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 Component-based software system (CBSS) development technique is an emerging discipline 
that promises to take software development into a new era. As hardware systems are presently 
being constructed from kits of parts, software systems may also be assembled from 
components. It is more reliable to reuse software than to create. It is the glue code and 
individual components reliability that contribute to the reliability of the overall system. Every 
component contributes to overall system reliability according to the number of times it is being 
used, some components are of critical usage, known as usage frequency of component. The 
usage frequency decides the weight of each component. According to their weights, each 
component contributes to the overall reliability of the system. Therefore, ranking of 
components may be obtained by analyzing their reliability impacts on overall application. In 
this paper, we propose the application of fuzzy multi-objective optimization on the basis of 
ratio analysis, Fuzzy-MOORA. The method helps us find the best suitable alternative, software 
component, from a set of available feasible alternatives named software components. It is an 
accurate and easy to understand tool for solving multi-criteria decision making problems that 
have imprecise and vague evaluation data. By the use of ratio analysis, the proposed method 
determines the most suitable alternative among all possible alternatives, and dimensionless 
measurement will realize the job of ranking of components for estimating CBSS reliability in 
a non-subjective way. Finally, three case studies are shown to illustrate the use of the proposed 
technique.  
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1. Introduction 
 

Component-based software system (CBSS) is an approach to improve the quality, maintainability and 
reliability of the software system. Component-Based Software Engineering (CBSE) is a beneficial 
development model for building software applications as it emphasises on reusability of software 
components. A software component is an executable entity that may be deployed independently and 
confirms to a component model. Components have interfaces through which they communicate with 
other components. CBSE assembled the Commercial Off-The-Shelf (COTS) components and existing 
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components together in such a manner that they interact as intended. CBSS are being developed using 
commercial pre-tested, high-quality, trusted and robust software components even though ensuring a 
reliable software application as a whole is a very difficult task.  

However, a software system has two critically acclaimed user requirements, one is reliability and the 
other is availability. ‘‘Software reliability is defined as the probability of the failure-free operation of a 
software system for a specified period of time in a specified environment’’ (IEEE, 1990). Reliability 
of software system makes sense if non-performance of the system has scathing impact, and availability 
of the software system makes sense if downtime has severe impact. Probabilistically, we may measure 
reliability as RS = (1 – R(t)) with R(t) = 𝑒𝑒𝑒𝑒𝑒𝑒 �∫ −𝜆𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡

0 �, 

where, RS = System reliability, 

τ = the variable of integration, 

𝜆𝜆(𝜏𝜏) = the failure rate and 

R(t) = the probability that a failure will occur at time t given that no failure has occurred before time t. 

This traditional software reliability model considers only timing and failure rate but this approach is 
incomplete as the failure rate should be connected to application complexity and test effectiveness as 
well (Chu et al., 2007).  

Software unreliability is the result of faulty design and architecture of the system, issues arises due to 
human failures. CBSS leads to a complex system if not managed properly. Hence, estimation of 
reliability of such systems is very difficult. However, conventional approaches of software reliability 
analysis use black-box models, but this model is not useful in case of CBSS because it ignores the 
reliability of individual components. Therefore, several techniques have been developed for estimating 
component-based software applications reliability (Goševa-Popstojanova & Trivedi, 2001). These 
reliability estimation techniques may fall into two buckets: 

• Overall system reliability estimation considering the application as a whole, 

• Application reliability estimation on the basis of individual component reliability. 

In CBSS, individual components contribute to the overall reliability of the system. Therefore, the 
selection process for finding out the most satisfying component (alternative), that contributes most to 
the reliability estimation of overall application, among set of feasible components (alternatives) subject 
to certain constraints (criteria) should be achieved using one of the proven multi-criteria decision 
making (MCDM) methods. 

Sometimes, decision makers have to consider multiple criteria at a time. When decision makers are 
required to perform quantitative as well as qualitative decisions to determine the performance of each 
feasible alternative with respect to available criterion, then this sort of problem is known as multi-
criteria group decision making (MCGDM) problem. Multiple-criteria decision making (MCDM) is an 
approach of ranking of alternatives from a set of available alternatives. MCDM approach may broadly 
be divided into two categories (Wang & Lee, 2007):  

• Classical MCDM (Feng & Wang, 2000): Classical MCDM decisions are made under those 
circumstances where performance rating and weight can be given precisely. 

• Fuzzy MCDM (Wang et al., 2003): Fuzzy set theory is used to model the uncertainty, perception 
etc. of human judgments, so fuzzy MCDM decisions are made where performance rating and 
weight are not precise. 
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In this paper, we analysed the ranking of components within a system using MOORA, a fuzzy MCDM 
method. We took four very critical factors for reliability estimation of a CBSS Tyagi and Sharma 
(2012), as criteria for rank assessment. We illustrated the applicability of the proposed method for three 
CBSS applications namely; Security Management System, Distributed Medical Informatics System 
and Waiting Queues Simulator. 

