACs in terms of categorization 
performance and classifier size.  To further evaluate the performance of the GARC, it was further 
assessed by comparing it with the other available results and approaches in the literature. A 
performance comparison is conducted between GARC and two other approaches from related works. 
The comparator approaches are based on Particle Swarm Optimization (PSO), where the PSO was used 
with KNN for FS and the efficiency of the selected features was examined by NB and decision tree 
(DT) (J48) (Chantar & Corne 2011). The same text datasets that have been used throughout this paper 
(i.e. Al-Jazeera text dataset (D1) and Akhbar Al-khaleej text dataset (D2) and a small subset of the Al-
waten text dataset (D3)) were used. The performance comparison was based on categorization 
performance in terms of macro-average precision, macro-average recall and macro-average F-measure. 
In addition, the number of features and rules that controls the categorization process were highlighted. 

Table 8  
Comparison of results of the GARC and results of other methods  

Datasets Measure GARC PSO-KNN+J48 PSO-KNN+NB 
 

D1 
# Feature /(Rule) 1000/ (108) 2967 2967 

Precision 91.39 74.7 85.8 
Recall 93.73 72.3 84.3 

F-measure 92.55 72.9 84.6 
 

D2 
# Feature /(Rule) 4000/ (113) 4562 4562 

Precision 84.315 79.0 83.8 
Recall 79.729 78.7 82.8 

F-measure 81.958 78.5 83.1 
 

D3 
# Feature /(Rule) 1000/ (99) 6578 6578 

Precision 93.14 77.3 89.0 
Recall 85.34 76.7 88.6 

F-measure 89.07 76.9 88.7 
Notes: with respect to the number of features (# Feature), the number in parentheses in the GARC case refers to the number of rules discovered with 
those feature subsets, categorization performance calculated in terms of macro-average precision, macro-average recall and macro-average F-
measure.   

The comparison is shown in Table 8. From these results, it can be seen that the results of proposed 
GARC methods are better than the most results of the other compared methods. In addition, the 
proposed method was able to achieve better categorization performance for all the measures with a 
smaller classifier size than that used by the compared methods. The GARC is a rule-based 
categorization method. This type of method categorizes text based on a set of categorization rules. As 
the comparison result indicates, the GARC was able to achieve competitive categorization performance 
with a limited number of categorization rules. With respect to the number of features, and the number 
of categorization rules that participate in categorization, the GARC produced better performance with 
a small set of categorization rules. The GARC results are superior to those of the DT with PSO (PSO-
KNN+J48) for all datasets and it also superior PSO-KNN+NB in all situations except for D2. To 
summarize, the proposed methods performed best in terms of categorization when they were applied 
to D1 followed by D3. The GARC is a good categorization method that is able to produce a reasonable 
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number of useful categorization rules with competitive categorization performance. In general, the 
results of the GARC are satisfactory and their superiority is proven for Arabic text categorization. 

 

4. Conclusion  
 

This paper has presented a new rule based method for Arabic text categorization based on GA named 
GARC. The GARC method was developed to enhance the predictive power of categorization rules and 
overcome the lack of useful categorization rules. The GARC involved the use of an GA to discover the 
categorization rules, where a set of categorization rules were extracted based on the improved GA 
search capability to find the best features that compose the categorization rules, then the extracted rules 
are revised and used for categorization. The experimental results demonstrated that improved 
categorization performance could be achieved when the GARC is utilized for Arabic text 
categorization. The GARC achieved promising results compared to other techniques such as AC, and 
DT and NB with PSO. The results also revealed that the GARC could produce higher predictive 
categorization rules than the AC method, which is reflected in the high performance of the GARC. 
Additionally, because the GARC is developed based on a GA, this method is effective for producing a 
limited set of useful categorization rules that address the problem of lack of categorization rules. The 
results have also indicated that significant improvements could be achieved in terms of not only 
producing strong categorization rules, but also categorization precision by utilizing the GARC for 
Arabic text categorization.  
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