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 In this paper, group scheduling problem in no-wait flexible flowshop is considered by 
considering two stages with group sequence-dependent setup times and random breakdown of 
the machines. Genetic algorithm and simulated annealing based heuristics have been proposed 
to solve the problem. The primary objective of scheduling is to minimize the maximum 
completion time of the jobs for two classes of small and large scale problems. Computational 
results show that both GA and SA algorithms perform properly, but SA appeared to provide 
better results for both small and large scale problems.  
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1. Introduction 
 

Common manufacturing approaches are being replaced incessantly by new methods in order to improve 
the effectiveness and proficiency of the whole manufacturing system.  Various manufacturing 
corporations take advantage of scheduling algorithms to deal with customer's demands and to reduce 
their own operational costs. In group scheduling problems, all jobs in the same group require identical 
setup times on the machines. Therefore, by grouping jobs into some groups, we can avoid many wasting 
times in the schedule. In a no-wait flowshop scheduling problem, it is assumed that n jobs are processed 
through m machines in a flowshop environment. When the process of a specific job begins on the first 
machine, it should constantly be processed without waiting in the line of any machine until its 
processing is completed on the last machine. Scheduling problems such as separable setup times are 
categorized into sequence-independent and sequence-dependent scheduling problems. We consider a 
problem as “group scheduling with sequence-dependent setup times” provided that setup time of a 
group on a machine relies on the preceding one on that machine, otherwise, we will consider it as 
“group scheduling with sequence-independent setup times”. In this research, group scheduling problem 
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in no-wait flexible flowshop considering two stages with group sequence-dependent setup times and 
also random breakdown of the machines is investigated. Some effective metaheuristics methods have 
been developed to solve the problem due to objective function of minimizing the makespan of the jobs. 

2. Literature Review 

In recent years, considerable amount of studies have been devoted on no-wait flowshop scheduling 
problem. This kind of manufacturing approach can be used in many manufacturing systems and firms 
such as steel industries where steel should be processed among the machines continuously without 
losing its temperature, food industries where the food must be packed as conserves immediately after 
being prepared, plastic modeling where the plastic must be shaped to the desired form before it losses 
temperature, etc. Initial researches about no-wait flowshop was presented by Artanary (1971, 1974). 
Rajendran (1994) presented a heuristic method for a no-wait flowshop scheduling problem in order to 
minimize the maximum completion time of the jobs. Hall and Sriskandarajah (1996) surveyed machine 
scheduling problems with blocking and no-wait in process, extensively. Aldowaisan and Allahverdi 
(2003) developed genetic and simulated annealing algorithms based heuristics by considering 
makespan of jobs as the objective function for no-wait flowshop problems. Comprehensive survey on 
different studies was performed during the past 50 years about this category of machine scheduling 
problem was presented by Gupta and Stafford (2006). Gupta et al. (1997) studied two models of no-
wait two-stage processing where the first model was about flowshop environment with two machines, 
the second one was about assembly line and the objective function for both problems was minimization 
of the maximum completion time of the jobs. They assumed that setup times and transportation times 
are separated from processing times. They showed that two-stage flowshop problem can be converted 
into travelling salesman problem and it can be solved in polynomial time. Junlin et al. (2004) 
investigated two-stage flowshop problem by assuming that, at least, one of the stages includes some 
identical parallel machines and setup and transportation times are separated from processing times of 
the jobs on machines. Attar et al. (2011) surveyed flexible flowshop scheduling problem under the 
assumptions such as sequence-dependent setup times, waiting times and ready times for jobs. In flexible 
flowshop, at least, one stage includes some identical machines and a particular job can be assigned to 
one of them. They developed a new Imperialist Competitive Algorithm (ICA) to solve the problem and 
to validate their algorithm and they compared it to a simulated annealing algorithm. Results showed 
that ICA performed better than simulated annealing. Shafaei et al. (2011) studied no-wait two-stage 
flexible flowshop problem with the objective of minimizing the maximum completion time of the jobs. 
They developed a method named Adaptive Neuro Fuzzy Inference System (ANFIS) to predict the 
solution time of this category of problems and compared it with 6 heuristic methods in order to evaluate 
the effectiveness of the method. Liu et al. (2003) proposed a heuristic algorithm for solving two- stage 
no-wait hybrid flow shop scheduling by considering single machine in either stage. Wang et al. (2005) 
solved no-wait flexible flow shop scheduling with no-idle machines. Schaller (2001) proposed a new 
lower bound for the flow shop group scheduling problem. Samarghandi and Elmekkawy (2012)  
proposed two metaheuristic algorithms based on genetic and particle swarm optimization algorithms 
for solving no-wait flow shop problem with separable setup times and makespan criterion.  

