
* Corresponding author. Tel.: +967715339998
E-mail address: m.afiff@psau.edu.sa (M. H. Afif)

© 2020 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.dsl.2019.8.003

Decision Science Letters 9 (2020) 37–50

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

Genetic algorithm rule based categorization method for textual data mining

Mohammed H. Afifa,b*, Abdullah Saeed Gharebcd, Abdulgbar Saifcd, Azuraliza Abu Bakarc and
Omer Bazighifane

aDepartment of Management Information systems, Faculty of Business Administration, Prince Sattam Bin Abdulaziz University, Saudi Arabia
bDepartment of Management Information Systems, Faculty of Adiminstrative Sciences, Hadramout University, Yemen
cDepartment of Computer Information Systems, Faculty of Information Technology and Computer Science. University of Saba Region, Marib, Yemen
dCenter for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
eDepartment of Mathematics, Faculty of Education, Hadramout University, Seiyun, Yemen
C H R O N I C L E A B S T R A C T

Article history:
Received May 7, 2019
Received in revised format:
August 25, 2019
Accepted August 25, 2019
Available online
August 25, 2019

 The rule based categorization approaches such as associative classification have the capability
to produce classifiers rival to those learned by traditional categorization approaches such as
Naïve Bayes and K-nearest Neighbor. However, the lack of useful discovery and usage of
categorization rules are the major challenges of rule based approaches and their performance is
declined with large set of rules. Genetic Algorithm (GA) is effective to reduce the high
dimensionality and improve categorization performance. However, the usage of GA in most
researches is limited in the categorization preprocessing stage and its results is used to simplify
the categorization process performed by other categorization algorithms. This paper proposed a
hybrid GA rule based categorization method, named genetic algorithm rule based categorization
(GARC), to enhance the accuracy of categorization rules and to produce accurate classifier for
text mining. The GARC consists of three main stages; namely, search space determination, rule
discovery with validation (rule generation), and categorization. The experimental results are
carried out on three Arabic text datasets with multiple categories to evaluate the efficiency of
GARC. The results show that a promising performance was achieved by using GARC for Arabic
text categorization. The GARC achieves the best performance with small feature space in most
situations.

.by the authors; licensee Growing Science, Canada 2020©

Keywords:
Rule based categorization
Text categorization
Genetic Algorithm
Rule discovery
Categorization rule
Associative classification

1. Introduction

Text categorization is a data mining technique that attempts to categorize text documents based on their
contents (Harrag & Al-Qawasmah, 2010). The continuous updating of texts in several media needs an
efficient mining technique to explore the useful knowledge. The traditional categorization techniques
are the most frequently used for text categorization. These include the Support Vector Machine (SVM)
(Mesleh, 2011; El-Halees, 2008), Naïve Bayes (NB) (Al-Saleem 2011), Neural Network (NN) and K-
Nearest Neighbor (KNN) (Abu Tair & Baraka, 2013; Bawaneh et al., 2008). The rule-based
categorization techniques are rarely investigated for Arabic text categorization (Al-diabat, 2012;
Khorsheed & Al-Thubaity, 2013). The research effort for this type is very limited when compared with
other techniques, but rule-based techniques can achieve competitive results (Ghareb et al., 2016; Al-
diabat, 2012; Al-Saleem, 2011). The Associative Classification (AC) (Al-Radaideh et al., 2011; Al-

 38

Saleem, 2011), decision tree (DT) (C4.5) and One-Rule (Al-diabat, 2012; Thabtah, 2007; Thabtah et
al. 2011, 2012) approaches, which categorize text documents based on categorization rules, have been
used to categorize Arabic text in previous works. However, such studies have not specifically studied
the impact of feature selection (FS) methods on the rule discovery process. In addition, when adopting
rule-based approaches, many challenges should be addressed such as designing a discovery process
that includes high-quality categorization rules mining and producing useful rules that cover all training
text categories (Al-diabat, 2012; Al-Radaideh et al., 2011; Abbas et al., 2011; Abu Tair & Baraka,
2013; Hattab & Hussein, 2012). Consequently, the lack of useful categorization rules that cover all text
categories is a drawback and should be considered when a rule-based classifier is utilized for text
categorization. Hence, the use of the GA as a categorization algorithm can create a new text classifier
that combines several advantages. The utilization of the advantages of the GA is required as an
alternative solution to discover useful categorization rules that have enough predictive power to
discriminate different categories of textual datasets through the GA’s search capability.

The GA is an evolutionary algorithm (population-based algorithm) that was first proposed by Holland
(1975). It emulates the evolution process in nature and it is intended to conduct a search for an optimal
solution to a given problem by mimicking natural selection. The GA constructs a population of
solutions usually randomly and then applies genetic operators such as crossover and mutation to
improve the solutions in order to find the optimal solutions of the given problem. Fig. 1 presents the
main steps of the GA (Tan et al., 2008). When applying the GA as an FS method, the search space
becomes the feature space. The GA starts by creating the initial population, which is composed of a set
of feature subsets (chromosomes), where each subset represents one solution. The GA tries to evolve
the best subset by selecting the best subsets (solutions) according to a selection strategy that depends
on fitness function. The fitness function identifies the fittest subsets and these subsets survive into the
next generation through crossover and mutation reproduction steps. The crossover operation takes two
feature subsets (two parents) and reproduces them to create two new subsets (children), whereas the
mutation operation modifies a single subset by changing some of the features’ values or replacing them
randomly in that subset. The three most important aspects to consider when using a GA as a FS
approach are the: (i) definition of the fitness function (evaluation), (ii) definition of the selection
strategy, and (iii) definition and implementation of the crossover and mutation operators.