2. Literature Review 

It is very difficult to assess the reliability of the system as it is a real time issue. It cannot be perceive 
as a binary notion also, where we cannot say that if a program produces desired output then its reliability 
will be one and if it does not produce desired output then reliability will be zero. Researchers have 
proposed several models for CBSS reliability estimation. These approaches may fall into three buckets: 
architecture based models, hard computing based models and soft computing technique based models. 

2.1. Architecture Based Models 

Software architecture describes the structure of software at an abstract level. Architectural style is a 
pattern that describes the configurations of components and their connectors. Three different styles may 
be recognized as state-based models, path-based models and additive models. State-based models 
estimate software reliability analytically and used control flow graph (CFG) to represent the software 
architecture. Path-based models compute the software reliability by considering all the feasible 
execution paths of the program. Additive models assume that reliability of each component may be 
modelled by the use of Non-Homogeneous Poisson Process. Architecture based reliability models 
common requirement include (1) component identification, (2) Software architecture blueprint 
description, (3) failure behaviour outlining, and (4) analysis of failure behaviour with the architecture. 
Architecture-based models allow insight into the sensitivity of the system with respect to each 
component. Therefore, it may be used to identify critical components from the reliability point of view.  

An analysis of Goševa-Popstojanova and Trivedi (2001), Kaiyuan et al. (2003) and Gokhle (2007) 
reveals that state-based and path-based architecture models are more suitable for estimating CBSS 
reliability. As CBSS are made up of components, components may transform from one operational 
profile to another Koziolek et al. (2005). Control flow among components are also taken into 
consideration in the state-based models (Littlewood, 1979; Cheung, 1980; Gokhle et al., 1998; Wang 
et al., 2006). It assumed that components failed independently. State-based models may be represented 
as hierarchical or as composite models. Path-based models are proposed to consider all possible 
execution paths for the reliability estimation of an application (Shooman, 1976); (Krishnamurthy et al., 
1997). A limitation of this type of model is that they provide only an approximate estimation of software 
reliability.  

Dependency among consecutive software runs also taken into consideration in a model based on 
Markov renewal process (Goseva & Trivedi, 1999). This model was adaptable for both independent 
and dependent successive software runs. As per Markov behaviour model present behaviour is not 
dependent on its previous behaviour. A similar approach is proposed in Wang et al. (2008) in which 
components relationships were analysed for CBSS reliability estimation. A constraint of this method is 
that it assumes that transition probabilities and component reliability are present, but actually this is not 
the case always. 

2.2 Hard Computing Based Models 

Hard computing based reliability models requires a precisely stated analytical model based on crisp 
systems, numerical analysis, binary logic and crisp software. These models describe in terms of 
mathematical logic (combinatorial logic), component usage ratio and presented by graphs such as trees, 
component dependency graphs and block diagrams. The statistical information on the reliability of 
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components of the system is used here. Researchers have proposed many mathematical models for 
estimating reliability of CBSS. 

A path based reliability estimation approach based on Component Dependency Graph (CDG), known 
as Scenario-Based Reliability Analysis (SBRA) addressed in Yacub et al. (2004). This approach does 
not consider failure dependency among components, results in limited use of this approach. Another 
similar approach based on CDG is presented in Fan Zhang et al. (2009). This model may be used to 
check the behaviour of reliability when the operation profile changes, provided an operational profile 
of the system is given. A framework based on algebra for describing the syntax and predicting the 
CBSS reliability proposed in Huang et al. (2008) and Seth et al. (2010) presented a minimum spanning 
tree based approach for estimating the reliability. 

A mathematical model of reliability estimation which takes the component usage ratio into 
consideration has been addressed in Goswami and Acharya (2009). This approach seems feasible to 
use in real-time application due to the flexibility of the component usage ratio. Component composition 
mechanism was also taken into consideration for reliability estimation Si et al. (2010). A procedure is 
used to estimate the overall application reliability based on component utilization frequencies and 
component composition mechanism once the reliability of each component is being calculated. 
Modified Adaptive Testing (MAT) approach allows to test case history to be used (Hu et al., 2013). 

Rewrite logic (RABRL) developed by Wang et al. (2008) may be applied to simple CBSS whose 
specification is provided with an operational profile. However, it does not consider failure 
dependencies among components but can statistically analyse execution process of an application and 
uses this to estimate the transition probability, approximately, between components and the estimated 
number of visits to components. Hsu et al. (2011) presented an adaptive technique using path testing 
for reliability estimation of complex CBSS where sequence, branch and loop structures were proposed 
for estimation of path reliability. Using this approach, propitious estimation of application software 
reliability becomes possible when testing information is available. Correlated component failures 
(COCOF) approach considers the component reliability, correlation and application architecture to 
assess the reliability of software application (Fiondella et al., 2013). 