In addition to extensive research studies on the no-wait flowshop scheduling problem, setup times on 
the machines have attracted many researches to focus on this issue. Mostly, the setup time is presumed 
to be sequence-dependent. This concept aligns with the family grouping situation where similar 
products with similar setup times on machines are grouped together in order to reduce the setup times 
required for the whole system. A review on scheduling problems due to setup times can be found in the 
research presented by Aalhverdi et al. (1991). Lin and Liao (2003) developed a recursive based heuristic 
to solve the two-stage hybrid flowshop problem considering sequence-dependent setup times and due 
dates with the objective function of minimizing weighted maximal tardiness. Moradinasab et al. (2012)  
presented their research about no-wait two-stage flexible flowshop problem by assuming sequence-
dependent setup times with the objective function of minimizing completion time of the jobs and 
developed a genetic algorithm and Imperialist Competitive algorithms to solve the problem. Ashhari 



A. Adressi et al.  / Decision Science Letters 5 (2016) 
 

159 

(2012) studied no-wait flexible flowshop group scheduling problem with sequence-dependent setup 
times for the first time. Salmasi et al. (2011) studied total flow time minimization in a flow shop group 
scheduling problem by considering sequence dependent setup times. Ruiz et al. (2005) used 
metaheuristic algorithms for solving the flow shop scheduling problem with sequence setup times. 
Mirabi et al. (2013) considered a two stage hybrid flow shop scheduling problem by considering 
machine breakdown condition. Logendran et al. (2006) studied two machine group scheduling 
problems in discrete parts manufacturing with sequence dependent setup times. Jolai et al. (2012) 
presented a novel metaheuristic algorithm for solving no-wait flexible flow shop with sequence 
dependent setup times. Gholami et al. (2009) solved hybrid flow shop with sequence dependent setup 
times with condition of random machine breakdown. Ahmadizar et al.  (2009) studied application of 
chance-constrained programming for stochastic group shop scheduling problems. There has been no 
research accomplished about no-wait flexible flowshop group scheduling problems with sequence-
dependent setup times considering random machine breakdowns. The remaining sections of this paper 
are organized as follows: 

The problem description and assumption is presented in section 3. In sections 4 and 5, we introduce the 
genetic algorithm and simulated annealing based heuristic respectively. Computational results are 
presented in section 6 and finally we draw some concluding remarks and possible future directions in 
section 7.  

3. Problem description and assumptions 

In this section, assumptions of the proposed problem are described in order to explain the structure of 
the proposed problem. 
Set { }NgggG ,...,, 21= includes N groups where each group, gi, consists of ni jobs in the form
{ }

iinii jjj ,....,, 21 .  Each job in each group is processed respectively in station C1 and C2. All jobs and 
groups are processed in the same sequence on the machines between C1 and C2. Each stage is able to 
perform a special operation and consists of several identical machines that located in the related station. 
All machines of a stage have the same speed and characteristics. m1 and m2 respectively represent the 
number of machines in stage 1 and 2, respectively. p1j and p2j demonstrates processing times of stage 1 
and 2, respectively. Setup time for a specific group depends on the group which exactly precedes it on 
that machine. Every operation is processed only on one of the machines in the station. Each machine 
can handle one operation at any time. In order to establish no-wait condition, completion time of jobs 
in stage 1 should be equal to starting time of them in stage 2. Each machine can involve random 
breakdown which depends on the machines life. All machines cannot involve breakdown 
simultaneously at any time and at least one machine is available in both stages at any time for processing 
the jobs.  The problem deals with two issues: machine assignment and scheduling of jobs. Interruption 
during the processing is not allowed. No preemption is allowed in the problem, meaning once a job 
starts to be processed on a machine, it cannot be interrupted before completion. All jobs are available 
at time zero. All jobs have equal importance or equal weights and finally no cancellation is permitted. 
 