Population = generate random population;
Repeat the following until stopping criterion is reached
Evaluate the fitness of each solution in the population;
Create a new population by repeating the following steps:
 Select two parents;
 Apply genetic operators (crossover and mutation);
 Update population;
Go to evaluation step;
End

Fig. 1. Pseudocode for the traditional GA
Several researchers have demonstrated the advantages of using a GA in a hybrid approach with filter
FS methods to solve high dimensionality and FS problems (Gunal, 2012; Lei, 2012; Tsai et al., 2014;
Uğuz, 2011; Uysal & Gunal, 2014; Gharib et al., 2009). Many hybrid approaches based on the GA have
been proposed for text categorization in some recent works. For instance, Uysal and Gunal (2014)
proposed a hybrid approach based on filter methods with GA and Latten Semantic Indexing, while Tsai
et al. (2014) employed a biological evolution concept to improve the GA, and Uğuz (2011) proposed a
hybrid approach based on information gain (IG) and the GA. Another combination of filter and GA
was proposed by Gunal (2012), in which the features are first selected by four filtering methods, Chi
Square (CHI), mutual information (MI), document frequency (DF) and IG, and combined together as
an input for GA in the second stage. Fang et al. (2012) also investigated the performance of the
combination of DF, IG, MI, CHI methods with the GA, while Lei (2012) employed the IG with the GA
as an FS method for text categorization. These approaches are effective in reducing text dimensionality

M. H. Afif et al. / Decision Science Letters 9 (2020)

39

and improving the performance of text categorization. However, usage of the GA is limited in the
categorization preprocessing stage and its results are used to simplify the categorization process that is
performed by other categorization algorithms. Hence, the use of the GA as a categorization algorithm
can create a new text classifier that combines several advantages. Particularly, the GA can be
considered a rule-based classifier; it can construct categorization rules efficiently for each text category
due to its strength to reduce useless knowledge and combine category features that have the highest
importance to discriminate the different text categories. Nevertheless, rule-based classifiers in general
suffer from a lack of useful categorization rules, which degrades categorization performance especially
with high dimensional textual datasets. Another problem is the huge number of categorization rules
and their distribution among different categories of datasets, which has a direct impact on the
categorization decision. In addition, the automatic discovery process of categorization rules is sensitive
to noise in textual datasets. Therefore, this paper handles these challenges by utilizing the GA as a rule-
based text categorization algorithm.

In this paper, the GA is employed to discover the categorization rules and build a text classifier directly
from the extracted rules. The categorization rules are logical rules in the form: “If condition then
category”, where the condition (rule body) is a set of features that discriminates the text category in a
given dataset and the rule head is a predefined category in that dataset. This type of classifier produces
competitive results to those of traditional probabilistic and similarity techniques. However, the major
challenge of rule-based techniques is the discovery of useful categorization rules, and as they are
sensitive to noise it is also difficult to identify the border between distinct categories within the same
text dataset, and so the discovered rules may overlap different categories. In short, the problem is the
lack of useful categorization rules that cover all portions of the studied text dataset and the ability of
rules to discriminate the different categories of all the text categories. The proposed method addresses
these problems by using GA to identify the rule conditions that have the highest fitness and highest
rank to form useful categorization rules. The proposed method is called the Genetic Algorithm Rule-
based Classifier (GARC).

The rest of this paper is organized as follows: Section 2 describes the proposed categorization method
based on the GA. Section 3 presents the experimental results and a discussion and comparisons. Section
4 contains an overall discussion of the best proposed methods and the findings in this research and
compares the results of this research with those of related works. Finally, Section 5 summarizes this
paper.

2. Proposed GARC Approach

This section describes the use of the GA as a rule-based classifier (named GARC). In this categorization
method, the GA is utilized as a learning technique that attempts to improve and generate categorization
rules automatically for categorizing Arabic text datasets. The basic elements of the GARC are
population generation, fitness function, selection and GA operators (crossover and mutation). The
objective of the proposed method is to discover the categorization rules by finding the best combination
of rule features that are extracted from a given text dataset by using the GA search capability. The
description of the GARC algorithm is presented in Fig. 2. To construct the categorization rules using
GARC, training text documents, which contain a set of features and their categories, are desired. The
input is a set of features for all categories and the output is a set of categorization rules for all categories.
The GARC consists of three main stages: search space determination, rule discovery and validation
(rule generation), and categorization. The features for each category are extracted in the first stage by
employing a filter FS method; the method works on positive documents for each category in the training
dataset and identifies the candidate features that determine the search space and they are used in the
population generation process of the GARC. The GARC learning stage (rule discovery and validation)
consists of many steps that are repeated t times according to the number of generations. At each
generation, the best n chromosomes are saved, which are comprised of a set of best categorization rules.
When the search is completed, the best chromosomes are ordered based on their fitness, the best N

 40

chromosomes are selected and a dictionary is constructed that contains the categorization rules for all
categories. After the learning process, the GARC is then used to categorize the new text documents
which are unseen and not utilized in the learning process. The following subsections explain each stage
of the GARC.
GARC Algorithm
Input: set of features F (fi, ci) for the training datasets with their known categories; number of generations; number of iteration, population size. Prior
information: IG for all features.
Output: set of categorization rules (f1& f2 ... & fn ci) // (GARC classifier)
Begin
Stage 1: Determine the search space
- Select a predefined number of features for each category to form the search space

