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 In the global critical economic scenario, inflation plays a vital role in deciding optimal pricing 
of goods in any business entity. This article presents two single-vendor single-buyer integrated 
supply chain inventory models with inflation and time value of money. Shortage is allowed 
during the lead time and it is partially backlogged. Lead time is controllable and can be reduced 
using crashing cost. In the first model, we consider the demand of lead time follows a normal 
distribution, and in the second model, it is considered distribution-free. For both cases, our 
objective is to minimize the integrated system cost by simultaneously optimizing the order 
quantity, safety factor, lead time and number of lots. The discounted cash flow and classical 
optimization technique are used to derive the optimal solution for both cases. Numerical 
examples including the sensitivity analysis of system parameters is provided to validate the 
results of the supply chain models. 
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1. Introduction 
 

Conventional inventory management techniques suggest stocking an inventory level for minimizing 
the system cost. This approach does not handle risk or the time value of money in the recent highly 
volatile market situations. In most of the research work, the time value of money and inflation were 
disregarded. If the planning horizon is short, it may be appropriate to ignore the time value of money 
to simplify the decision process. However, if the planning horizon is long, the time value of money 
cannot be ignored. To relax the assumption of no inflationary effects on costs, first attempt were of 
Buzacott (1975) and Misra (1975) who simultaneously developed an EOQ model with a constant 
inflation rate for all associated costs. After that several researchers extended their approach to various 
realistic situations by considering the time value of money, different inflation rates for the internal and 
external costs, finite replenishment rate, shortages, backlogging, etc. Bierman and Thomas (1977) 
proposed an EOQ model under inflation that also incorporated the discount rate. Misra (1979) extended 
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the EOQ model with different inflation rates for various associated costs. Studying inventory models 
while considering time and value, Moon and Yun (1993) worked on the discounted cash flow approach 
to fully distinguish the time value of money and formulated a finite planning horizon EOQ model in 
which the planning horizon is a random variable. Sarker and Pan (1994) surveyed the effects of inflation 
and the time value of money on order quantity with finite replenishment rate. Ray and Chaudhuri (1997) 
presented an EOQ model under inflation and time discounting allowing shortages. Wee and Law (1999) 
employed the concept of inflation and time value of money into the model with price dependent demand 
and allowable shortage. Horowitz (2000) discussed a simple EOQ model with a normal distribution for 
the inflation rate. Further, Wee and Law (2001) presented a heuristic approach to derive the near 
optimal replenishment and pricing policy that tries to maximize the total net present-value profit. They 
applied the discounted cash flows (DCF) approach for problem analysis. Balkhi (2004) considered a 
production lot size inventory model with deterioration and imperfect products, taking into account 
inflation and the time value of money. Then, Yang et al. (2005) provided a mixed inventory model, in 
which the distribution of lead time demand is normal, to consider the time value. Recently, 
 

A large number of inventory models dealing with inflation and time value of money are available in 
the literature. However, the literature is inadequate as far as the supply chain model is concerned. All 
the above works have been done on inventory modeling is only for a single echelon either vendor or 
buyer. Lo et al. (2007) developed an integrated production-inventory model under the assumptions of 
varying deterioration rate, partial backordering and inflation. Chern et al. (2008) proposed partial 
backlogging inventory lot-size models for deteriorating items with fluctuating demand under inflation. 
Uthayakumar and Geetha (2009) proposed an optimal replenishment policy by considering stock 
dependent consumption rate for non-instantaneous deteriorating items with money inflation and 
partially backlogging. Shah and Shukla (2010) proposed a study, for demand declining market, without 
shortages under the effect of inflation. Recently, Mirzazadeh (2011) proposed a detailed comparison of 
the average annual cost and the discounted cost models under stochastic inflationary conditions. 
Further, Mirzazadeh (2013) developed an inventory model under stochastic inflationary conditions with 
variable probability density functions where demand rate is assumed to be dependent on the inflation 
rates. Recently Jindal & Solanki (2014) discussed integrated inventory model with backorder price 
discount and controllable lead time. 
 

Usually, the effect of inflation and time value of money is not considered in supply chain inventory 
models, although inflation and time value of money would influence the cost and price components to 
a significant degree. The effect of inflation and time value of money for determining the integrated 
supply chain cost of inventory modeling cannot be ignored. The effect of inflation and time value of 
money should be considered in developing the proper mathematical formulation of the supply chain. 
Controlling the lead time is an effective way to achieve balance between the two factors of time and 
costs. In the past, lead time crashing cost, inflation and the time value of money have received attention 
separately, but they considered together simultaneously very rarely. The purpose of this paper is to 
develop an inventory model with a lead time crashing cost with taking into account time value of money 
and inflation. First we consider lead time demand follows normal distribution then, we relax the 
assumption on the distributional form of lead time demand and merely assume that the first and second 
moments are known and finite. For this case, we solve the problem by applying the minimax 
distribution-free approach  

2. Notations and assumptions 

To develop the proposed models, we adopt the following notations and assumptions. 

2.1. Notations 

D Average demand per year of the buyer 
P Production rate on the vendor 𝑃𝑃 > 𝐷𝐷 
Q Order quantity of the buyer (decision variable) 
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A Buyer’s ordering cost per order 
S Vendor’s set-up cost per set-up 
hb Buyer’s holding cost per unit per year 
hv Vendor’s holding cost per unit per year 
θ Interest rate per year that is compounded continuously 
β Fraction of the demand during the stockout period that will be backordered, β ∈ [0,1] 
𝜋𝜋 Buyer’s penalty cost per unit short 
𝜋𝜋𝑜𝑜 Buyer’s marginal profit per unit, i.e., cost of lost demand per unit 
C(L) Lead time crashing cost 
R Reorder point of the buyer 
K Safety factor (decision variable) 
L Length of lead time for the buyer (decision variable) 
M An integer representing the number of lots in which the items are delivered from the  

vendor to the buyer (decision variable) 
X Lead time demand with finite mean DL and standard deviation Lσ > 0 
E( . ) Mathematical expectation 
x+ Maximum value of x and 0, i.e., x+ = Max{x,0}. 