In this paper, bathtub curve as the machine's life curve has been utilized in order to consider the 
probability of machine breakdowns. This curve includes three different time periods: The first period 
has a decreasing failure rate, known as early failures. Generally, initial failures and breakdowns in the 
machines takes place in the first period. Regarding the type of the machines being used, different 
probability functions can be employed. In this paper, we have not considered this part because in reality 
breakdowns in this period are not common and occur seldom in this time period, so the failure 
probability is equal to zero for the first period. The second period consists of a constant failure rate, 
known as random failures. Useful life period is the other name mentioned for this time period. Various 
probability function can be employed in this time zone. In this article we have used the negative 
exponential probability distribution as follows: 
 

http://en.wikipedia.org/wiki/Failure_rate
http://en.wikipedia.org/wiki/Failure
http://en.wikipedia.org/wiki/Random
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( ) tf t e λλ −= , (1) 
 
where λ is the failure ratio for machines and t is machine's life according to year. The third period 
includes an increasing failure rate, known as wear-out failures. This period usually happens after the 
useful time period of the machine and it is called exhaustion or oldness period. The Weibull probability 
distribution is employed for the mentioned part as follows: 
 

( 1) ( *( ))( ) tf t t e
ββ ααβ − −= , 

(2) 
 
where α is the shape parameter and β is the scale parameter of the distribution. 
 dk is the repairing time that required for a machine if a breakdown happens. In coding procedure we 
have considered dk =16 minutes as the repairing time.  
 
4. Proposed GA approach to Solving Proposed Problem 
 

Genetic algorithms (GA) were first used by Holland (1975) and generate solutions to optimization 
problems using techniques inspired by natural evolution, such as inheritance, mutation, selection and 
crossover. Genetic algorithm is selected in this article due to its simple data structure and easy 
implementation for flowshop scheduling problems. 

4.1 Chromosome representation  

In genetic algorithm, each chromosome represents a point in the search space and also a possible 
solution for the problem. The representation used in this article follows the procedure proposed by 
Salmasi et al. (2010). It consists of two parts. The first part in the left side of the chromosome 
determines sequence of the groups and the one in the right side exhibits the job sequence.   

2 1 3 11 8 6 10 9 4 5 7 
Fig. 1. Representation of chromosome 

 
The chromosome in Fig. 1 includes 3 groups indicated by 1, 2 and 3 where group 1 consists of jobs 4,5 
and 6, group 2 consists of jobs 7,8 and 9 and finally group 3 is composed of jobs 10 and 11. Group 2 is 
the first group in the group sequence followed by groups 1 and 3. 

4.2 Fitness function 

The objective function value of all chromosomes are calculated and ordered in descending way. Fitness 
function chromosome i is calculated by Eq. (3) where iFF , wOF and iOF  represents fitness function 
for ith chromosome, the worst objective function available and objective function of current 
chromosome respectively. The equation is added by 1 in order to make it possible for the worst 
chromosome to be selected for the next population. 

1i w iFF OF OF= − + . (3) 
 

4.3 Population 

The evolution process of GA usually starts from a randomly generated population. In each generation, 
the fitness of every individual chromosome in the population is assessed, the more fitness function of 
an individual is, the more chance of being selected will be. New generation is stochastically selected 
from the current population, and each individual's genome is modified by means of mutation and 
crossover operator to form a new population. The new population is then used in the next iteration of 
the algorithm. The initial population for the proposed GA algorithm is generated randomly. 

http://en.wikipedia.org/wiki/Shape_parameter
http://en.wikipedia.org/wiki/Scale_parameter
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm
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4.4 Mutation 

In this paper, in order to perform a mutation operator, two genes are selected randomly and then their 
positions are replaced by each other. The mutation operator is performed on both parts of the 
chromosome. 