2.3 Soft Computing Based Models 

Soft computing based reliability models are based on fuzzy logic, probabilistic reasoning, genetic 
algorithms and neural networks. Fuzzy logic deals with imprecision, approximate reasoning and 
qualitative representation of aspects. Probabilistic reasoning such as Bayesian Belief Networks has the 
ability to update previous results by conditioning them with newly available evidence. Genetic 
algorithms approach is based on analogues of natural section, such as the optimization methods based 
on ant colonies. Neural networks focus on learning systems, self-organizing structures and 
implementation of models from the available data. In hard computing uncertainty and imprecision are 
undesirable properties but in soft computing the tolerance for uncertainty and imprecision is exploited 
to achieve lower cost, tractability and economy of communication. In CBSS, Reliability estimation 
factors cannot be quantified easily because of vagueness in information and fuzziness in human 
perception. Therefore, soft-computing based models represent an alternative tool to aid research in this 
area. 

Several soft computing techniques are based on support vector machines (SVMs), fuzzy logic and 
genetic algorithms (GAs) (Lo, 2010). Parameters of reliability estimation for the SVM can be 
determined by the GA. This model is more precise in reliability prediction and is less dependent on the 
size of failure testing data in comparison with other models. A framework based on possibility theory 
and fuzzy logic for CBSS reliability estimation proposed by Dimov et al. (2010). A mathematical fuzzy 
model was proposed to predict the CBSS reliability based on necessity and possibility. This model is 
based on uncertainty so it does not require component failure data unlike other models. Though, a 
mechanism is needed to model the propagation of failure between failure behaviour and components. 



Z. A. Siddiqui and K. Tyagi / Decision Science Letters 5 (2016) 
 

173 

A Bayesian reliability estimation model for prediction and assessment of application reliability using 
unified modelling language (UML) was proposed by Singh et al. (2001), which helps in analyzing the 
reliability at the design level itself. A limitation of this approach is that it generates separate operational 
profiles every time, whenever new paths are taken into account because the reliability prediction 
algorithm considers them to be an entirely new system. A rule based approach for CBSS reliability 
estimation based on fuzzy logic presented was presented by Tyagi and Sharma (2012). Four critical 
factors were identified in this approach for CBSS reliability estimation and apply these factors to create 
a rule base of the application. Fuzzy technique for order preference by similarity to ideal solution 
(TOPSIS) was employed for ranking of components for estimating CBSS reliability; readers may refer 
to Tyagi and Sharma (2014) for detailed implementation. 

3. Material and Methods 

Ranking of the components within a system is a multi-criteria decision making (MCDM) problem. 
MCDM is the selection process of finding out the most satisfying alternative among set of feasible 
alternatives subject to certain constraints. The selection is obtained by evaluating each choice 
(alternatives) on the set of objectives (criteria). Fuzzy MCDM decisions are made where performance 
rating and weight are not precise. Therefore, fuzzy MCDM method has a role to play in order to rank 
the components of CBSS, where decision factors (criteria) are conflicting to each other while evaluating 
the reliability of the application. 

MOORA is a fuzzy MCDM method which is used to solve the problems related to decision and 
planning using multiple conflicting criteria. Among these conflicting criteria some of them have 
beneficial nature where maximum values are desired and the others have non-beneficial nature where 
minimum values are preferred. MOORA method considers both beneficial and non-beneficial criteria 
for ranking alternatives from a set of available feasible options. Ratio analysis enables MOORA to 
determine the most suitable alternative among all possible alternatives, and dimensionless measurement 
realises the job of ranking of components for estimating CBSS reliability in a non-subjective way. 
Fuzzy MCDM combines the concept of MCDM and the fuzzy set theory. Performance ratings of 
alternatives and weights of criteria are expressed in linguistic variables in fuzzy MCDM approach. 
Linguistic variables are then transformed into triangular fuzzy numbers. 

3.1. Fuzzy Number 

Fuzzy set theory may be employed to model systems that are hard to define precisely because of the 
vagueness in information and fuzziness in human perception (Zadeh, 1965). This fuzziness and 
uncertainty may be modelled in terms of fuzzy numbers. A fuzzy number has three types namely; 
triangular fuzzy number, trapezoidal fuzzy number and parabolic fuzzy number. 

Let U be the universe of discourse, �̅�𝐺 be the fuzzy subset of U which is defined by a membership 
function 𝜇𝜇�̅�𝐺(u) that maps each element of u in U to a real number in the interval [0,1]. The function 
value of 𝜇𝜇�̅�𝐺(u) denotes the grade of membership of u in �̅�𝐺. A triangular fuzzy number �̅�𝐺 is a triplet 
composed of crisp numbers, (s, c, e), and the membership function is defined as. 