Stage 2:Rule discovery and validation
While (iteration < max)

 Create the population from the selected feature space (Old-Pop)

 Repeat the following until maximum number of generation:

Step1: Evaluate the fittest of each chromosome in the population;
 New- Pop = empty;
 save the best chromosomes of old Population
 Step2: Create new population (New-Pop)
 select parent1 and parent2 in Old-Pop using roulette wheel selection;
 generate child1, child2 through crossover (parent1, parent2);
 apply mutation;
 add child1, child2 to new Population;
 Old-Pop = New-Pop;
 when reach the population size; go to step 1;
 End-repeat;
End while.
Order the best chromosome based on their fitness values;
Select the best N chromosomes;
For each selected chromosome Ni
 Divide Ni by category
 Construct a dictionary (a set of rules) for each category (f1& f2& ... & fn ci);
 Add each category with their rules to global dictionary (Ri ci);
 Eliminate redundancies from each rule and redundant rules;
End for.
For each extracted rule in global dictionary:
 Get the IG value of rule condition (features) & compute rule support
 Order & Prune rules based on IG & support
 Update the global dictionary (return the best categorization rules that form GARC);
End for.
Stage 3: Categorization using GARC
- Use the discovered categorization rules to assign the test documents to their favored categories,

- Evaluate categorization performance

End.

Fig. 2. Stages of the proposed GARC

2.1 Search space determination

In this stage, the search space, which comprises a set of features and their categories, is determined
based on feature extraction. A set of features is selected after text preprocessing using filter FS methods
to reduce the search space and to reduce the randomization effect and computational cost. Three
selection methods are employed for this purpose: the class discriminating measure (CDM) (Chen et al.,
2009) and odd ratio (OR) (Mladenic & Grobelnik, 1999) and term frequency-inverse document
frequency (TF-IDF) (Salton & Buckley, 1988). The mathematical symbolization of these methods
which is computed for each feature f in a category ci are as follows:

log (|)
(|)

i

i

P f cCDM
P f c

= , (1)

M. H. Afif et al. / Decision Science Letters 9 (2020)

41

()
()

(|) 1 (|
(|) 1 (|

i i

i i

P f c P f c
OR

P f c P f c
× −

=
× −

 , (2)

(,) log
()i

NTF IDF TF f c
DF f

− = ×

, (3)

where P(f|ci) is the percentage of documents in the category ci and feature f occurs at least once; (|)iP f c

is the percentage of documents that belong to category ci and does not contain feature f; (|)iP f c is the
percentage of documents that does not belong to category ci but contains feature f; (|)iP f c

 is the
percentage of documents that does not belong to category ci and does not contain feature f; N is the
total number of training documents in the collection; and TF (f, ci) is the frequency of feature f in
category ci.

2.2 Rule discovery and validation

The GARC performs the search process over the search space to generate the categorization rules in
four stages; initialization (population generation), rule evaluation and selection, crossover and mutation
and finally rule revision. The components needed to construct rules using GARC are explained in the
following sub-sections.

2.2.1 Initialization stage

In the initialization stage, a population is generated randomly from the selected feature space that is
determined in the initial stage. The population interties (chromosomes) are selected as the starting point
of the search process, and each chromosome is comprised of a set of features that are distributed among
all categories of the dataset. Thus, each chromosome represents a number of rules (candidate rules)
equivalent to the number of categories in the dataset. For example, if there are five categories in a given
dataset, then each chromosome will be composed of five rules, one rule for each category.

2.2.2 Rule and population evaluation

For the rule and population evaluation step, the rule accuracy in terms of F-measure is employed and
then the fitness function, which determines the fitness of each chromosome in the population, is
calculated accordingly. As mentioned above, each chromosome is comprised of a set of rules for all
categories, thus each individual chromosome is considered to be a classifier. Each chromosome is
divided to N parts based on the number of categories in the training dataset, and each part represents
one rule for exactly one category. To evaluate each rule, the F-measure is used to identify the positive
and negative text documents in the training dataset; in other words, it measures the match between a
given rule and documents that are associated with a given category. The rule accuracy is computed for
each rule R that belongs to a category c inside a chromosome I as defined in Eq. (1). The chromosome
accuracy is the sum of the rules’ accuracy divided by the number of rules. Thus, the fitness of each
chromosome is computed based on chromosome accuracy and size as defined in Eq. (2). The best
chromosomes found at each generation are saved and they are also used in the mutation operation to
increase algorithm convergence and maintain the categorization rules that have high accuracy. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅) = 2 (𝑡𝑝) 𝑡𝑓𝑝 + 𝑡𝑝 + 𝑓𝑛

(4)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑐ℎ𝑟𝑜𝑚) = 𝑍 × ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅)𝑅 + (1 – 𝑍) × (1 / 𝑠𝑖𝑧𝑒 (𝑐ℎ𝑟𝑜𝑚)
(5)

where Accuracy (R) is the accuracy of a given rule, tp is the number of positive documents that match
fully or partially the rule for given category, tfp is the total number of documents that match the rule,

 42

fn is the number of negative documents (from other categories) that do not match the rule, R is the
number of rules in the chromosome, size (chrom) is the number of associated features with the rules
that are presented by this chromosome, and Z is a control parameter in the interval [0,1] that determines
the importance of chromosome accuracy and size in the fitness function.

2.2.3 Selection for reproduction

The selection of chromosomes for reproduction is based on fitness proportionate with the roulette wheel
selection method (Uğuz, 2011). In this method, the probability of selecting a chromosome y for
reproduction is calculated as follows: 𝑃 (𝑦) = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑦)∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑦), (6)

where Fitness (y) is the fitness value of chromosome y, and n is the population size.

