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 Clustering is one of the most common unsupervised data mining classification techniques for 
splitting objects into a set of meaningful groups. However, the traditional k-means algorithm is 
not applicable to retrieve useful information / clusters, particularly when there is an 
overwhelming growth of multidimensional data. Therefore, it is necessary to introduce a new 
strategy to determine the optimal number of clusters. To improve the clustering task on high 
dimensional data sets, the distance based k-means algorithm is proposed. The proposed algorithm 
is tested using eighteen sets of normal and non-normal multivariate simulation data under various 
combinations. Evidence gathered from the simulation reveal that the proposed algorithm is 
capable of identifying the exact number of clusters. 
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1. Introduction 

The amount of data collected daily is increasing, but only part of the data that can be used to extract 
information which are valuable. This has led to data mining, a process of extracting interesting and 
useful information in the form of relations, and pattern (knowledge) from huge amount of data 
(Ramageri, 2010; Thakur & Mann, 2014). Some common functions in data mining are association, 
discrimination, classification, clustering, and trend analysis. Clustering is unsupervised learning in the 
field of data mining, which deals with an enormous amount of data. It aims to assist users to determine 
and understand the natural structure of data sets and to extract the meaning of huge data sets 
(Kameshwaran & Malarvizhi, 2014; Kumar & Wasan, 2010; Yadav & Dhingra, 2016). In this light, 
clustering is the task of dividing objects which are similar to each other within the same cluster, whereas 
objects from distinct clusters are dissimilar (Jain & Dubes, 2011).  Cluster methods are increasingly 
used in many areas, such as biology, astronomy, geography, pattern recognition, customer 
segmentation, and web mining (Kodinariya & Makwana, 2013). These applications use clusters to 
produce a suitable pattern from the data that may assist users and researchers to make wise decisions. 
In general, the clustering algorithms can be classified into hierarchical (Agglomerative & divisive 
clustering), partition (k-means, k-medoids, CLARA, CLARANS), density based, grid-based, and model 
based clustering methods (Han et al., 2012; Kaufman & Rousseeuw, 1990; Visalakshi & Suguna, 
2009). 
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The k-means algorithm is a very simple and fast commonly used unsupervised non-hierarchical 
clustering technique. This technique has been proven to obtain good clustering results in many 
applications. In recent years, many researchers have conducted various studies to determine the correct 
number of clusters using traditional and modified k-means algorithm (Kane & Nagar, 2012; Muca & 
Kutrolli, 2015),  where the centroids are sometimes based on early guessing.  However, very few studies 
have been performed to determine optimal number of clusters using k-means algorithm for high 
dimensional data set. Furthermore, in the common k-means clustering algorithm, ordinary steps 
encounter some drawbacks when the number of iterations of uncertainty can be processed to determine 
the optimal number of clusters, especially when using unmatched centroids (k). Selecting the 
appropriate cluster number (k) is essential for creating a meaningful and homogeneous cluster when 
using the k-means cluster algorithm for two-dimensional or multidimensional datasets. The selection 
of k is a major task to create meaningful and consistent clusters where subsequently, the k-means 
clustering algorithm is applied to high dimensional datasets. Mehar et al. (2013) introduced a novel k-
means clustering algorithm with internal validation measures (sum of square errors) that can be used 
to find the suitable number of clusters (k). Alibuhtto and Mahat (2019) also proposed a new distance-
based k-means algorithm to determine the ideal number of clusters for the multivariate numerical data 
set. It was found that while the proposed algorithm works well, but the study was limited to small sets 
of multivariate simulation data with only two clusters (such as k=2 and k=3).   Hence, this study aims 
to introduce a new algorithm to determine the number of optimal clusters using the k-means clustering 
algorithm based on the distance of high dimensional numerical data set.   

2. Methodology 
 

2.1 Data Simulation 
 

In this study, the proposed k-means algorithm was tested by generating twelve sets of random normal 
multivariate numerical data for different sizes of the cluster (k=2,3,5) with n objects (n=10000, 20000), 
p number of variables (p=10, 20) where the variables are having a multivariate normal distribution with 
different mean vectors ( )iμ , and covariance matrix. These multivariate normal data were generated 
using mvrnorm () function in R package in the combination of k, n, and p (Say Data1-Data12).  
Whereas, the proposed algorithm was tested by a generated six non-normal multivariate data sets for 
different sizes of cluster (k=2,3,5) with n=1000 and  p=10  using montel () function in R (Say Data13-
Data18).    

2.2. K-means Algorithm 

The k-means algorithm is an iterative algorithm that attempts to divide the data sets into k pre-defined 
non-overlapping sets of clusters. In this case, each data point belongs to one group. It tries to create the 
inter-cluster data points as similar as possible while at the same time, keeping the clusters as different 
as possible. It assigns data points to a cluster, so that the sum of the squared distance between the data 
points and the cluster’s centroid is minimum.  
The following steps can be used to perform k-means algorithm. 
 