𝜇𝜇�̅�𝐺(u) = �
 𝑢𝑢−𝑠𝑠
𝑐𝑐−𝑠𝑠

,      𝑠𝑠 ≤ 𝑢𝑢 ≤ 𝑐𝑐

 𝑢𝑢−𝑒𝑒
𝑐𝑐−𝑒𝑒

,      c ≤ 𝑢𝑢 ≤ 𝑒𝑒
0,         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒

 

3.2 Fuzzy-MOORA Method 

Multi-objective optimization on the basis of ratio analysis (MOORA) is the process of optimizing two 
or more conflicting attributes simultaneously subject to certain constraints (Brauers & Zavadskas, 
2006). Therefore, this technique seems to be an appropriate tool to assess the ranking or selecting best 
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alternatives from a set of available feasible options. It has been successfully applied in many fields of 
engineering manufacturing (Chakraborty, 2011), construction engineering and management (Kracka et 
al., 2015; Brauers et al., 2008) and also in economics (Brauers & Ginevicious, 2009; Brauers & 
Zavadskas, 2010), due to its comprehensiveness and simplicity. The values of objectives are measured 
for every alternative, and this provides the basis for comparison of alternatives and consequently 
facilitates the selection of best (most satisfactory) option. 

The main logic of MOORA method is to calculate the overall performance of each alternative as the 
difference between sum of its normalized performances of beneficial and non-beneficial attributes by 
using the following equation. 

𝑓𝑓𝑝𝑝 =  � 𝑢𝑢𝑝𝑝𝑝𝑝∗
𝑟𝑟

𝑝𝑝=1
−  � 𝑢𝑢𝑝𝑝𝑝𝑝∗

𝑛𝑛

𝑝𝑝=𝑟𝑟+1
 , (1) 

where 𝑢𝑢𝑝𝑝𝑝𝑝∗  is a dimensionless number, belongs to the interval of [0, 1], and represents the normalized 
performance of the pth alternative on qth criteria, r is the attributes count to be maximised (beneficial 
criteria) and (n-r) is the attributes count to be minimised (non-beneficial criteria and 𝑓𝑓𝑝𝑝 is the overall 
performance indices value of pth alternative with respect to all other attributes. 

Priority weights may be considered to give relative importance of one criterion over the other, as it is 
generally observed that some criteria are more important than the others. When priority weights are 
taken into consideration, Eq. (1) can be written as: 

𝑓𝑓𝑝𝑝 =  � 𝑙𝑙𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝∗
𝑟𝑟

𝑝𝑝=1
−  � 𝑙𝑙𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝∗

𝑛𝑛

𝑝𝑝=𝑟𝑟+1
                      (𝑞𝑞 = 1,2,3, …𝑛𝑛) (2) 

where, 𝑙𝑙𝑝𝑝 is the weight of qth attribute which may be derived by entropy method or analytical 
hierarchical process (AHP). Final preferences may be find out by the ordinal ranking of 𝑓𝑓𝑝𝑝. Highest 𝑓𝑓𝑝𝑝 
value corresponds to the best alternative whereas lowest 𝑓𝑓𝑝𝑝 value corresponds to worst alternative. 

In this paper, fuzzy-MOORA is proposed for solving the MCDM problem related to ranking of 
components for CBSS reliability estimation. This approach was also successfully employed to find out 
best ERP system for manufacturing organizations (Karande & Chakraborty, 2012). Here, this method 
is reiterated in the following procedural steps. 

Step 1: Firstly, develop a fuzzy decision matrix based on the opinions of key decision makers where 
each criterion is measured using triangular membership function. 

𝑈𝑈 =

⎣
⎢
⎢
⎡
 

[𝑢𝑢11𝑠𝑠 ,𝑢𝑢11 
𝑐𝑐 ,𝑢𝑢11𝑒𝑒  ]   [𝑢𝑢12𝑠𝑠 ,𝑢𝑢12 

𝑐𝑐 ,𝑢𝑢12𝑒𝑒  ]
[𝑢𝑢21𝑠𝑠 ,𝑢𝑢21 

𝑐𝑐 ,𝑢𝑢21𝑒𝑒 ]   [𝑢𝑢22𝑠𝑠 ,𝑢𝑢22 
𝑐𝑐 ,𝑢𝑢22𝑒𝑒  ]   