2.2.4 Crossover and mutation

A crossover operator produces two children chromosomes from two parent chromosomes that are
selected in the reproduction stage. The crossover and mutation are applied for the categorization rules
of each chromosome based on chromosome partitioning, weight of each part and rule accuracy instead
of using fixed probability rate for chromosomes to be crossover or mutated. The chromosome
partitioning in the crossover is based on the number of rules in each parent. A one-point crossover for
each rule is employed, where each rule is divided into two parts. The weight of each part is calculated
as the cumulative weight value of the features in this part based on the feature frequency and document
frequency approach. The features of each category (i.e. the rule associated features) in each parent are
ordered based on their weight, so the weight is obtained and the cumulative rule weight is computed
and then the best two parts of each rule are concatenated together to form a new rule in the new
chromosome (first child) and the other two parts form the second rule in the second child. This process
is repeated for each rule for each parent and the crossover operation continues until the two parents are
combined. The mutation operation performs changes after crossover to new chromosome interties
(rules) based on rule accuracy. For each rule r that belongs to a category ci in a chromosome y, if the
average accuracy of the original parents is lower than a given threshold, then the rule is mutated by
replacing a specific number n of its associated features that have low weights by an equivalent number
of features from the best found chromosome in the previous generations where the features also belong
to category ci and are not associated with the mutated rule. Thus, the subject chromosome is mutated
by replacing some of the features that are associated with each rule in this chromosome.

2.2.5 Rule revision: ranking and pruning

Further operations are applied to the best found chromosomes. The chromosomes are ordered based on
their fitness values and the best N chromosomes (those with the highest ranks) are selected.
Consequently, the categorization rules are extracted for each category of the dataset. Each selected
chromosome is divided into x groups based on the number of rules that are already associated with their
given categories in the dataset. Thus, a local dictionary is built for each category comprising a set
categorization rules for each category and a global dictionary is also built comprising all extracted
categorization rules with their known categories. Furthermore, the categorization rules are ordered and
reduced to a reasonable number of rules according to local information gain (IG) and rule support. The
initial rule pruning is applied locally for each rule by removing feature redundancies. The redundant
rules that belong to the same category are also discarded. Hence, the IG is calculated for each revised
rule by computing the IG of each feature with respect to its labeled category. The IG value of each rule
is the summation of all IG values of rule features as defined in Eq. (4).

M. H. Afif et al. / Decision Science Letters 9 (2020)

43

For example, the IG of rule (Ri → c1) in the template (if f1, f2, f3 → c1) is IG (f1, c1) + IG (f2, c1)
+ IG (f3, c1).

𝐼𝐺 (𝑅) = 𝑃(𝑓, 𝑐) × 𝑙𝑜𝑔 𝑃(𝑓, 𝑐)𝑃(𝑓) × 𝑃(𝑐)

(7)

In Eq. (7), f is the total number of features in rule R, P (f, c) is the probability of a feature f given
category ci, P (f) is the probability of feature occurrence in the dataset, P(c) is the probability of
category ci, which is computed as the ratio of documents belonging to ci with respect to all the
documents in the dataset.

The rule support is the percentage of documents for a given category in the training dataset that include
the features of a given rule. The rules for each category are ordered according to the following
procedure:

For a given two rules, R1 and R2, R1 has a higher rank than R2 if:
• IG (R1) > IG (R2),
• Else if IG (R1) = IG (R2) but support (R1) > support (R1).

In addition, after rule ordering, rule pruning is also applied based on rule support and IG values, where
the rules that have the smallest IG values and have support of less than 5% are eliminated from the
rules list. Thus, the strong rules contribute to the final categorization in the categorization (testing)
stage.

2.3 Categorization using GARC

The rules that are discovered are used for categorizing new documents in the test dataset, which are
comprised of test documents for all categories. The purpose here is to assess the precision of the GARC
in making categorization decisions based on a list of rules. The testing process is performed based on
a set of categorization rules that are ordered in a decision list for all categories; the document to be
classified is matched with this list of rules, the category of rules that partially or fully matches the test
document is then assigned to the test document. When the returned rules belong to many categories,
majority voting is used; this method biased to the highest number of category rules that cover the test
document to be categorized, where the document is assigned to the category that has the largest number
of matched rules (Ghareb et al., 2014).

3. Experimental Results and Evaluation

The experiment was carried out on three Arabic text datasets: Al-jazeera text dataset (D1), Akhbar Al-
Khaleej text dataset (D2), and Al-waten text dataset (D3) (Abbas et al., 2011; Chanter & Corne, 2011;
Ghareb et al., 2016), Table 1 shows the distribution of documents into the different categories for each
dataset. The datasets were partitioned into training and test datasets without overlap. In the case of D1,
80% was used for GARC learning and 20% for testing and in the cases of D2 and D3, 70% was used
for GARC learning and 30% for testing. The experiment tested the capability of the GARC method to
discover useful categorization rules and produced a highly accurate categorization. Table 2 presents the
experimental setup for assessing the performance of the GARC algorithm. Three FS methods (TF-IDF,
MCDM and OR2) were used to determine the search space; the size of the search space that was used
in the first stage ranges from 1000 to 5000 features. In the second stage, the population size was set to
32 chromosomes and when the search was completed the best 32 chromosomes were returned. After
that, a set of categorization rules was extracted and utilized for categorization. The maximum number
of rules was restricted by the number of chromosomes in the population; each category had 32 rules
and the discovered rules were also revised according to IG and rule support. For the fitness function,

 44

the control parameter (Z) was set to 85%, which means chromosome accuracy was given higher
importance than chromosome size. The proposed method was implemented in a C# programming
environment, and all experiments were performed on a PC with an Intel(R) Core™ i3 processor, 2.27
GHz, 4 GB RAM, and Windows 7 operating system. The performance evaluation measures included
the macro average of precision, recall and F-measure (Mesleh, 2011). The classifier size was also
considered in terms of the number of categorization rules for each experimental dataset.