3 1 2 4 6 11 7 14 8 5 13 9 10 12 
 

3 4 2 1 6 11 7 14 8 5 13 9 10 12 
Fig. 2. Mutation operator performed on first part of the chromosome 

 

3 1 2 4 6 11 7 14 8 5 13 9 10 12 
 

3 1 2 4 6 11 7 9 8 5 13 14 10 12 
Fig. 3. Mutation operator performed on second part of the chromosome 

 
4.5 Crossover operator 

There are different types of crossover operators used in GA such as one-point, two-point, uniform and 
arithmetic ones. In this paper one-point crossover has been utilized. 

4.6 Termination conditions 

Different terminations conditions can be applied to a GA algorithm. For the proposed GA algorithm, 
generating a specified number of generations causes the algorithm to reach to its end. 

5. Proposed SA approach to Solving Proposed Problem 

SA as a generic probabilistic metaheuristic is revealed from the work of Kirkpatrick and Vecchi (1983). 
It is inspired from process of melting and refreezing materials. It does not always present an optimum 
solution, but it searches for a fair solution which can sometimes be optimum too. The search in SA is 
started with a randomized state. In a polling loop, the moves that decrease the energy will always be 
accepted, while bad moves will only accepted according to a probability distribution with probability 

of k

df
KTe

−

 that dependent on the temperature of the system. In this probability distribution, kT , K and df 
represent temperature degree, Boltzmann constant and the amount of degradation (the difference in the 
objective value between the current solution and the generated neighboring solution) respectively. If 
this probability is more than a uniform random number between 0 and 1 then the bad solution will be 
accepted. 

5.1 Representation and neighborhood 

Representation of solutions is the same as the one used in the GA algorithm. To create a new 
neighborhood, two genes are selected and exchanged with each other. 

5.2 Movement generator 

This generator's duty is creating next moves. It determines the situation of the next move by calculating 
the cost of current point and the next point.  

5.3 Cooling schedule 

Cooling schedule has a great impact on the success of the SA optimization algorithm. The parameters, 
which exist in a cooling schedule are the initial temperature, the equilibrium state, a cooling function, 
and the final temperature. Determination of the initial temperature is very important in accepting or 
rejecting the solutions. The higher the temperature, the more significant the probability of accepting a 

http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Metaheuristic
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worst move. On the other hand, low degrees of temperature reduces the acceptance chance of a bad 
solution and increases the chance of remaining in a local optima. In this article, we define the initial 
temperature as the worst objective function value in the initial population. There are different methods 
to decrease the temperature degree such as arithmetical, linear, geometric, logarithmic, very slow 
decrease and non-monotonic. In this paper we will use geometric method as follows: 

 

Experience shows that the value of α should be more than 0.9 in order to reach to the best solution in a 
proper time.   
 

5.4 Equilibrium state  

To reach an equilibrium state at each temperature, a number of sufficient moves must be applied. This 
algorithm requires to be speculated in a specified temperature degree after some iterations to make a 
decision of continuing the annealing process in that degree or terminating the process and stepping to 
the other degree. In most SA methods a number of specified replacements are taken place in a 
temperature degree named epoch or period for assessing the equilibrium conditions. Number of these 
replacement is shown by N. We have employed following constraint to speculate equilibrium condition: 
 

' '/ ,e e ef f f ε− ≤                    (5) 

where ef
−

, '
ef
−

 and 𝜀𝜀 stand for objective function average in last epoch for all of the accepted 

replacements, average of all amounts of ef
−

 and error respectively. 
 

5.5 Termination condition  

We have considered two termination conditions. First one is to reach to final temperature degree. The 
second is achieving to all of the generated neighborhoods or all of the accepted replacements during 
algorithm running time.  