… �𝑢𝑢1𝑗𝑗𝑠𝑠 ,𝑢𝑢1𝑗𝑗 
𝑐𝑐 ,𝑢𝑢1𝑗𝑗𝑒𝑒 �

… �𝑢𝑢2𝑗𝑗𝑠𝑠 ,𝑢𝑢2𝑗𝑗 
𝑐𝑐 ,𝑢𝑢2𝑗𝑗𝑒𝑒 �

 
… …

[𝑢𝑢𝑖𝑖1𝑠𝑠 ,𝑢𝑢𝑖𝑖1 
𝑐𝑐 ,𝑢𝑢𝑖𝑖1𝑒𝑒 ]    [𝑢𝑢𝑖𝑖2𝑠𝑠 ,𝑢𝑢𝑖𝑖2 

𝑐𝑐 ,𝑢𝑢𝑖𝑖2𝑒𝑒 ]   
    … …
     …  �𝑢𝑢𝑖𝑖𝑗𝑗𝑠𝑠 ,𝑢𝑢𝑖𝑖𝑗𝑗 

𝑐𝑐 ,𝑢𝑢𝑖𝑖𝑗𝑗𝑒𝑒 � ⎦
⎥
⎥
⎤
, 

 

(3) 

where 𝑢𝑢𝑝𝑝𝑝𝑝𝑠𝑠 , 𝑢𝑢𝑝𝑝𝑝𝑝𝑐𝑐  and 𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒  denote the lower, middle and upper values of a triangular membership function 
for the pth alternative with respect to qth criteria. 

Step 2: Normalize the fuzzy decision matrix, created in step 1, using vector normalization procedure. 
Following equations are used for this purpose (Stanujkic et al., 2012). 

𝑔𝑔𝑝𝑝𝑝𝑝𝑠𝑠 =  
𝑢𝑢𝑝𝑝𝑝𝑝𝑠𝑠

�∑ ��𝑢𝑢𝑝𝑝𝑝𝑝𝑠𝑠 �
2 + �𝑢𝑢𝑝𝑝𝑝𝑝𝑐𝑐 �2 +  �𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 �2�𝑖𝑖

𝑝𝑝=1

 
 

(4) 
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𝑔𝑔𝑝𝑝𝑝𝑝𝑐𝑐 =  
𝑢𝑢𝑝𝑝𝑝𝑝𝑐𝑐

�∑ ��𝑢𝑢𝑝𝑝𝑝𝑝𝑠𝑠 �
2 +  �𝑢𝑢𝑝𝑝𝑝𝑝𝑐𝑐 �2 +  �𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 �2�𝑖𝑖

𝑝𝑝=1

 
 

(5) 

𝑔𝑔𝑝𝑝𝑝𝑝𝑒𝑒 =  
𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒

�∑ ��𝑢𝑢𝑝𝑝𝑝𝑝𝑠𝑠 �
2 +  �𝑢𝑢𝑝𝑝𝑝𝑝𝑐𝑐 �2 +  �𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒 �2�𝑖𝑖

𝑝𝑝=1

 
(6) 

Step 3: Weighted normalized fuzzy decision matrix is determine by the following equations, 

ℎpqs =  𝑙𝑙𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑠𝑠  (7) 

ℎpqc =  𝑙𝑙𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑐𝑐  (8) 

ℎpqe =  𝑙𝑙𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑒𝑒  (9) 

Step 4: Overall ratings of beneficial and non-beneficial criteria for each alternative is calculated is this 
step.  

The overall rating of an alternative for lower, middle and upper values of the triangular function for 
beneficial criteria are determined by the following equations, 

kp+𝑠𝑠 =  �ℎpqs
𝑛𝑛

𝑝𝑝=1

     | 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 
 

(10) 

kp+𝑐𝑐 =  �ℎpqc
𝑛𝑛

𝑝𝑝=1

     | 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 
 

(11) 

kp+𝑒𝑒 =  �ℎpqe
𝑛𝑛

𝑝𝑝=1

     | 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 
 

(12) 

The overall rating of an alternative for lower, middle and upper values of the triangular function for 
non-beneficial criteria are determined by the following equations, 

kp−𝑠𝑠 =  �ℎpqs
𝑛𝑛

𝑝𝑝=1

     | 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚𝑖𝑖𝑛𝑛 
 

(13) 

kp−𝑐𝑐 =  �ℎpqc
𝑛𝑛

𝑝𝑝=1

     | 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚𝑖𝑖𝑛𝑛 
 

(14) 

kp−𝑒𝑒 =  �ℎpqe
𝑛𝑛

𝑝𝑝=1

     | 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚𝑖𝑖𝑛𝑛 
 

(15) 

Step 5: In this step, defuzzied the values of the overall ratings for beneficial and non-beneficial criteria 
for each alternative using the vertex method (Huiqun & Guang, 2012) to determine the overall 
performance index (Si). 
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(16) 

Step 6: Now, arrange the overall performance indices in the descending order and rank them from best 
to worst. The alternative with the highest overall performance index is the most favourable choice. 