Table 1
Distribution of the experimental text datasets

 D1 D2 D3
category # documents category # documents category # documents
Economy 300 Economy 273 Religion 3860
Politics 300 Sports 429 Economy 3468
Sport 300 Local news 720 Sports 4550
Science 300 International news 286 Culture 2782
Art 300 Total 1708 International news 2035
Total 1500 # words 746,307 Total 16695
words 389,766 - - # words 8,351,615

Table 2
Experimental setup for GARC method

Search space 1000 to 5000 features Number of iterations 40
Population size 32 Number of generations 5
Fitness function Combine chromosome accuracy and size Rule ordering & pruning Based on IG and rule support
Selection method Roulette wheel Final N best chromosomes 32
Crossover Based on parent division and rules weight Maximum number of rules 32 × number of text categories
Mutation Replace 20 features based on parents’ accuracy

3.1 Results of GARC for Multi Search Spaces

This section presents the computational results of the GARC. Specifically, it determines the
effectiveness of the GARC in improving the categorization process based on a set of useful
categorization rules. Table 3 shows the performance of the GARC for each dataset (D1, D2 and D3)
when the search space (feature space) was identified based on the top ranked features using CDM. As
can be seen from Table 3, the GARC achieved the highest average for all measures with D1, the highest
macro average of recall and F-measure for D1 were obtained when 3000 of the top ranked features
were used, while the highest macro average of precision was obtained with 4000 features. In the case
of D2, the highest macro average of recall and F-measure were achieved when 4000 of the top ranked
features were used; however, for D3, the GARC achieved the best performance with 1000 features. In
addition, the GARC achieved the highest precision for both D1 and D2 when 1000 of the top ranked
features were used. On average, the GARC performed best for D1 followed by D3 and the lowest
average was obtained for D2.

Table 3
Performance of GARC (macro average %) for each dataset based on the top ranked features using CDM

 D1 D2 D3

Search
space

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

1000 90.768 90.166 90.466 85.933 74.322 79.707 93.142 85.343 89.072
2000 90.391 90.403 90.397 85.209 76.322 80.522 86.228 73.067 79.104
3000 90.862 90.779 90.820 80.136 75.831 77.924 86.651 76.557 81.292
4000 91.117 89.905 90.079 84.315 79.729 81.958 86.426 80.079 83.132
5000 89.305 88.975 89.139 79.897 76.312 78.064 84.087 73.187 78.259

Average 90.4886 90.0456 90.1802 83.098 76.5032 79.635 87.3068 77.6466 82.1718

M. H. Afif et al. / Decision Science Letters 9 (2020)

45

The GARC performance with two other FS methods (OR and TF-IDF) was also examined. Table 4 and
Table 5 show the performance of the GARC for each dataset (D1, D2 and D3) when the search space
was identified based on the top ranked features that were selected by using OR and TF-IDF,
respectively. From the above tables it can be seen that the GARC achieved the best results on D1 with
both FS methods. In addition, the GARC performed well with a small feature space in most situations.
For example, the GARC obtained the best macro average of precision (91.394%), recall (93.73%) and
F-measure (92.547%) with TF-IDF when 1000 of the top ranked features were used.

Table 4
Performance of GARC (macro average %) for each datasets based on the top ranked features using OR

 D1 D2 D3

Search
space

Precision Recall F-
measure

Precision Recall F-measure Precision Recall F-measure

1000 83.223 82.796 83.009 76.717 77.405 77.059 83.707 71.649 77.209
2000 82.520 81.709 82.113 76.078 74.489 75.275 80.694 69.373 74.607
3000 84.447 83.363 83.902 72.802 73.091 72.946 79.449 66.205 72.225
4000 82.431 81.92 82.175 73.255 74.692 73.967 81.230 67.586 73.782
5000 84.274 83.770 84.021 74.637 74.876 74.757 76.014 63.847 69.401

Average 83.379 82.7116 83.044 74.6978 74.9106 74.8008 80.2188 67.732 73.444

Table 5
Performance of GARC (macro average %) for each dataset based on the top ranked features using TF-IDF

 D1 D2 D3

Search
space

Precision Recall F-
measure

Precision Recall F-measure Precision Recall F-measure

1000 91.394 93.730 92.547 70.633 72.802 71.701 85.287 80.605 82.879
2000 87.976 91.315 89.614 67.181 66.872 67.026 83.048 76.408 79.589
3000 84.699 72.045 77.862 81.025 68.737 74.377 82.458 78.658 80.513
4000 86.837 76.182 81.161 81.108 69.519 74.868 84.477 74.644 79.257
5000 84.290 74.677 79.193 75.828 68.538 71.998 81.112 59.994 68.973