 

2.2. Assumptions 

1. There is single vendor and single buyer for a single product. 
2. Inventory is continuously reviewed and replenishments are made whenever the inventory level 

falls to the reorder point r. 
3. The reorder point r = expected demand during lead time + safety stock (SS) and SS = k× 

(standard deviation of lead time demand), that is, 𝑟𝑟 = 𝐷𝐷𝐷𝐷 + 𝑘𝑘𝑘𝑘√𝐷𝐷 
4. The buyer orders a lot of size Q and the vendor produces mQ units with a finite production rate 

P at one set-up but ship in quantity Q to the buyer over m times. 
5. The lead time L consists of n mutually independent components. The ith component has a 

minimum duration𝑎𝑎𝑖𝑖 ,normal duration 𝑏𝑏𝑖𝑖 , and crashing cost per unit time 𝑐𝑐𝑖𝑖 ,For convenience, we 
rearrange ci such that𝑐𝑐1 < 𝑐𝑐2 < ⋯ < 𝑐𝑐𝑛𝑛. The components of lead time are crashed one at a time 
starting from the first component because it has the minimum unit crashing cost, and then the 
second component, and so on. 

6. Let Lo = ∑ bjn
j=1   and Li be the length of lead time with components 1,2,. . . , i crashed to their 

minimum duration, then Li can be expressed as Li = ∑ bjn
j=1 − ∑ �bj − aj�i

j=1 , i=1,2,...,n; and 
the lead time crashing cost C(L) per cycle for a given L ∈ [Li, Li−1], is given by C(L) =
ci(Li−1 − Li) + ∑ cj�bj − aj�i−1

j=1 . In addition, the length of lead time is equal for all shipping 
cycles, and the lead time crashing cost occurs in each cycle. 

 

3. The model 
 
In this paper, two integrated single vendor and single buyer inventory models with controllable lead 
time under inflation and time vale of money are discussed. We simultaneously optimize the order 
quantity, safety factor, lead time and the number of lots delivered from vendor to buyer with the 
objective of minimizing the total supply chain integrated cost. Inventory is continuously reviewed; we 
assume that the integrated production inventory model allows shortages with partial backorder. 
Replenishments are made whenever the inventory level falls to the reorder point r. The lead time 
demand X has a p.d.f. f(x) with finite mean DL and standard deviation 𝑘𝑘√𝐷𝐷 > 0. 
 

3.1. Buyer’s cost 
 

The expected shortage at the end of each cycle is given by 𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+. Thus the expected number of 
backorders and loss in sales per cycle is 𝛽𝛽𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+and (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+respectively.  
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For each cycle, when shortage is occurred, the fixed shortage cost is 𝜋𝜋𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ and the loss profit is 
𝜋𝜋𝑜𝑜(1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+. Hence, the stockout cost per cycle is [𝜋𝜋 + 𝜋𝜋𝑜𝑜(1 − 𝛽𝛽)]𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+. The expected 
net inventory level just before the order arrives is 𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+and the expected net 
inventory at the beginning of the cycle is𝑄𝑄 + 𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+. Therefore, the expected 
average inventory level is 𝑄𝑄 + 𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ − 𝐷𝐷𝐷𝐷 for 𝐷𝐷 ∈ [0, 𝑄𝑄

𝐷𝐷
]. Hence, the inventory 

holding cost for the first cycle equals ∫ �𝑄𝑄 + 𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ − 𝐷𝐷𝐷𝐷�ℎ𝑏𝑏𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝐷𝐷
𝑄𝑄
𝐷𝐷
𝜃𝜃=0  

= �𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+�
ℎ𝑏𝑏
𝜃𝜃 �1 − 𝑒𝑒−

𝜃𝜃𝑄𝑄
𝐷𝐷 � +

𝐷𝐷ℎ𝑏𝑏
𝜃𝜃2 �

𝜃𝜃𝑄𝑄
𝐷𝐷

+ 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 − 1� 

Applying the discounted cash flow approach of Moon and Yun (1993) the total cost for the buyer at 
the first cycle is the sum of the ordering cost, holding cost, stockout cost, and lead time crashing cost, 
is expressed by  

𝑇𝑇𝐶𝐶𝑏𝑏(𝑄𝑄, 𝑘𝑘, 𝐷𝐷) = 𝐴𝐴 + �𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+�
ℎ𝑏𝑏
𝜃𝜃 �1 − 𝑒𝑒−

𝜃𝜃𝑄𝑄
𝐷𝐷 � +

𝐷𝐷ℎ𝑏𝑏
𝜃𝜃2 �

𝜃𝜃𝑄𝑄
𝐷𝐷

+ 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 − 1� 

+[𝜋𝜋 + 𝜋𝜋𝑜𝑜(1 − 𝛽𝛽)]𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ + 𝐶𝐶(𝐷𝐷) 
Referring to Yang et al. (2005), we get the present value of the expected total cost for the buyer over 
infinite time horizon 
𝑃𝑃𝑇𝑇𝐶𝐶𝑏𝑏(𝑄𝑄, 𝑘𝑘, 𝐷𝐷) =

1

�1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

𝑇𝑇𝐶𝐶𝑏𝑏(𝑄𝑄, 𝑘𝑘, 𝐷𝐷)

=
𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + [𝜋𝜋 + 𝜋𝜋𝑜𝑜(1 − 𝛽𝛽)]𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+

�1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+
𝑄𝑄ℎ𝑏𝑏

𝜃𝜃 �1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ �𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+�
ℎ𝑏𝑏
𝜃𝜃 −

𝐷𝐷ℎ𝑏𝑏
𝜃𝜃2  

(1) 

3.2. Vendor’s cost 
 
For each production period, when first Q units have been produced, the vendor delivers them to the 
buyer, after that the vendor will make the deliveries on average every 𝑄𝑄