 6. Computational Results 

After denoting the sample problems, we ran the metaheuristic algorithms 10 times for each of the 
problems regarding their category and related optimum parameters. The results for computational exist 
in the tables. The Proposed GA and SA algorithms are coded in MATLAB 2013a on a computer with 
4GB RAM, Intel Core2 Duo P7550 CPU, 2.4 GHz processor. In this paper, the statistical analysis 
performed by Minitab 16 software. Table 1 and Table 2 present the parameter values for small scale 
problems and large scale problems in genetic algorithm, respectively.  
 
Table 3 and Table 4 exhibit the parameter values for small scale and large scale problems in simulated 
annealing. Table 5 show the generated problems for this proposed problem which are divided into two 
categories, problems with less than 10 jobs are in the small scale branch which are listed from problem 
number 1 to 24, and problems with more than 10 jobs are assigned to large scale branch which are 
listed from problem number 25 to 33 in the table.  Table 6 shows the results including objective function 
average value in each iteration of the software and average computational time for the generated 
problems. 
 
Table 1  
Parameter values for small scale genetic algorithm 

Maximum Iteration Mutation Probability Crossover Probability Initial Population 
150 0.15 0.8 50 

 

 

1i it tα −=  (4) 
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Table 2 
Parameter values for large scale genetic algorithm 

Maximum Iteration Mutation Probability Crossover Probability Initial Population 
250 0.1 0.8 70 

Table 3  
Parameter values for small scale simulated annealing 

Maximum Iteration Decreasing Rate Neighborhood Size  Initial Population 
100 0.99 30 40 

 

Table 4  
Parameter values for large scale simulated annealing 

Maximum Iteration Decreasing Rate Neighborhood Size Initial Population 
100 0.9999 30 50 

 

Table 5  
Generated problems 

 Number of groupsJobs in 
each group 

[Machine's life in the first stage] 
[Machine's life in the second stage] 

Number of machines 
in each stage 

1 43 [2,4][3,5,7] M1=2, M2=3 
2 43 [2,4,6][3,5,7] M1=3, M2=3 
3 43 [2,4,6,8][3,5,7] M1=4, M2=3 
4 44 [2,4][3,5,7] M1=2, M2=3 
5 44 [2,4,6][3,5,7] M1=3, M2=3 
6 44 [2,4,6,8][3,5,7] M1=4, M2=3 
7 53 [2,4][3,5,7] M1=2, M2=3 
8 53 [2,4,6][3,5,7] M1=3, M2=3 
9 53 [2,4,6,8][3,5,7] M1=4, M2=3 

10 54 [2,4][3,5,7] M1=2, M2=3 
11 54 [2,4,6][3,5,7] M1=3, M2=3 
12 54 [2,4,6,8][3,5,7] M1=4, M2=3 
13 76 [2,4,6,8,10][3,5,7,9,11,3] M1=5, M2=6 
14 76 [2,4,6,8,10,12][3,5,7,9,11,3] M1=6, M2=6 
15 76 [2,4,6,8,10,12,2][3,5,7,9,11,3] M1=7, M2=6 
16 77 [2,4,6,8,10][3,5,7,9,11,3] M1=5, M2=6 
17 77 [2,4,6,8,10,12][3,5,7,9,11,3] M1=6, M2=6 
18 77 [2,4,6,8,10,12,2][3,5,7,9,11,3] M1=7, M2=6 
19 86 [2,4,6,8,10][3,5,7,9,11,3] M1=5, M2=6 
20 86 [2,4,6,8,10,12][3,5,7,9,11,3] M1=6, M2=6 
21 86 [2,4,6,8,10,12,2][3,5,7,9,11,3] M1=7, M2=6 
22 87 [2,4,6,8,10][3,5,7,9,11,3] M1=5, M2=6 
23 87 [2,4,6,8,10,12][3,5,7,9,11,3] M1=6, M2=6 
24 87 [2,4,6,8,10,12,2][3,5,7,9,11,3] M1=7, M2=6 
25 115 [2,4,6,8,10,12,2,4][3,5,7,9,11,3,5,7,9,11] M1=8, M2=10 
26 115 [2,4,6,8,10,12,2,4,6,8][3,5,7,9,11,3,5,7,9,11] M1=10, M2=10 
27 115 [2,4,6,8,10,12,2,4,6,8,10,12][3,5,7,9,11,3,5,7,9,11] M1=12, M2=10 
28 1110 [2,4,6,8,10,12,2,4][3,5,7,9,11,3,5,7,9,11] M1=8, M2=10 
29 1110 [2,4,6,8,10,12,2,4,6,8][3,5,7,9,11,3,5,7,9,11] M1=10, M2=10 
30 1110 [2,4,6,8,10,12,2,4,6,8,10,12][3,5,7,9,11,3,5,7,9,11] M1=12, M2=10 
31 1210 [2,4,6,8,10,12,2,4][3,5,7,9,11,3,5,7,9,11] M1=8, M2=10 
32 1210 [2,4,6,8,10,12,2,4,6,8][3,5,7,9,11,3,5,7,9,11] M1=10, M2=10 
33 1210 [2,4,6,8,10,12,2,4,6,8,10,12][3,5,7,9,11,3,5,7,9,11] M1=12, M2=10 