Average 87.0392 81.5898 84.0754 75.155 69.2936 71.994 83.2764 74.0618 78.2422

Comparing the results of the GARC in Table 4 and Table 5 with those in Table 3, it can be seen that
the GARC always exhibited the best performance with CDM (Table 3) for all text datasets. It achieved
the best macro average of precision for both D2 and D3 (85.933%, 93.142%) with a small feature
subset (1000 features) and the best macro average of recall and macro-average F-measure when the
number of features was 1000 in the case of D3 and 4000 features in the case of D2. The results indicate
that satisfactory performance was achieved by using the GARC for Arabic text categorization. The
GARC was able to work better with a small feature space (i.e. 1000 features) and achieve the best
performance in most situations. A possible explanation for this result is that the number of
categorization rules for this level of feature size was smaller than that of other feature spaces. Also, the
number of features in each rule was smaller than that of other feature spaces. This indicates that when
the number of categorization rules is increased the performance decreases because a large number of
rules participate in the categorization decision, which results in categorization mistakes; however, in
general the categorization mistakes were reduced by GRAC because it restrict the number of rules in
the categorization decision. The next section discusses the classifier size in terms of the number of
categorization rules.

3.2 GARC Size

The number of categorization rules for each of the FS methods for each text dataset is plotted in Fig. 3.
As shown in this figure, the number of categorization rules increases as the number of features
increases. The number of rules at each level of feature size is slightly different between FS methods,
but it should be noted that the length of rules is different where each rule has its own associated features.
With respect to categorization performance, the best performance was achieved with the smallest

 46

number of rules in most cases with all text datasets. This means that the proposed GARC was able
produce useful rules with a small feature subset that were able to make an accurate categorization. The
GARC generated the smallest number of rules with TF-IDF on D1 and D2 and with MCDM on D3.

(a) Classifier size for D1 (b) Classifier size for D2 (c) Classifier size for D3

Fig. 3. GARC size with three FS methods for each dataset

In summary, the GARC was able to produce a limited number of categorization rules that have good
predictive power to differentiate the categories of text and achieve promising results for Arabic text
categorization. Regarding the problem of lack of useful categorization rules, the proposed method was
able to discover categorization rules that have good predictive power to discriminate text categories.
As the results indicate, the proposed method was able to reduce feature dimensionality and produce
revised and useful categorization rules at the same time. In the literature, some of the rule inductions
such as AC and One-Rule classifier fail to discover rules for all text categories. In addition, in some
cases, the AC generates a large number of rules that are unbalanced for all categories, thus
categorization performance in those cases declines. However, the proposed GARC ensured that all the
training text categories were covered by the discovered rules. Another advantage of the GARC is its
capability to reduce the number of categorization rules and at the same time reduce the number of
features associated with each rule. To sum up, the experimental results show that the GARC method
has the capability to produce efficient categorization rules with promising results in terms of
categorization performance and classifier size.

3.3 Comparison of the GARC with the Associative Classification Approach

In this section, the computational results of the GARC are compared with Associative Classification
(AC); both methods are rule-based categorization algorithms. A set of categorization rules was
discovered by each method, then revised and used for categorization. The same settings of the GARC
parameters (Table 2) were used, while the parameters of the AC were as follows: 10% for minimum
support and 50% for minimum confidence. A detailed description of AC can be found in (Thabtah,
2007; Al-Radaideh et al., 2011; Ghareb et al., 2014). The majority voting method was utilized by both
the GARC and AC in the categorization phase to determine the valid categories for new test documents.
The comparison was based on categorization performance, classifier size and modeling time in terms
of the total time needed for categorization with each method. The GARC was also compared with
another version of the AC when the CDM and GA were employed as a preprocess of AC to reduce
feature dimensionality.

Table 6
Comparison of GARC with ACs based on the categorization performance (macro average F-measure %)

 GARC AC1 AC2
 Performance (Fmacro) Performance (Fmacro) Performance (Fmacro)
 Min Max Avg. Min Max Avg. Min Max Avg.

D1 89.14 90.82 90.18 59.11 88.31 77.16 57.12 90.28 73.77
D2 77.92 81.96 79.64 59.54 68.10 64.33 61.67 78.29 71.58
D3 78.26 89.07 82.17 73.63 82.19 77.21 64.74 84.73 74. 81

Table 6 shows the comparison of GARC performance with two variations of AC: AC with CDM (AC1)
and AC with CDM-GA (AC2). In addition, Table 7 shows the size of the GARC compared with the

M. H. Afif et al. / Decision Science Letters 9 (2020)

47

two variations of AC. The comparison between the GARC and AC was carried out based on their
results in terms of minimum (Min.), maximum (Max.) and average (Avg.) of categorization
performance and classifier size when the CDM was used to determine the search space for the GARC
and AC. The categorization performance was measured in terms of macro-average F-measure (F-
macro), while the classifier size was measured in terms of number of categorization rules. The
categorization performance results in Table 6 show that the GARC outperformed the AC methods and
achieved the best min, max and average of macro average F-measure with all datasets. The AC1 method
achieved the second highest average in the case of D3. The performance of both variations of AC
declined with large feature subsets due to the lack of useful categorization rules and because a large
number of rules were used for categorization. The proposed GARC avoided this limitation by revising
the rules more times and restricting the number of rules that could participate in the categorization
decision. Overall, from the comparison results, it is clearly demonstrated that the performance of the
proposed GARC was better than that of the AC approaches. In addition, the proposed GARC was more
efficient in terms of classifier size. As shown in Table 7, the size of the GARC is smaller than the ACs
and it is reasonable for all datasets. The average number of rules with the GARC did not exceed 130;
whereas in the case of the ACs a large number of rules was generated, which had an adversely impact
on categorization performance.