𝐷𝐷
 units of time until the inventory 

level vanishes. Also the vendor produces mQ quantity in a lot. Since the cycle length for the vendor is 
𝑚𝑚𝑄𝑄
𝐷𝐷

, hence the vendor’s average inventory can be calculated as follows 
 
�𝑚𝑚𝑄𝑄 �𝑄𝑄

𝑃𝑃
+ (𝑚𝑚− 1) 𝑄𝑄

𝐷𝐷
� − 𝑚𝑚2𝑄𝑄2

2𝑃𝑃
− 𝑄𝑄2

𝐷𝐷
{1 + 2 + ⋯+ (𝑚𝑚 − 1)}� 𝐷𝐷

𝑚𝑚𝑄𝑄
= 𝑄𝑄

2
�(𝑚𝑚− 1) + (2 −𝑚𝑚) 𝐷𝐷

𝑃𝑃
�  

 
for 𝐷𝐷 ∈ [0,𝑚𝑚𝑄𝑄

𝐷𝐷
]. Therefore, the holding cost for the vendor at the first cycle equals 

�
𝑄𝑄ℎ𝑣𝑣

2

𝑚𝑚𝑄𝑄
𝐷𝐷

𝜃𝜃=0
�(𝑚𝑚− 1) + (2 −𝑚𝑚)

𝐷𝐷
𝑃𝑃
� 𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝐷𝐷 =

𝑄𝑄ℎ𝑣𝑣
2𝜃𝜃

�(𝑚𝑚− 1) + (2 −𝑚𝑚)
𝐷𝐷
𝑃𝑃
� (1 − 𝑒𝑒−

𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 ) 

Thus the total cost of the vendor at first cycle, which is composite of set-up cost and holding cost is 
expressed by  
 

𝑇𝑇𝐶𝐶𝑣𝑣(𝑄𝑄,𝑚𝑚) = 𝑆𝑆 + 𝑄𝑄ℎ𝑣𝑣
2𝜃𝜃

�(𝑚𝑚 − 1) + (2 −𝑚𝑚) 𝐷𝐷
𝑃𝑃
� (1 − 𝑒𝑒−

𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 )     

 
Accordingly, the present value of the total cost of the vendor over infinite time horizon is 
 
𝑃𝑃𝑇𝑇𝐶𝐶𝑣𝑣(𝑄𝑄,𝑚𝑚) =

1

�1 − 𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

𝑇𝑇𝐶𝐶𝑣𝑣(𝑄𝑄,𝑚𝑚) =
𝑆𝑆

�1 − 𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

+
𝑄𝑄ℎ𝑣𝑣
2𝜃𝜃

�(𝑚𝑚− 1) + (2 −𝑚𝑚)
𝐷𝐷
𝑃𝑃
� (2) 

Considering vendor and buyer cooperation to each other, the integrated supply chain total cost at the 
first cycle is given by 
 
𝑃𝑃𝑇𝑇𝐶𝐶𝑠𝑠𝑠𝑠(𝑄𝑄,𝑘𝑘, 𝐷𝐷,𝑚𝑚) = 𝑃𝑃𝑇𝑇𝐶𝐶𝑏𝑏(𝑄𝑄,𝑘𝑘, 𝐷𝐷) + 𝑃𝑃𝑇𝑇𝐶𝐶𝑣𝑣(𝑄𝑄,𝑚𝑚) 
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=
𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + [𝜋𝜋 + 𝜋𝜋𝑜𝑜(1 − 𝛽𝛽)]𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+

�1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+
𝑄𝑄ℎ𝑏𝑏

𝜃𝜃 �1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ �𝑘𝑘𝑘𝑘√𝐷𝐷 + (1 − 𝛽𝛽)𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+�
ℎ𝑏𝑏
𝜃𝜃 −

𝐷𝐷ℎ𝑏𝑏
𝜃𝜃2 +

𝑆𝑆

�1 − 𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

+
𝑄𝑄ℎ𝑣𝑣
2𝜃𝜃 �(𝑚𝑚 − 1) + (2 −𝑚𝑚)

𝐷𝐷
𝑃𝑃� 

(3) 

 
4. The Optimal Solution 
 
Two cases are considered for stochastic lead time demand, one when the lead time demand follows a 
normal distribution and other when lead time demand is distribution free. 
 
Case I -The Lead Time Demand Follows a Normal Distribution 
 
In this case, we assume that the lead-time demand X is normally distributed with finite mean DL, 
standard deviation 𝑘𝑘√𝐷𝐷, and reorder point 𝑟𝑟 = 𝐷𝐷𝐷𝐷 + 𝑘𝑘𝑘𝑘√𝐷𝐷. Therefore the expected shortages quantity 
at the end of the cycle is given by  
 
𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ = ∫ (𝑥𝑥 − 𝑟𝑟)𝑑𝑑𝑓𝑓(𝑥𝑥) = 𝑘𝑘√𝐷𝐷𝜓𝜓(𝑘𝑘) > 0,∞

𝑟𝑟 where 𝜓𝜓(𝑘𝑘) = 𝜙𝜙(𝑘𝑘) − 𝑘𝑘[1 −Φ(𝑘𝑘)] > 0 
 
where 𝜙𝜙 and Φ denote the standard normal probability density function and distribution function 
respectively. Thus, the joint total expected cost given by Eq. (3), transforms to 
 
𝑃𝑃𝑇𝑇𝐶𝐶𝑠𝑠𝑠𝑠(𝑄𝑄,𝑘𝑘, 𝐷𝐷,𝑚𝑚) = 𝐴𝐴+𝐶𝐶(𝐿𝐿)+𝜋𝜋�𝜎𝜎√𝐿𝐿𝜓𝜓(𝑘𝑘)

�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ 𝑄𝑄ℎ𝑏𝑏

𝜃𝜃�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ 𝑆𝑆

�1−𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ 𝑄𝑄
2𝜃𝜃
𝐻𝐻(𝑚𝑚) + [𝑘𝑘 + (1 −