 
In order to evaluate the effectiveness of the proposed algorithms, we take advantage of Relative 
Percentage Deviation from the best solution (RPD). RPD is calculated by the following 
formula: 

| | 100sol sol

sol

Method BestRPD
Best

−
= ×  

 
(6) 
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where Methodsol and Bestsol equal to the solution for the given problem and the best solution obtained, 
respectively. Table. 7 shows the RPD values for the investigated problems. In this paper, to determine 
significant differences existed between proposed genetic and simulated annealing algorithms, non-
parametric tests was used (because P-Value < 0.005 according to Fig. 4) and the results of the non-
parametric tests can be seen in Fig. 5.  

Table 6  
Computational Results 

SA Answers GA Answers  
Ave. Time maxCAve.  Ave. Time maxCAve.  

316.25 76.9 20.074 80 1 
312.64 70.8 19.431 73.3 2 
311.32 67.8 19.206 69.6 3 
583.93 111.2 30.375 122.6 4 
479.53 104 29.916 108.9 5 
498.79 98.8 29.477 102.2 6 
501.6 96.4 28.900 108 7 
442.8 89.8 28.201 97.1 8 
446.8 87.2 27.563 90.7 9 
670.8 162 43.113 186.5 10 
706.6 145 42.640 158.2 11 
722 135.2 42.055 145.6 12 

2497.8 197.4 165.49 205.8 13 
2273.6 183 149.27 187.5 14 
2324.2 171.8 145.41 175.7 15 
3063.4 249.4 190.64 256.2 16 
3117.8 228 197.18 234 17 
3107.6 212.8 208.05 217.7 18 
2933.6 244.4 187.36 248.3 19 
3003.6 222 193.18 227.7 20 
3529 206.4 186.19 212.2 21 

4907.8 303.2 242.04 309.9 22 
3878.6 276 250.45 283.4 23 
3805.4 258 261.79 264 24 
4826.6 180.6 543.66 185.6 25 
4598.8 162.2 564.6 165.4 26 
4581.4 149.2 535.4 152.6 27 
17351 371 2076.6 376.6 28 

17357.2 328.8 2010.8 336.2 29 
17441 303.6 204.2 308.8 30 

20713.6 413.6 2629 419.6 31 
20506.33 368 2517 376.2 32 

21042 339.6 2505.6 343.8 33 
 

 
Table 7   
RPD values 

Problem 
number GA RPD SA 

RPD 
Problem 
number GA RPD SA 

RPD 
Problem 
number 

GA RPD SA 
RPD 

1 0.040312 0 12 0.076923 0 23 0.026812 0 
2 0.035311 0 13 0.042553 0 24 0.023256 0 
3 0.026549 0 14 0.02459 0 25 0.027685 0 
4 0.102518 0 15 0.022701 0 26 0.019729 0 
5 0.047115 0 16 0.027265 0 27 0.022788 0 
6 0.034413 0 17 0.026316 0 28 0.015094 0 
7 0.120332 0 18 0.023026 0 29 0.022506 0 
8 0.081292 0 19 0.015957 0 30 0.017128 0 
9 0.040138 0 20 0.025676 0 31 0.014507 0 