1. Randomly produce predefined value of k centroids  
2. Allocate each object to the closest centroids 
3. Recalculate the positions of the k centroids, when all objects have been assigned. 
4. Repeat steps 2 and 3 until the sum of distances between the data objects and their corresponding 

centroid is minimized. 

2.3. The Proposed Approach 
 

Determining the optimal number of clusters in a data set is the foremost problem in the k-means cluster 
algorithm for high dimensional data set. In this regard, users are required to determine number of 
clusters to be generated. Therefore, this study proposes the use of k-means algorithm based on 
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Euclidean distance measures to identify the exact number of optimal number of clusters from the data. 
The proposed structure of the study is shown in Fig. 1. 

 

Fig. 1.  Structure of proposed k-means clustering algorithm 
 
The constant value (d) in Fig. 1 represents the test value, where that the objects are repeatedly clustered 
if the value jΔ  is greater than d (j=k+1,k+2,..). Whereas, jΔ  is the computed minimum distance 
between centres of kth clusters (k=2,3,…,7).  In this proposed algorithm, the Euclidean distance was 
chosen as a measurement of separation between objects due to its straightforward computation for 
numerical high dimensional data set. The following steps can be used to achieve the suitable number 
of clusters. 

1. Set the minimal number of k = 2 
2. Perform k-means clustering and compute Euclidean distance between centroids of each clusters 
3. Increase the number of clusters as k+1, perform again k-means clustering and compute the 

distance between clusters. 
4. Compare two consecutive distances at k and k+1 
5. If the difference is acceptable, then the best optimal cluster is k-2. Otherwise, repeat Step 3. 

2.4. Identify the test value (d) 
 

The constant value (d) was determined using the scatter plot [difference between cluster centroids ( )jΔ   
vs cluster number (k)] through the points close to the peak point in different conditions. The value d  
was computed by obtaining the average of three points close to the peak point (succeeding and 
preceding points). For instance,   
 

 

 

Fig. 2.  Scatter plot for jΔ  vs k Fig. 3.  Scatter plot for jΔ  vs k 
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In Fig. 2, the peak value can be seen when k=4. Not much fluctuations were observed afterwards. 
Therefore, the constant value d1 was computed (taking average of 3 neighboring points close to the 
peak point) using formula 1. Likewise, as shown in Fig. 3,  after the first point, the peak point is at k=6. 
Hence, the d2 was calculated by using formula 2. 
 

3
)( 543

1
Δ+Δ+Δ=d , (1) 

3
)( 765

2
Δ+Δ+Δ=d . 

(2) 

2.5. Cluster Validity Indices   
 
Cluster validation measure is important for evaluating the quality of clusters (Maulik & 
Bandyopadhyay, 2002). Different quality measures have been used to assess the quality of the 
discovered clusters. In this study, Dunn and Calinksi-Harbaz indices were used to assess the cluster 
results, and they are briefly described in section 2.51 and 2.5.2. 
2.5.1. Dunn Index (DI)  
 
This index is described as the ratio between the minimal intra cluster distances to maximal inter cluster 
distance. The Dunn index is as follows: 
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where ( )jicxandcxji xxdccdist
jjii

,min),(
∈∈

=  is the distance between clusters ci and cj ;  ( )ji xxd ,   is the 

distance between data objects xi and xj ;  diam(cl) is diameter of cluster cl, as the maximum distance 
between two objects in the cluster. The maximum value of the Dunn index identifies that k is the 
optimal number of clusters. 
 
2.5.2 Calinski-Harabasz Index (CH) 
 
This index is commonly used to evaluate the cluster validity and is defined as the ratio of the between-
cluster sum of squares (BCSS) and within-cluster sum of squares (WCSS) (Calinski & Harabasz, 1974). 
This index can be calculated by the following formula:  
 

( )
( )WCSSk

BCSSknCH
1−

−= , (4) 

where n is the number of objects and k is the number of clusters. The maximum value of CH indicates 
that k is the optimal number of clusters.  