𝛽𝛽)𝜓𝜓(𝑘𝑘)] 𝜎𝜎√𝐿𝐿ℎ𝑏𝑏
𝜃𝜃

− 𝐷𝐷ℎ𝑏𝑏
𝜃𝜃2

  

 
(4) 

 

To simplify notations, we let 𝜋𝜋� = [𝜋𝜋 + 𝜋𝜋𝑜𝑜(1 − 𝛽𝛽)] and 𝐻𝐻(𝑚𝑚) = ℎ𝑣𝑣 �(𝑚𝑚− 1) + (2 −𝑚𝑚) 𝐷𝐷
𝑃𝑃
� 

Taking first and second order partial derivatives of𝑃𝑃𝑇𝑇𝐶𝐶𝑠𝑠𝑠𝑠(𝑄𝑄,𝑘𝑘, 𝐷𝐷,𝑚𝑚)for fixed Q, k and m, with respect 
to L, we have 
𝜕𝜕PTCsc(Q,k,L,m)

𝜕𝜕𝐿𝐿
= 𝜋𝜋�𝜎𝜎𝐿𝐿−

1
2𝜓𝜓(𝑘𝑘)

2�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

− Ci

�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ [k +(1 − β)ψ(k)] σhb𝐿𝐿
−12

2θ
  

𝜕𝜕2PTCsc(Q,k,L,m)
𝜕𝜕𝐿𝐿2

= − 𝜋𝜋�𝜎𝜎𝐿𝐿−
3
2𝜓𝜓(𝑘𝑘)

4�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

− [k +(1 − β)ψ(k)] σhb𝐿𝐿
−32

4θ
< 0  

Therefore, for fixed (Q, k, m), PTCsc(Q, k, L, m)is a concave function in [Li, Li−1]. Hence, for fixed (Q, 
k, m), the minimum integrated total supply chain cost will occur at the end points of the interval 
[Li, Li−1]. Now for fixed integer m, let us take the partial derivatives of PTCsc(Q, k, L, m) with respect 
to Q and k, we obtain 
 

𝜕𝜕PTCsc(Q, k, L, m)
𝜕𝜕𝑄𝑄 = −�𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�𝑘𝑘√𝐷𝐷𝜓𝜓(𝑘𝑘) +

𝑄𝑄ℎ𝑏𝑏
𝜃𝜃 �

𝜃𝜃𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷

𝐷𝐷 �1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

2 −
𝑆𝑆𝑚𝑚𝜃𝜃𝑒𝑒−

𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷

𝐷𝐷 �1 − 𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

2 +
ℎ𝑏𝑏

𝜃𝜃 �1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+
𝐻𝐻(𝑚𝑚)

2𝜃𝜃  
(5) 

𝜕𝜕PTCsc(Q,k,L,m)
𝜕𝜕𝑘𝑘

= � 𝜋𝜋�𝜎𝜎√𝐿𝐿

�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ (1 − 𝛽𝛽) 𝜎𝜎√𝐿𝐿ℎ𝑏𝑏
𝜃𝜃

� [Φ(𝑘𝑘) − 1] + 𝜎𝜎√𝐿𝐿ℎ𝑏𝑏
𝜃𝜃

  
(6) 

 
However PTCsc(Q, k, L, m) is convex for Q and k, for fixed m and  L ∈ [Li, Li−1] (for proof, see the 
appendix A). We can obtain the optimal values of Q and k, by setting Eq. (5) and Eq. (6) equal to zero, 
which gives 
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Q =

⎣
⎢
⎢
⎡D
2θ
𝐻𝐻(𝑚𝑚) −

𝑆𝑆𝑚𝑚𝜃𝜃𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷

�1 − 𝑒𝑒−
𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

2

⎦
⎥
⎥
⎤ �𝑒𝑒

𝜃𝜃𝑄𝑄
𝐷𝐷 + 𝑒𝑒−

𝜃𝜃𝑄𝑄
𝐷𝐷 − 2�

ℎ𝑏𝑏
− �𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�𝑘𝑘√𝐷𝐷𝜓𝜓(𝑘𝑘)�

𝜃𝜃
ℎ𝑏𝑏

+
D
θ
�𝑒𝑒

𝜃𝜃𝑄𝑄
𝐷𝐷 − 1� 

 
(7) 

1 −Φ(𝑘𝑘) = ℎ𝑏𝑏 �
𝜃𝜃𝜋𝜋�

�1 − 𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ (1 − 𝛽𝛽)ℎ𝑏𝑏��  
 

(8) 

 
Case II –The Lead Time Demand is Distribution Free 
 
Practically it is seen that, the information about lead time demand probability distribution is limited. 
Hence here in this case, we assume, given finite first and second moments. Consequently mean and 
variance are also finite and known; i.e., the density function f(x) of lead time demand X belongs to the 
class ℜof density functions with finite mean DL and variance𝑘𝑘2𝐷𝐷. Since the probability distribution of 
X is unknown, the exact value of the expected demand shortages (or expected shortages quantity) 
𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ at the end of the shipping cycle cannot be found. Therefore, we use the minimax distribution 
free procedure to solve this problem. The minimax distribution free approach involves finding the most 
unfavorable density function f(x) inℜ for each (𝑄𝑄, 𝑘𝑘, 𝐷𝐷,𝑚𝑚) and then minimizes the joint total expected 
cost per unit time over (𝑄𝑄,𝑘𝑘, 𝐷𝐷,𝑚𝑚). That is, our problem is to solve 
 

min
(Q,k,L,m)

max
𝑓𝑓(𝑥𝑥)∈ℜ

PTCsc(Q, k, L, m) 

 
To solve our problem, we apply following proposition, asserted by Gallego and Moon (1993) 
 
Proposition 1. 
 