10 0.151235 0 21 0.028101 0 32 0.022283 0 
11 0.091034 0 22 0.022098 0 33 0.012367 0 
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Fig. 4. Normality test for proposed GA RPD (small 
and large problems) 

Fig. 5. The results from the test of  equal variances 
for obtained makespan from suggested algorithms 

(small and large problems) 
Table 8  
Results from the Mann-Whitney Test for obtained makespan from suggested algorithms (small and 
large problems) 

Median for GA 
Makespan 

Median for SA 
Makespan 

Point Estimate 95% Confidence 
Interval P-value 

187.50 183.00 5.90 (-40.29; 55.44) 0.71 
 

According to the obtained results from Mann-Whitney test (Fig.6), it can be seen that at confidence 
level of 95%, we cannot reject hypothesis of the same of independent samples distribution (small and 
large problems). According to the obtained results from Kruskal-Wallis test (Fig.7), it can be seen that 
at confidence level of 95%, we cannot reject hypothesis of the equal of obtained makespan from two 
samples (small and large problems). 
 
Table 9  
Results of the Kruskal-Wallis Test for obtained makespan from suggested algorithms (small and large 
problems) 

Median for Factor 1 Median for Factor 2 Average Rank for 
Factor 1 

Average Rank for 
Factor 2 P-value  

187.50 183.00 34.4 32.6 0.705 
 

  
Fig. 6. Interval plot for obtained makespan from 
suggested algorithms (small and large problems) 

Fig. 7. Interval plot for obtained time from 
suggested algorithms (small and large problems) 
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According to the values obtained from Non- Parametric tests (Fig. 6 and Fig. 7) and obtained interval 
plot (Fig. 8), it can be concluded there was no significant differences between the obtained values 
(especially for small problems) from the proposed algorithms. According to the obtained values, 
performance of the proposed algorithms for solving proposed problem is proved. 

Considering that the proposed issue in this article has been studied for the first time, comparing the 
results with the ones existing in other papers is not possible at the moment. Therefore, in order to 
validate the results, we consider a small problem including two working groups and two jobs in each 
group. Working groups are identified as group 1 and group 2 where in order to simplify them, we use 
numbers 1 and 2 for representing the groups. Also, numbers 4, 5, 6 and 7 stand for the jobs sequentially.  
Now, we take into account all of the possible permutations of the working groups and also all of the 
possible permutation of the jobs which are equal to 2! And 4! consecutively. The following figure 
displays an instance of above-mentioned permutation related to groups and jobs. 

2 1 4 6 3 5 

 
Fig. 8. An instance of the sequence for the proposed example 

 
For each sequence of the example, which includes 4! × 2! = 48 sequences, we calculate the lower 
bound and compare it with the results obtained by proposed meta-heuristic algorithms. In this problem 
the smallest lower bound’s value is equal to 100 which is exactly the same value obtained by meta-
heuristic for this problem.  

7. Conclusion 
 
In this article, we have investigated FF2(m1,m2)/nwt, fmls, Splc /Cmax problem considering random 
breakdown of the machines. Genetic algorithm and simulated annealing were implemented to solve the 
problem. Two scales where discussed including small scale problems and large scale ones. 
Computational results show that simulated annealing is better than genetic algorithm in the point of 
average of obtained makespan and on the other hand, genetic algorithm excels simulated annealing in 
the point of computational time especially in large scale problems. 
 

For future work these method can be compared to some other layouts such as cellular manufacturing 
or process layout in order to define the efficiency of the model. In this article, all of the variables have 
deterministic values. In the real world many of parameters possess nondeterministic nature, so the fuzzy 
approach can be applied to the problem. Also, other metaheuristic methods such as particle swarm 
optimization or ant colony optimization can be developed for the proposed model and the results can 
be compared. Considering multi stages for the proposed problem and incorporating new constraints 
such as different methods for repairing machines can be another future works for the readers.  
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