Table 7
Comparison of GARC and ACs based on the classifier size

 GARC AC1 AC2
 Classifier size│#Rules│ Classifier size│#Rules│ Classifier size│#Rules│
 Min Max Avg. Min Max Avg. Min Max Avg.

D1 108 146 130 92 647 275 201 1770 930
D2 81 119 105 118 263 154 122 1266 483
D3 99 140 121 112 438 204 95 3219 1352

The comparison between the GARC and AC approaches in terms of time consumption is demonstrated
in Fig. 4.

Fig. 4. Comparison of time consumption (minute) for GARC and AC approaches for each dataset

The results show that the GARC outperformed both AC1 and AC2. This is because the GARC generates
the categorization rules and performs categorization in a reasonable time with all datasets compared to
AC1 and AC2. The long period of time required when using AC1 and AC2 is because a large set of
frequent features has to be generated, especially with large feature subsets, through an iterative search
for each dataset, which requires a lot of time for rule discovery, so they produce a large set of
categorization rules and this adversely affects the performance of both ACs, as discussed earlier.
However, the GARC performs a search for rules that have higher accuracy through its capability to
isolates rules that have low predictive power. Thus the GARC was able to reduce the search space and

0

10

20

30

40

50

D1 D2 D3

Ti
m

e

Dataset

GARC
AC1
AC2

 48

discover the categorization rules rapidly. On average, it is clear from the results that the proposed
GARC was able to perform better than the AC approach. This is because the categorization rules that
are generated by the GARC are revised more than those generated by AC1 and AC2 . In addition, in
the case of the GARC, the number of rules that contribute to the categorization decision is limited,
which reduces the errors during final categorization. Also, the categorization rules are strongly related
to text categories through the objective function of the GARC, which determines the accuracy of the
rules and also reduces rule sizes. Moreover, the GARC reduces the time needed for rule generation and
categorization. In conclusion, the GARC was able to efficiently address the problem of the lack of
useful categorization rules as it achieved the best performance combined with a reasonable size of
classifier.

3.4 Comparison with Other related work

The experimental results proved that the GARC is better than ACs in terms of categorization
performance and classifier size. To further evaluate the performance of the GARC, it was further
assessed by comparing it with the other available results and approaches in the literature. A
performance comparison is conducted between GARC and two other approaches from related works.
The comparator approaches are based on Particle Swarm Optimization (PSO), where the PSO was used
with KNN for FS and the efficiency of the selected features was examined by NB and decision tree
(DT) (J48) (Chantar & Corne 2011). The same text datasets that have been used throughout this paper
(i.e. Al-Jazeera text dataset (D1) and Akhbar Al-khaleej text dataset (D2) and a small subset of the Al-
waten text dataset (D3)) were used. The performance comparison was based on categorization
performance in terms of macro-average precision, macro-average recall and macro-average F-measure.
In addition, the number of features and rules that controls the categorization process were highlighted.

Table 8
Comparison of results of the GARC and results of other methods

Datasets Measure GARC PSO-KNN+J48 PSO-KNN+NB

D1
Feature /(Rule) 1000/ (108) 2967 2967

Precision 91.39 74.7 85.8
Recall 93.73 72.3 84.3

F-measure 92.55 72.9 84.6

D2
Feature /(Rule) 4000/ (113) 4562 4562

Precision 84.315 79.0 83.8
Recall 79.729 78.7 82.8

F-measure 81.958 78.5 83.1

D3
Feature /(Rule) 1000/ (99) 6578 6578

Precision 93.14 77.3 89.0
Recall 85.34 76.7 88.6

F-measure 89.07 76.9 88.7
Notes: with respect to the number of features (# Feature), the number in parentheses in the GARC case refers to the number of rules discovered with
those feature subsets, categorization performance calculated in terms of macro-average precision, macro-average recall and macro-average F-
measure.

The comparison is shown in Table 8. From these results, it can be seen that the results of proposed
GARC methods are better than the most results of the other compared methods. In addition, the
proposed method was able to achieve better categorization performance for all the measures with a
smaller classifier size than that used by the compared methods. The GARC is a rule-based
categorization method. This type of method categorizes text based on a set of categorization rules. As
the comparison result indicates, the GARC was able to achieve competitive categorization performance
with a limited number of categorization rules. With respect to the number of features, and the number
of categorization rules that participate in categorization, the GARC produced better performance with
a small set of categorization rules. The GARC results are superior to those of the DT with PSO (PSO-
KNN+J48) for all datasets and it also superior PSO-KNN+NB in all situations except for D2. To
summarize, the proposed methods performed best in terms of categorization when they were applied
to D1 followed by D3. The GARC is a good categorization method that is able to produce a reasonable

M. H. Afif et al. / Decision Science Letters 9 (2020)

49

number of useful categorization rules with competitive categorization performance. In general, the
results of the GARC are satisfactory and their superiority is proven for Arabic text categorization.

4. Conclusion

This paper has presented a new rule based method for Arabic text categorization based on GA named
GARC. The GARC method was developed to enhance the predictive power of categorization rules and
overcome the lack of useful categorization rules. The GARC involved the use of an GA to discover the
categorization rules, where a set of categorization rules were extracted based on the improved GA
search capability to find the best features that compose the categorization rules, then the extracted rules
are revised and used for categorization. The experimental results demonstrated that improved
categorization performance could be achieved when the GARC is utilized for Arabic text
categorization. The GARC achieved promising results compared to other techniques such as AC, and
DT and NB with PSO. The results also revealed that the GARC could produce higher predictive
categorization rules than the AC method, which is reflected in the high performance of the GARC.
Additionally, because the GARC is developed based on a GA, this method is effective for producing a
limited set of useful categorization rules that address the problem of lack of categorization rules. The
results have also indicated that significant improvements could be achieved in terms of not only
producing strong categorization rules, but also categorization precision by utilizing the GARC for
Arabic text categorization.