For any ( ) ,f x ∈ℜ 𝐸𝐸(𝑋𝑋 − 𝑟𝑟)+ ≤ 1

2
[�𝑘𝑘2𝐷𝐷 + (𝑟𝑟 − 𝐷𝐷𝐷𝐷)2 − (𝑟𝑟 − 𝐷𝐷𝐷𝐷)] (9) 

 
Moreover, the upper bound of the above inequality is tight. 
Since the above inequality always holds for any lead time demand probability distribution. Then using 
the model, explained by Eq. (3) and Eq. (9), and considering the safety factor k as a decision variable 
instead of r, the problem (4) is reduced to minimize 
 

PTCscM(Q, k, L, m) =
𝐴𝐴+𝐶𝐶(𝐿𝐿)+𝑄𝑄𝜃𝜃ℎ𝑏𝑏+

𝜋𝜋�
2𝜎𝜎√𝐿𝐿�√1+𝑘𝑘

2−𝑘𝑘�
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𝜃𝜃𝑄𝑄
𝐷𝐷 �

+ 𝑆𝑆
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+ 𝑄𝑄
2𝜃𝜃
𝐻𝐻(𝑚𝑚) + �𝑘𝑘 + 1

2
(1 −

𝛽𝛽) �√1 + 𝑘𝑘2 − 𝑘𝑘�� 𝜎𝜎√𝐿𝐿ℎ𝑏𝑏
𝜃𝜃

− 𝐷𝐷ℎ𝑏𝑏
𝜃𝜃2

  

 
(10) 

 
Taking first and second order partial derivatives of PTCscM(Q, k, L, m)for fixed Q, k and m, with respect 
to L, we have 
𝜕𝜕PTCscM (Q,k,L,m)

𝜕𝜕𝐿𝐿
= 𝜋𝜋�𝜎𝜎𝐿𝐿−

1
2�√1+𝑘𝑘2−𝑘𝑘�

4�1−𝑒𝑒−
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+ �𝑘𝑘 + 1
2

(1 − 𝛽𝛽)�√1 + 𝑘𝑘2 − 𝑘𝑘�� σhb𝐿𝐿
−12

2θ
− Ci

�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

  

𝜕𝜕2PTCscM (Q,k,L,m)
𝜕𝜕𝐿𝐿2

= −𝜋𝜋�𝜎𝜎𝐿𝐿−
3
2�√1+𝑘𝑘2−𝑘𝑘�

8�1−𝑒𝑒−
𝜃𝜃𝑄𝑄
𝐷𝐷 �

− �𝑘𝑘 + 1
2

(1 − 𝛽𝛽)�√1 + 𝑘𝑘2 − 𝑘𝑘�� σhb𝐿𝐿
−32

4θ
< 0  

Therefore, for fixed (Q, k, m), PTCscM(Q, k, L, m) is a concave function in [Li, Li−1]. Hence, for fixed 
(Q, k, m), the minimum integrated total supply chain cost will occur at the end points of the interval 
[Li, Li−1]. In order to find the optimal values of decision variables, we relax the integer constraint on 
m, let us take the partial derivatives of PTCscM(Q, k, L, m)with respect to Q and k, we obtain 
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𝜕𝜕PTCscM(Q, k, L, m)

𝜕𝜕𝑄𝑄 = −�𝐴𝐴 + 𝐶𝐶(𝐷𝐷) +
𝜋𝜋�
2 𝑘𝑘√𝐷𝐷 �
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(11) 

𝜕𝜕PTCscM (Q,k,L,m)
𝜕𝜕𝑘𝑘

= � 𝜋𝜋�𝜎𝜎√𝐿𝐿
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𝜃𝜃𝑄𝑄
𝐷𝐷 �
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(12) 

 
However PTCscM(Q, k, L, m) is convex for Q and k, for fixed m and  L ∈ [Li, Li−1] (for proof, see the 
appendix B). We can obtain the optimal values of Q and k, by setting Eq. (11) and Eq. (12) equal to 
zero, which gives 
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5. Numerical Examples 
 
Example 1. 
 
In order to illustrate the above proposed models, let us consider an inventory system with the following 
data: D=600units/year, P=2000units/year, A=$200/order, S=$1000/set-up, π=$50/unit, 𝜋𝜋𝑜𝑜=150/unit, 
hb= $20/unit/year, hv= $15/unit/year, σ = 7units/week and θ=0.1. The lead time has three components 
with data shown in Table 1. We assume here that the lead time demand follows a normal distribution. 
The solution procedure for different values of 𝛽𝛽 = 0,0.25,0.50,0.75,1 is provided in Table 2 and 
summarizes the results in Table 3. Where 𝑄𝑄 = 100,𝑘𝑘 = 3 are taken as initial guess. 
 
Example 2.  
 
The data is the same as in Example 1 except the probability distribution of the lead time demand is 
unknown. We obtain the related results which are shown in Table 4 and summarizes the results in Table 
5. 
 
Table 1  
Lead time data 

Lead time 
component, i 

Normal duration 
                 bi (days) 

Minimum duration 
ai (days) 

Unit crashing cost 
ci ($/day) 

1 20 6 0.4 
2 20 6 1.2 
3 16 9 5.0 
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Table 2  
Solution procedures for numerical example 1 

β m L C(L) Q k 𝑃𝑃𝑇𝑇𝐶𝐶𝑠𝑠𝑠𝑠(𝑄𝑄,𝑘𝑘, 𝐷𝐷,𝑚𝑚) 
0 1 4 22.4 94.9107 2.158 96609 

2 4 22.4 97.8484 2.147 69097 
3 4 22.4 99.1193 2.143 63815 
4 4 22.4 99.9737 2.137 64051 

0.25 1 4 22.4 94.9112 2.075 96350 
2 4 22.4 97.8489 2.062 68856 
3 4 22.4 99.1199 2.056 63627 
4 4 22.4 99.9742 2.054 63754 

0.50 1 4 22.4 94.9117 1.963 96100 
2 4 22.4 97.8494 1.950 68592 
3 4 22.4 99.1204 1.945 63347 
4 4 22.4 99.9747 1.942 63492 

0.75 1 4 22.4 94.9123 1.804 95714 
2 4 22.4 97.8499 1.791 68191 
3 4 22.4 99.1209 1.785 62953 
4 4 22.4 99.9752 1.782 63088 