4. Application of fuzzy-MOORA for Component Ranking 

To determine the ranking of components for estimating CBSS reliability applications using fuzzy-
MOORA we selected four critically acclaimed factors (Application Complexity (C1), Operational 
Profile (C2), Reusability (C3) and Functionality (C4)) proposed by Tyagi and Sharma (2012) as criteria 
for rank assessment. A team of five decision makers, experts in their field, was formed to evaluate the 
CBSS proposed criterion. Linguistic variables and their fuzzy numbers are shown in Table 1. 
Weightage for each criterion, as shown in Table 2, is then collected by different decision makers. 

Table 1 
Fuzzy numbers for linguistic variables 
Criterion weightage Reliability ranking Fuzzy number 
VL VP (1,1,3) 
L P (1,3,5) 
M F (3,5,7) 
H G (5,7,9) 
VH VG (7,9,9) 

 

Table 2 
Weightage ranking assignment 
Criteria D1 D2 D3 D4 D5 
C1 VH VH VH H H 
C2 M M H M L 
C3 VH H H VH VH 
C4 L M M H H 

 

5. Case Study 

Three case studies are illustrated in this paper to analyse the applicability and potentiality of the 
proposed method. 

5.1 Security Management System 

In this case study, we considered a small component-based security management system (SMS) 
presented by Tyagi and Sharma (2014). This system has total eight components namely: (1) Login 
(A1), (2) Server (A2), (3) Time Management System (A3), (4) Alarm Management System (A4), (5) 
Access Management System (A5), (6) Calculation Script (A6), (7) Door Management System (A7) and 
(8) Devices (A8). These components are considered as alternatives for the ranking. Ranking of 
components for CBSS reliability estimation problem hierarchy is described in Fig. 1. The domain of 
SMS is the set of components and the execution paths from source node to destination node. The 
graphical representation of the system is described in Fig. 2.  

By catering decision maker’s subjective judgement develop the fuzzy criteria and then use the linguistic 
variables to evaluate the ratings of alternative with respect to each criterion and corresponding weights 
as shown in Table 3. 
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Table 3 
Reliability ranking assignment matrix for SMS 

Criteria Candidate D1 D2 D3 D4 D5 
Application 
complexity (C1) 

Login (A1) VP P P F F 
Server (A2) G VG VP P P 
Time MS (A3) F G G VG F 
Alarm MS (A4) VG F G G G 
Access MS (A5) P F P P P 
Calculation Script (A6) G G G G G 
Door MS (A7) F F G G G 
Devices (A8) P P P P P 

Operational 
profile (C2) 

Login (A1) P P F P P 
Server (A2) P F G G F 
Time MS (A3) G G G VG G 
Alarm MS (A4) VG G G G G 
Access MS (A5) VG G F F G 
Calculation Script (A6) G VG G P VG 
Door MS (A7) G VG G G VG 
Devices (A8) P F P G F 

Reusability (C3) Login (A1) P VP P VP P 
Server (A2) P VP P VP VP 
Time MS (A3) G G G VG G 
Alarm MS (A4) G F P G G 
Access MS (A5) P P VP P P 
Calculation Script (A6) VG VG VG G G 
Door MS (A7) G G F G P 
Devices (A8) VP P P F G 

Functionality 
(C4) 

Login (A1) VG G P F F 
Server (A2) VG G P F G 
Time MS (A3) G G F G VG 
Alarm MS (A4) G G F G G 
Access MS (A5) G G F G G 
Calculation Script (A6) F G G G VG 
Door MS (A7) VG VG G VG G 
Devices (A8) VG G G VG G 

 

 

Fig. 1. SMS reliability estimation problem hierarchy 
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Fig. 2. Graphical representation of SMS 

The fuzzy decision matrix for this system was developed using triangular fuzzy membership function, 
as given in Table 4 and fuzzy TOPSIS method was then applied to determine the best alternative as 
time MS, whereas, login was the worst chosen component. We, here, implemented more stable and 
robust fuzzy-MOORA method for evaluation and assessment of ranking of component for reliability 
estimation of SMS (a component-based system). 

5.1.1 Results 

Firstly, determine the weights of four criteria, application complexity (C1), operational profile (C2), 
reusability (C3) and functionality (C4), from the fuzzy numbers of weights given in Table 4 using AHP 
method as Lc1 = 0.2629, Lc2 = 0.2280, Lc3 = 0.2629 and Lc4 = 0.2462.  

Step 1: Design fuzzy decision matrix using triangular fuzzy membership function as shown in Table 4. 