3. Results and Discussions 

The proposed algorithm was tested using twelve sets of normal multivariate simulated data (Data1-
Data12) with two, three, and five clusters to determine the exact number of clusters. Fig. 4 to Fig. 6 
present the scatter plot of differences between cluster centroids (

jΔ ) against cluster number (k) for data 
sets with k=2, 3 and 5. The test value (d) was calculated from Fig. 4 to Fig. 6, as described in section 
2.4.  The validity index (DI and CH), the difference between consecutive clusters centroids ( jΔ ),  test 
value (d) for each data set (Data1-Data4) are presented in Table 1. The maximum value of DI and CH 
was obtained when k=2, which confirms that the number of clusters of data sets is 2. In addition, the 
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jΔ  is less than at k=4. According to section 2.4 and Fig. 1, the optimal number of cluster for each data 
set (Data1-Data4) is 2.  Similarly, Table 2, and Table 3 report the maximum values of DI and CH 
obtained for k=3 and k=5. Also, the jΔ is less than at k=5 and 7 for data sets (Data5-Data8) with three 
clusters and data set (Data9-Data12) with five clusters respectively.  These results indicate that the 
optimal number of clusters for each data set is 3 and 5, respectively. Therefore, the proposed algorithm 
is more appropriate for finding the correct number of clusters for high dimensional normal data.   
 

 
Fig. 4. Scatter plot for distance between cluster centroids (DBCD) vs k for Data1-Data4 

 
Table 1  
Clustering results for Data1-Data4 with 2 clusters   

Data  
Set n p k Clusters of sizes DI CH jΔ  d 

Data1 

10000 10 

2 10000,10000 0.784 124429.40 - 

1.325 
3 10000,5026,4974 0.066 65104.39 3.869 
4 3306,10000,3290,3404 0.060 44809.81 0.055 
5 4892,3442,5108,3278,3280 0.053 35347.62 0.051 

Data2  

2 10000,10000 2.628 642046.60 - 

3.449 
3 4827,5173,10000 0.072 333190.30 10.259 
4 3142,10000,3417,3441 0.069 227474.30 0.044 
5 3265,3342,5040,3393,4960 0.062 177709.80 0.044 

Data3  

25000 20 

2 25000,25000 1.124 301828.70 - 

2.231 
3 25000,12629,12371 0.143 155192.60 6.566 
4 8520,25000,8214,8266 0.127 105574.90 0.084 
5 8864,12357,12643,7568,8568 0.130 8040750 0.043 

Data4  

2 25000,25000 0.922 203144.10 - 

1.803 
3 12572,25000,12428 0.131 104749.70 5.269 
4 8279,8382,8339,25000 0.128 71299.03 0.073 
5 6226,25000,6158,6160,6456 0.128 54334.43 0.068 

 

 
 

Fig. 5. Scatter plot for distance between cluster centroids (DBCD) vs k for Data5-Data8 
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Table 2  
Clustering results for Data5-Data8 with 3 clusters  

 Data Set n p k Clusters of sizes DI CH jΔ  d 

Data5 

10000 10 

2 20000,10000 0.799 94657.10 - 

2.896 
3 10000,10000,10000 1.053 395378.80 3.672 
4 10000,10000,5016,4984 0.073 270195.70 4.973 
5 3314,10000,3278,3408,10000 0.037 206047.30 0.042 

Data6 

2 10000,20000 0.406 61669.30 - 

2.387 
3 10000,10000,10000 0.820 226310.90 2.245 
4 10000.5184,10000,4816 0.068 155564.90 4.909 
5 10000,3441,10000,3288,3271 0.056 119189.10 0.006 

Data7 

25000 20 

2 50000,25000 0.625 231326.50 - 

3.339 
3 25000,25000,25000 0.886 530252.30 4.611 
4 49993,8543,8086,8378 0.061 43290.43 5.269 
5 6182,50000,6223,6296,6299 0.068 58575.99 0.138 

Data8  

2 25000,50000 0.610 217738.80 - 

3.786 
3 25000,25000,25000 1.035 616868.30 4.868 
4 12403,25000,25000,12597 0.129 418971.20 6.491 
5 12607,12537,12463,25000,12393 0.117 320078.10 0.000 

 

 

Fig. 6. Scatter plot for distance between cluster centroids (DBCD) vs k for Data9-Data12 
 
Table 3  
Clustering results for Data9-Data12 with 5 clusters  

Data Set n p k Clusters of sizes DI CH jΔ  d 

Data9 

10000 10 

4 20000,10000,10000,10000 0.421 190191.10 0.644 

2.192 
5 10000,10000,10000,10000,10000 0.811 506145.40 1.645 
6 5091,4809,5191,4909,10000,20000 0.024 112564.70 4.922 
7 20000,5064,3426,3314,4954,10000,3260 0.025 96429.63 0.009 

Data10  

4 10000,10000,10000,20000 0.699 346493.60 4.783 

2.120 
5 10000,10000,10000,10000,10000 1.167 1332698.00 0.000 
6 3261,10000,10000,3310,20000,3429 0.018 141983.00 6.360 
7 20000,1968,2033,2018,20000,1964,2017 0.017 47530.06 0.000 

Data11 

25000 20 

4 25000,25000,50000,25000 0.528 356637.50 1.337 

2.908 
5 25000,25000,25000,25000,25000 1.448 1555790.00 0.000 
6 50000,12363,12376,25000,12624,12637 0.046 214903.10 8.719 
7 25000,50000,8595,12616,12384,7937,8468 0.045 167883.60 0.004 