1 1 4 22.4 94.9128 1.532 95044 
2 4 22.4 97.8505 1.517 67522 
3 4 22.4 99.1214 1.510 62284 
4 4 22.4 99.9758 1.506 62424 

 
Table 3  
Summary of the optimal solution for numerical example 1 

β L C(L) m Q k 𝑃𝑃𝑇𝑇𝐶𝐶𝑠𝑠𝑠𝑠(𝑄𝑄,𝑘𝑘, 𝐷𝐷,𝑚𝑚) 
0 4 22.4 3 99.1193 2.143 63815 
0.25 4 22.4 3 99.1199 2.056 63627 
0.50 4 22.4 3 99.1204 1.945 63347 
0.75 4 22.4 3 99.1209 1.785 62953 
1 4 22.4 3 99.1214 1.510 62284 

 
Table 4  
Solution procedures for numerical example 2 

β m L C(L) Q k PTCscM(Q, k, L, m) 
0 1 3 57.4 93.7547 3.9533 112080 

2 3 57.4 96.6924 3.8913 83756 
3 3 57.4 97.9634 3.8654 78182 
4 3 57.4 98.8177 3.8482 78112 
5 3 57.4 99.5053 3.8346 80237 

0.25 1 3 57.4 93.9392 3.5381 109970 
2 3 57.4 96.8769 3.4821 81749 
3 3 57.4 98.1478 3.4586 76218 
4 3 57.4 99.0021 3.4431 76176 
5 3 57.4 99.6898 3.4307 78324 

0.50 1 3 57.4 94.1236 3.0692 107610 
2 3 57.4 97.0613 3.0197 79499 
3 3 57.4 98.3323 2.9990 74014 
4 3 57.4 99.1866 2.9853 74001 
5 3 57.4 99.8742 2.9744 76172 

0.75 1 4 22.4 94.4165 2.5154 104510 
2 4 22.4 97.3542 2.4734 76595 
3 4 22.4 98.6252 2.4558 71189 
4 4 22.4 99.4795 2.4441 71229 

1 1 4 22.4 94.6295 1.8058 100570 
2 4 22.4 97.5672 1.7726 72802 
3 4 22.4 98.8382 1.7587 67453 
4 4 22.4 99.6925 1.7494 67531 

 
Table 5  
Summary of the optimal solution for numerical example 2 

β L C(L) m Q k PTCscM(Q, k, L, m) 
0 3 57.4 4 98.8177 3.8482 78112 
0.25 3 57.4 4 99.0021 3.4431 76176 
0.50 3 57.4 4 99.1866 2.9853 74001 
0.75 4 22.4 3 98.6252 2.4558 71189 
1 4 22.4 3 98.8382 1.7587 67453 
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From the Tables 3 and Table 5, it is seen that as the value of the backorder ratio β increases, integrated 
total cost and safety factor decrease simultaneously, while order quantity increases slightly. On 
comparing Table 3 and Table 5, and from Fig. 1 we can easily seen that integrated supply chain cost in 
normal distribution case is lesser than that of minimax distribution case corresponding to particular 
value of backorder ratio β. It also observe that integrated supply chain costhas minimum value when β 
= 1 (complete backorder case) and maximum value when β = 0 (complete lost sales case) in both the 
cases. 
 

 

Fig. 1. Integrated cost under normal distribution case and minimax distribution free case with different β 

6. Sensitivity Analysis 
 
We now study the effects of changes in the model parameters A, D, σ, and θon the optimal order 
quantity, safety factor and optimal integrated total cost in the above examples for β = 0.75. The 
sensitivity analysis is performed by changing values of parameter A and D by −50%, −25%, +25% 
and +50% and suitable values of σ and θ by taking one parameter at a time while keeping remaining 
unchanged. The results are presented in Table 6 (also see Fig. 2) and 7 (also see Fig. 3) for numerical 
examples 1 and 2 respectively. We get following observations: 
 

1. Table 6 and Fig 2 illustrate following results: 
I. As ordering cost A decreases, order quantity Q increases while safety factor k and 

integrated cost decrease simultaneously. 
II. As demand rate D decreases, order quantity Q increases while safety factor k and 

integrated cost decrease simultaneously. 
III. As σ increases, order quantity Q decreases and integrated cost increase simultaneously 

while safety factor k remains unchanged. 
IV. As interest rate θ increases, safety factor k increases while order quantity Q and 

integrated cost decrease simultaneously. 
2. Table 7 and Fig 3 illustrate following results: 

I. As ordering cost A decreases, order quantity Q increases while safety factor k and 
integrated cost decrease simultaneously. 

II. As demand rate D decreases, order quantity Q increases while safety factor k and 
integrated cost decrease simultaneously. 

III. As σ increases, order quantity Q decreases while safety factor k and integrated cost 
increase simultaneously. 

IV. As interest rate θ increases, safety factor k increases while order quantity Q and 
integrated cost decrease simultaneously. 
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Table 6  
Sensitivity analysis for numerical example 1 

Parameters Change in value of 
parameter 

Change in value 
Q k PTCsc(Q, k, L, m) 

𝐴𝐴 = 
 

300 98.6209 1.788 69098 
250 98.8709 1.786 66048 
150 99.3709 1.783 59889 
100 99.6209 1.782 56825 

𝐷𝐷 = 

900 98.4237 1.965 79295 
750 98.7025 1.886 71126 
450 99.8193 1.650 54762 
300 101.2194 1.443 46616 

𝑘𝑘 = 

14 99.1197 1.785 69074 
21 99.1185 1.785 75194 
28 99.1172 1.785 81315 
35 99.1160 1.785 87436 

𝜃𝜃 = 

0.3 97.3990 1.800 21503 
0.5 95.7394 1.815 13217 
0.7 94.1589 1.829 9675 
0.9 92.6738 1.842 7708 

 
Table 7  
Sensitivity analysis for numerical example 2 

Parameters Change in value of 
parameter 

Change in value 
Q k PTCscM(Q, k, L, m) 