Table 4 
Fuzzy decision matrix for SMS 
 C1 C2 C3 C4 
A1 (1.8,3.4,5.4) (1.4,3.4,5.4) (1.0,2.2,4.2) (3.8,5.8,7.4) 
A2 (3.0,4.6,6.2) (3.4,5.8,7.4) (1.0,1.8,3.8) (4.2,6.2,7.8) 
A3 (4.6,6.6,8.2) (5.4,7.4,9.0) (5.4,7.4,9.0) (5.0,7.0,8.6) 
A4 (5.0,7.0,8.6) (5.4,7.4,9.0) (3.8,5.8,7.8) (4.6,6.6,8.6) 
A5 (1.4,3.4,5.4) (4.6,6.6,8.2) (1.0,2.6,4.6) (4.6,6.6,8.6) 
A6 (5.0,7.0,9.0) (5.0,7.0,8.2) (6.2,8.2,9.0) (5.0,7.0,8.6) 
A7 (4.2,6.2,8.2) (5.8,7.8,9.0) (3.8,5.8,7.8) (6.2,8.2,9.0) 
A8 (1.0,3.0,5.0) (2.6,4.6,6.6) (2.2,3.8,5.8) (5.8,7.8,9.0) 
Weight (6.2,8.2,9.0) (3.0,5.0,7.0) (6.2,8.2,9.0) (3.4,5.4,7.4) 

 

Step 2: Determine the normalized fuzzy decision matrix using Eqs. (4-6). It is essential for an MCDM 
method to normalize the decision matrix to make its elements dimensionless and comparable. 
Normalized fuzzy decision matrix is shown in Table 5. 
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Table 5 
Normalized fuzzy decision matrix for SMS 
 C1 C2 C3 C4 
A1 (0.066,0.124,0.197) (0.044,0.108,0.171) (0.038,0.084,0.159) (0.112,0.171,0.218) 
A2 (0.110,0.168,0.227) (0.108,0.184,0.235) (0.038,0.068,0.144) (0.124,0.182,0.229) 
A3 (0.168,0.241,0.300) (0.171,0.235,0.286) (0.205,0.281,0.342) (0.147,0.206,0.253) 
A4 (0.182,0.256,0.314) (0.171,0.235,0.286) (0.144,0.220,0.296) (0.135,0.194,0.253) 
A5 (0.051,0.124,0.197) (0.146,0.209,0.260) (0.038,0.099,0.175) (0.135,0.194,0.253) 
A6 (0.168,0.256,0.329) (0.159,0.222,0.260) (0.235,0.311,0.342) (0.147,0.206,0.253) 
A7 (0.154,0.227,0.300) (0.184,0.248,0.286) (0.144,0.220,0.296) (0.182,0.241,0.265) 
A8 (0.037,0.110,0.182) (0.083,0.146,0.209) (0.084,0.144,0.220) (0.171,0.229,0.265) 

 

Step 3: Design the weighted normalized fuzzy decision matrix by multiplying the normalized fuzzy 
criteria values with the corresponding values of crisp criteria weights (Lc1, Lc2, Lc3, Lc4) using Eq. (7), 
Eq. (8) and Eq. (9). Weighted normalized fuzzy decision matrix is shown in Table 6. 

Table 6 
Weighted normalized fuzzy decision matrix for SMS 
 C1 C2 C3 C4 
A1
 

(0.0174,0.0326,0.051
 

(0.0100,0.0246,0.039
 

(0.0100,0.0221,0.041
 

(0.0276,0.0421,0.053
 A2 (0.0289,0.0442,0.059

 
(0.0246,0.0420,0.053

 
(0.0100,0.0179,0.037

 
(0.0305,0.0448,0.056

 A3 (0.0442,0.0634,0.078
 

(0.0390,0.0536,0.065
 

(0.0539,0.0739,0.089
 

(0.0362,0.0507,0.062
 A4 (0.0478,0.0673,0.082

 
(0.0390,0.0536,0.065

 
(0.0379,0.0578,0.077

 
(0.0332,0.0478,0.062

 A5 (0.0134,0.0326,0.051
 

(0.0333,0.0477,0.059
 

(0.0100,0.0260,0.046
 

(0.0332,0.0478,0.062
 A6 (0.0442,0.0673,0.086

 
(0.0363,0.0506,0.059

 
(0.0618,0.0818,0.089

 
(0.0362,0.0507,0.062

 A7 (0.0405,0.0597,0.078
 

(0.0420,0.0565,0.065
 

(0.0379,0.0578,0.077
 

(0.0448,0.0593,0.065
 A8 (0.0097,0.0289,0.047

 
(0.0189,0.0333,0.047

 
(0.0221,0.0379,0.057

 
(0.0421,0.0564,0.065

 
 

Step 4: Among these four criteria application complexity (C1) is the only non-beneficial attribute, 
where lower value is preferred, whereas higher values are desired for operational profile (C2), 
reusability (C3) and functionality (C4). The overall rating of beneficial criteria is calculated using Eqs. 
(10-12) and the overall rating of non-beneficial criteria is calculated using Eqs. (13-15).The overall 
ratings for beneficial and non-beneficial criteria for the SMS is shown in Table 7. 