References

Abbas, M., Smaili, K. & Berkani, D. (2011). Evaluation of topic identification methods on Arabic

corpora. Journal of Digital Information Management, 9(5), 185-192.
Abu Tair, M. M. & Baraka, R. S. (2013). Design and evaluation of a parallel classifier for large-scale

Arabic text. International Journal of Computer Applications, 75(3), 13-20.
Al-diabat, M. (2012). Arabic text categorization using classification rule mining. Applied Mathematical

Sciences, 6(81), 4033-4046.
Al-Radaideh, Q. A., Al-Shawakfa, E. M., Ghareb, A. S. & Abu-Salem, H. (2011). An approach for

Arabic text categorization using association rule mining. International Journal of Computer
Processing Of Languages, 23(1), 81-106.

Al-Saleem, S. (2011). Automated Arabic text categorization using SVM and NB. International Arab
Journal of e-Technology, 2(2), 124-128.

Al-Zaghoul, F. & Al-Dhaheri, S. (2013). Arabic text classification based on features reduction using
artificial neural networks. Proceedings of 15th International Conference on Computer Modelling
and Simulation (UKSim), pp. 485-490.

Azam, N. & Yao, J. (2012). Comparison of term frequency and document frequency based feature
selection metrics in text categorization. Expert Systems with Applications, 39, 4760–4768.

Bawaneh, M. J., Alkoffash, M. S. & Al Rabea, A. (2008). Arabic text classification using K-NN and
Naive Bayes. Journal of Computer Science, 4(7), 600-605.

Chantar, H. K. & Corne, D. W. (2011). Feature subset selection for Arabic document categorization
using BPSO-KNN. Proceedings of the 3rd World Congress on Nature and Biologically Inspired
Computing (NaBIC), 546-551.

Chen, J., Huang, H., Tian, S. & Qu, Y. (2009). Feature selection for text classification with Naïve
Bayes. Expert Systems with Applications, 36(3), 5432-5435.

El-Halees, A. (2008). A comparative study on Arabic text classification. Egyptian Computer Science
Journal, 20(2).

Fang, Y., Chen, K. & Luo, C. (2012). The algorithm research of genetic algorithm combining with text
feature selection method. Journal of Computational Science and Engineering, 1(1), 9-13.

Ghareb, S. A. & Hamdan, A.R. & Bakar, A.A. (2016). Hybrid Feature Selection based on Enhanced

 50

Genetic Algorithm for Text Categorization. Expert System with Applications, 49, 31-47.
Gharib, T. F., Habib, M. B. & Fayed, Z. T. (2009). Arabic text classification using support vector

machines. International Journal of Computers and Their Applications, 16(4), 192-199.
Günal, S. (2012). Hybrid feature selection for text classification. Turkish Journal of Electrical

Engineering & Computer Sciences, 20(Sup. 2), 1296-1311.
Harrag, F. & Al-Qawasmah, E. (2010). Improving Arabic text categorization using Neural Network

with SVD. Journal of Digital Information Management (JDIM), 8(2), 125-135.
Hattab, A. M., & Hussein, A. K. (2012). Arabic content classification system using statistical Bayes

classifier with words detection and correction. World of Computer Science and Information
Technology Journal, 2(6), 193-196.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of
Michigan press.

Khorsheed, M. S. & Al-Thubaity, A. O. (2013). Comparative evaluation of text classification
techniques using a large diverse Arabic dataset. Language Resources and Evaluation, 47(2), 513-
538.

Mesleh, A. (2011). Feature sub-set selection metrics for Arabic text classification. Pattern Recognition
Letters, 32(14), 1922-1929.

Mladenic, D. & Grobelnik, M. (1999). Feature selection for unbalanced class distribution and naive
bayes. Proceedings of the 16th International Conference on Machine Learning (ICML), pp. 258-
267.

Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information
Processing and Management, 24(5), 513-523.

Tan, F., Fu, X., Zhang, Y. & Bourgeois, A. G. (2008). A genetic algorithm-based method for feature
subset selection. Soft Computing, 12(2), 111-120.

Thabtah, F. (2007). A review of associative classification mining. The Knowledge Engineering Review,
22(01), 37-65.

Thabtah, F., Gharaibeh, O. & Abdeljaber, H. (2011). Comparison of rule based classification
techniques for the Arabic textual data. Proceedings of the 4th International Symposium on
Innovation in Information and Communication Technology (ISIICT), IEEE, pp. 105-111.

Thabtah, F., Gharaibeh, O. & Al-Zubaidy, R. (2012). Arabic text mining using rule based classification.
Journal of Information and Knowledge Management, 11(1), 1250006-1-1250006-10.

Tsai, C-F., Chen, Z-Y. & Ke, S-W. (2014). Evolutionary instance selection for text classification.
Journal of Systems and Software, 90, 104-113.

Uğuz, H. (2011). A two-stage feature selection method for text categorization by using information
gain, principal component analysis and genetic algorithm. Knowledge-Based Systems, 24(7), 1024-
1032.

Uysal, A. K. & Gunal, S. (2014). Text classification using genetic algorithm oriented latent semantic
features. Expert Systems with Applications, 41(13), 5938-5947.

© 2020 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