𝐴𝐴 = 
 

300 98.0168 2.4642 77715 
250 98.2668 2.4607 74571 
150 98.7668 2.4538 68329 
100 99.0168 2.4504 65233 

𝐷𝐷 = 

900 97.8195 3.0719 91437 
750 98.0983 2.7816 81496 
450 99.2151 2.0835 61250 
300 100.6152 1.6275 50908 

𝑘𝑘 = 

14 98.0864 2.4632 83949 
21 97.6560 2.4692 96513 
28 97.2256 2.4752 109130 
35 96.7952 2.4812 121820 

𝜃𝜃 = 

0.3 95.5865 2.5204 24505 
0.5 92.7186 2.5838 15134 
0.7 89.9297 2.6472 11130 
0.9 87.2363 2.7104 8914 

 

 

  
Fig. 2. Graphical representation of sensitivity 
analysis for numerical example 1 

Fig. 3. Graphical representation of sensitivity 
analysis for numerical example 2 
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7. Conclusions 
 
In this study, we consider two single-vendor single-buyer integrated supply chain inventory models. 
Previous works on this problem mostly ignored inflation and time value of money. However, in the 
present day global scenario due to fluctuating inflation rates, financial situations of many developing 
countries have been changed very frequently. The effect of time value of money is not considered 
explicitly in analyzing inventory modeling, although time value of money would influence the cost and 
price components to a significant degree. Therefore, ignoring the effects of time value of money and 
inflation might yield misleading results. Here, we assume that demand is stochastic and the lead time 
is controllable. This article considers the inflation and time value of money of a continuous review 
inventory model with a mixture of backorders and lost sales, where lead time demand has a normal 
distribution. Then, we relax the assumption about the form of the distribution function of lead time 
demand by applying the minimax distribution free procedure to solve the problem. We seek to minimize 
the joint total expected cost by simultaneously optimizing ordering quantity, safety factor, lead time 
and the number of lots delivered from vendor to buyer. The results of the numerical examples validate 
significance of our models. In future research on this problem, it would be interesting to deal with a 
mixed inventory model with a service level constraint model. Another possible extension of this work 
may be conducted by considering the ordering cost reduction. The problem under consideration may 
also be studied to consider a three level supply chain along with coordination mechanisms that 
effectively enhance supply chain performance. 
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Appendix A   

Proof of convexity of 𝐏𝐏𝐏𝐏𝐏𝐏𝐬𝐬𝐬𝐬(𝐐𝐐,𝐤𝐤,𝐋𝐋,𝐦𝐦) for normal distribution case 

To prove the convexity of PTCsc(Q, k, L, m) for fixed m and 𝐷𝐷 ∈ [𝐷𝐷𝑖𝑖 , 𝐷𝐷𝑖𝑖−1], taking the Hessian matrix 
H as follows 

�
𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑄𝑄2
𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑄𝑄𝜕𝜕𝑘𝑘
𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑘𝑘𝜕𝜕𝑄𝑄
𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑘𝑘2

�  

Where 

𝜕𝜕2PTCsc(Q,k,L,m)
𝜕𝜕𝑄𝑄2

= �𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�𝑘𝑘√𝐷𝐷𝜓𝜓(𝑘𝑘)�
𝜃𝜃2�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 +

𝑆𝑆𝑚𝑚2𝜃𝜃2�1+𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄

𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

3 +

ℎ𝑏𝑏𝑒𝑒
− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 ��2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 − 2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
�  

𝜕𝜕2PTCsc(Q,k,L,m)
𝜕𝜕𝑘𝑘2

= � 𝜋𝜋�𝜎𝜎√𝐿𝐿

�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
+ (1 − 𝛽𝛽) 𝜎𝜎√𝐿𝐿ℎ𝑏𝑏

𝜃𝜃
�𝜙𝜙(𝑘𝑘)  

𝜕𝜕2PTCsc(Q,k,L,m)
𝜕𝜕𝑄𝑄𝜕𝜕𝑘𝑘

= 𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 [1 −Φ(𝑘𝑘)]  

Then the first principal minor of H is  



P. Jindal and A. Solanki/ Decision Science Letters 5 (2016) 
 

93 

|𝐻𝐻11| = 𝜕𝜕2PTCsc(Q,k,L,m)
𝜕𝜕𝑄𝑄2

= �𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�𝑘𝑘√𝐷𝐷𝜓𝜓(𝑘𝑘)�
𝜃𝜃2�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 +

𝑆𝑆𝑚𝑚2𝜃𝜃2�1+𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄

𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

3 +

ℎ𝑏𝑏𝑒𝑒
− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 ��2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 − 2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� > 0.  

Second principal minor of H is 
|𝐻𝐻22| = 𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑄𝑄2
𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑘𝑘2
− 𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑄𝑄𝜕𝜕𝑘𝑘
𝜕𝜕2PTCsc(Q,k,L,m)

𝜕𝜕𝑘𝑘𝜕𝜕𝑄𝑄
  

= ��𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�𝑘𝑘√𝐷𝐷𝜓𝜓(𝑘𝑘)�
𝜃𝜃2�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 +

𝑆𝑆𝑚𝑚2𝜃𝜃2�1+𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄

𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

3 + ℎ𝑏𝑏𝑒𝑒
− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 ��2 +

𝜃𝜃𝑄𝑄
𝐷𝐷
� 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 − 2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
�� � 𝜋𝜋�𝜎𝜎√𝐿𝐿

�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
+ (1 − 𝛽𝛽) 𝜎𝜎√𝐿𝐿ℎ𝑏𝑏

𝜃𝜃
�𝜙𝜙(𝑘𝑘) −

⎣
⎢
⎢
⎢
⎡
𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 [1 −Φ(𝑘𝑘)]

⎦
⎥
⎥
⎥
⎤
2

  

> � 𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2�

2

�1 + 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 � 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷  𝜙𝜙(𝑘𝑘)𝜓𝜓(𝑘𝑘) −

⎣
⎢
⎢
⎢
⎡
𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 [1 −Φ(𝑘𝑘)]

⎦
⎥
⎥
⎥
⎤
2

  

> � 𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2�

2

�1 + 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 � 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 1
2

[1 −Φ(𝑘𝑘)]2 −

⎣
⎢
⎢
⎢
⎡
𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 [1 −Φ(𝑘𝑘)]

⎦
⎥
⎥
⎥
⎤
2

  

= �𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿[1−Φ(𝑘𝑘)]

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 �

2

𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

2
�1 − 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 � > 0    ∵ 2𝜙𝜙(𝑘𝑘)𝜓𝜓(𝑘𝑘) > [1 −Φ(𝑘𝑘)]2 

Since, both principal minors are positive, therefore hessian matrix H is positive definite. 
 