Data12  

4 50000,25000,25000,25000 0.646 997992.80 0.679 

2.496 
5 25000,25000,25000,25000,25000 1.086 2490765.00 2.196 
6 12596,50000,12405,12404,12595,25000 0.058 602549.40 5.285 
7 7798,50000,8378,8824,12404,25000,12596 0.051 386859.20 0.008 

  

The proposed k-means algorithm was also tested for generated non-normal multivariate data set with 
three different clusters k=2, 3 and 5. The values of the constant d for each data set were computed 
according to the graph as shown in Fig. 7 to Fig. 9. The results of the proposed algorithm and validation 
indices for non-normal datasets (Data13 – Data18) are presented in Table 4.  
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Fig. 7. Scatter plot for distance between 
cluster centroids (DBCD) vs k for 
Data13-Data14 

Fig. 8. Scatter plot for distance 
between cluster centroids (DBCD) 
vs k for Data15-Data16 

Fig. 9. Scatter plot for distance 
between cluster centroids (DBCD) 
vs k for Data17-Data18 

   
 

Table 4 
Clustering results for Data13-Data18 with 2, 3 and 5 clusters   

Data 
Set n Clu p k Clusters of sizes DI CH jΔ  d 

Data1
3 10000 

 
 
 
 
 
 

2 

10 

2 9970,10030 0.091 20703.76 - 

2.315 
3 3075,6850,10075 0.033 10635.34 4.447 
4  9868,1982,6191,1959 0.041 8035.90 1.429 
5  5014,1760,1620,10015,1591 0.039 6237.28 1.069 

Data1
4  20000 

2 20000,20000 0.292 56954.23 - 

3.093 
3 20000,12481,7519 0.057 24656.43 9.042 
4 20000,4132,12229,3639 0.062 13340.22 0.160 
5 3528,4845,4353,20000,7274 0.064 10261.14 0.076 

Data1
5 10000 

 
 
 
 
 
 

3 

20 

2 19950,10050 0.074 46639.67 - 

4.118 
3 9823,10121,10056 0.130 78440.32 5.243 
4 3136,6892,9955,10017 0.032 51061.52 6.860 
5 6404,6388,10001,3683,3524 0.034 38532.40 0.251 

Data1
6  20000 

2 20000,40000 0.512 152845.30 - 

7.357 
3 20000,20000,20000 0.611 209643.10 11.202 
4 13166,6834,20000,20000 0.059 134352.70 10.642 
5 20000,5764,10751,3485,20000 0.072 102443.30 0.227 

Data1
7 10000 

 
 
 
 
 
 
 

10 

4 10000,10011,19418,10571 0.051 136576.40 0.014 

1.444 
5 10052,10005,10015,9910,10018 0.092 157120.30 4.230 
6 10000,9908,7219,2822,10015,10036 0.039 124235.60 0.088 
7 2949,9908,7913,10054,2134,7042,10000 0.042 102431.50 0.263 

Data1
8 20000 20 

4 20000,20000,40000,20000 0.212 129872.40 5.144 

5.163 
5 20000,20000,20000,20000,20000 0.295 331244.70 10.210 
6 3062,3150,3232,40000,39998,10558 0.041 61543.32 0.135 
7 14320,20000,5680,11385,40000,5035,3580 0.050 104325.90 0.088 

According to the Table 4, the maximum values of the DI and CH obtained when k=2 for Data13 and 
Data14, k=3 for Data15 and Data16, and k=5 for Data17 and Data18. This result confirmed that the 
number of clusters of non- normal multivariate datasets is 2, 3, and 5 respectively.  Furthermore, the 
minimum distances between cluster centroids ( jΔ ) of datasets Data13 and Data14 is less than d for 
k=2, whereas Data15 and Data16 for k=3, and Data17 and Data18 for k=5 (section 2.3 & Fig. 1).  This 
result indicate that the optimal number of clusters of non-normal multivariate data set is two, three and 
five.  Hence, the proposed new distanced based k-means algorithm is the best technique to find the 
exact number of clusters for high dimensional data sets. 

4. Conclusion 
 

This study has proposed a distance-based k-means clustering algorithm to determine the suitable 
number of clusters for high dimensional data set. The proposed algorithm hs examined eighteen sets of 
normal and non-normal high dimensional simulation data and results revealed that the proposed 
algorithm was more accurate for finding the correct number of optimal clusters without using any 
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validation indices.  In addition, this paper is useful for finding the exact number of clusters for big data, 
because the validation index is insufficient to assess the quality of clusters for big data. However, the 
proposed algorithm can be improved to be used on categorical and mixed data.   
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