Appendix B   
 
Proof of convexity of 𝐏𝐏𝐏𝐏𝐏𝐏𝐬𝐬𝐬𝐬𝐌𝐌(𝐐𝐐,𝐤𝐤,𝐋𝐋,𝐦𝐦) for minimax distribution free case 
 
To prove the convexity of PTCscM(Q, k, L, m) for fixed m and 𝐷𝐷 ∈ [𝐷𝐷𝑖𝑖 , 𝐷𝐷𝑖𝑖−1], taking the Hessian matrix 
𝐻𝐻𝑀𝑀as follows 

�
𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑄𝑄2
𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑄𝑄𝜕𝜕𝑘𝑘
𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑘𝑘𝜕𝜕𝑄𝑄
𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑘𝑘2

�  

Where 

𝜕𝜕2PTCscM (Q,k,L,m)
𝜕𝜕𝑄𝑄2

= �𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�
2
𝑘𝑘√𝐷𝐷�√1 + 𝑘𝑘2 − 𝑘𝑘��

𝜃𝜃2�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 +

𝑆𝑆𝑚𝑚2𝜃𝜃2�1+𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄

𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

3 +

ℎ𝑏𝑏𝑒𝑒
− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 ��2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 − 2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
�  
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𝜕𝜕2PTCscM (Q,k,L,m)
𝜕𝜕𝑘𝑘2

= � 𝜋𝜋�𝜃𝜃

�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
+ (1 − 𝛽𝛽)ℎ𝑏𝑏�

𝜎𝜎√𝐿𝐿
2𝜃𝜃(1+𝑘𝑘2)3/2  

𝜕𝜕2PTCscM (Q,k,L,m)
𝜕𝜕𝑄𝑄𝜕𝜕𝑘𝑘

= 𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

2𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 �1 −

𝑘𝑘
√1+𝑘𝑘2

�  

Then the first principal minor of 𝐻𝐻𝑀𝑀is  

|𝐻𝐻11𝑀𝑀 | = 𝜕𝜕2PTCscM (Q,k,L,m)
𝜕𝜕𝑄𝑄2

= �𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�
2
𝑘𝑘√𝐷𝐷�√1 + 𝑘𝑘2 − 𝑘𝑘��

𝜃𝜃2�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3   

+
𝑆𝑆𝑚𝑚2𝜃𝜃2�1+𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄

𝐷𝐷 �𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

3 + ℎ𝑏𝑏𝑒𝑒
− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 ��2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 − 2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� > 0.  

Second principal minor of 𝐻𝐻𝑀𝑀is 
|𝐻𝐻22𝑀𝑀 | = 𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑄𝑄2
𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑘𝑘2
− 𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑄𝑄𝜕𝜕𝑘𝑘
𝜕𝜕2PTCscM (Q,k,L,m)

𝜕𝜕𝑘𝑘𝜕𝜕𝑄𝑄
  

= ��𝐴𝐴 + 𝐶𝐶(𝐷𝐷) + 𝜋𝜋�
2
𝑘𝑘√𝐷𝐷�√1 + 𝑘𝑘2 − 𝑘𝑘��

𝜃𝜃2�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 +

𝑆𝑆𝑚𝑚2𝜃𝜃2�1+𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄

𝐷𝐷

𝐷𝐷2�1−𝑒𝑒− 𝑚𝑚𝜃𝜃𝑄𝑄
𝐷𝐷 �

3   

+ ℎ𝑏𝑏𝑒𝑒
− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
3 ��2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
� 𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 − 2 + 𝜃𝜃𝑄𝑄

𝐷𝐷
�� � 𝜋𝜋�𝜃𝜃

�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
+ (1 − 𝛽𝛽)ℎ𝑏𝑏�

𝜎𝜎√𝐿𝐿
2𝜃𝜃(1+𝑘𝑘2)3/2  

−

⎣
⎢
⎢
⎢
⎡
𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

2𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 �1 −

𝑘𝑘
√1+𝑘𝑘2

�

⎦
⎥
⎥
⎥
⎤
2

  

> � 𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿

2𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2�

2
�1+𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �

(1+𝑘𝑘2)
𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �1 − 𝑘𝑘

√1+𝑘𝑘2
� −

⎣
⎢
⎢
⎢
⎡
𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2 �1 −

𝑘𝑘
√1+𝑘𝑘2

�

⎦
⎥
⎥
⎥
⎤
2

  

= � π�θσ√L

2D�1−e− θQD �
2�

2

e− θQD

(1+k2)
�1 − k

√1+k2
� ��1 + e− θQD � − e− θQD �(1 + k2) − k√1 + k2��  

= � 𝜋𝜋�𝜃𝜃𝜎𝜎√𝐿𝐿

2𝐷𝐷�1−𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �
2�

2

𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷

(1+𝑘𝑘2)
�1 − 𝑘𝑘

√1+𝑘𝑘2
� �1 + 𝑘𝑘𝑒𝑒− 𝜃𝜃𝑄𝑄𝐷𝐷 �√1 + 𝑘𝑘2 − 𝑘𝑘�� > 0

  
Since, both principal minors are positive, therefore hessian matrix 𝐻𝐻𝑀𝑀is positive definite. 