Table 7 
Overall ratings for beneficial and non-beneficial criteria for the SMS 
  S+    S-  
 l m  u  l  m u 
A1 0.0476 0.0888 0.1345 0.0174 0.0326 0.0518 
A2 0.0651 0.1047 0.1479 0.0289 0.0442 0.0597 
A3 0.1291 0.1782 0.2174 0.0442 0.0634 0.0789 
A4 0.1101 0.1592 0.2053 0.0478 0.0673 0.0826 
A5 0.0765 0.1215 0.1676 0.0134 0.0326 0.0518 
A6 0.1343 0.1831 0.2115 0.0442 0.0673 0.0865 
A7 0.1247 0.1736 0.2082 0.0405 0.0597 0.0789 
A8 0.0831 0.1276 0.1707 0.0097 0.0289 0.0478 

 

Step 5: Derive the values of overall performance index for all the components of SMS by using the 
vertex method as shown in Eq. (16) to defuzzify the overall ratings for both beneficial and non-
beneficial criteria as illustrated in Table 8. 
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Table 8 
Overall performance index values and the rank assignment of all the components for the SMS 
 S Rank 
A1 S1 0.0603 8 
A2 S2 0.0652 7 
A3 S3 0.1148 1 
A4 S4 0.0955 5 
A5 S5 0.0918 6 
A6 S6 0.1113 2 
A7 S7 0.1107 3 
A8 S8 0.1004 4 

 

Step 6: The ranking of SMS components is shown in Table 8, therefore alternative A3 (Time MS) will 
contribute the most and alternative A1 (Login) will contribute the least to the reliability estimation of 
overall application of SMS. Components rank are as follows (starting with the best alternative): A3 ≻ 
A6 ≻ A7 ≻ A8 ≻ A4 ≻ A5 ≻ A2 ≻ A1. It is worthwhile to mention here that Tyagi and Sharma (2014) 
also derived the same the best and the worst alternatives but the ranking of the intermediate components 
were found different. Comparative ranking of SMS components obtained by fuzzy-MOORA and fuzzy 
TOPSIS is shown in Fig. 3.  

 

Fig. 3. Comparative ranking of SMS components obtained by fuzzy-MOORA and fuzzy TOPSIS 

The disparities among the intermediate rankings of the components may be due to the diverse opinion 
given by the decision makers. 

5.2. Waiting Queues Simulator 

In this case study, we considered a small component-based waiting queues simulator (WQS) presented 
by Yacoub et al. (2004). WQS mimics the behaviour of customer waiting queues lined up at checkout 
counters at immigration posts, airport, railway station, supermarkets etc. It was developed by 
combining the components. This system has total six components namely: (1) Generator (A1), (2) 
Simulator Driver (A2), (3) Service Facility (A3), (4) Event List (A4), (5) Queuing Facility (A5) and 
(6) Measurement (A6). These components are considered as alternatives for the ranking. Ranking of 
components for CBSS reliability estimation problem hierarchy is described in Fig. 4. Components 
available in the application are taken as alternatives. The architecture of the WQS is centred around a 
dynamic Event List component as the communication vehicle of events. The graphical representation 
of the system is described in Fig. 5. 
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Fig. 4. WQS reliability estimation problem hierarchy 

 

Fig. 5. Graphical representation of WQS 

We, here, applied the fuzzy-MOORA method for assessment of ranking of component for reliability 
estimation of WQS (a component-based system). 

5.2.1. Results 

Set the linguistic ratings for all alternatives with respect to criteria. Linguistic variables and their fuzzy 
numbers are shown in Table 1. Weightage for each criteria is then collected by decision makers, as 
shown in Table 2. A team of five decision makers, D1, D2, D3, D4 and D5, was formed to evaluate the 
WQS. Now, by catering decision maker’s subjective judgement develop the fuzzy criteria and then use 
the linguistic variables to evaluate the ratings of alternative with respect to each criteria as shown in 
Table 9.  
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Table 9 
Reliability ranking assignment matrix for WQS 

Criteria Candidate D1 D2 D3 D4 D5 
Application 
complexity (C1) 

Generator (A1) F F F P P 
Simulator Driver (A2) G G F F P 
Service Facility (A3) VG VG G VG G 
Event List (A4) F F G F F 
Queuing Facility (A5) VG VG G G VG 
Measurement (A6) P P P VP VP 

Operational 
profile (C2) 

Generator (A1) P P VP F P 
Simulator Driver (A2) VG VG VG G G 
Service Facility (A3) F F F G G 
Event List (A4) F G G G F 
Queuing Facility (A5) VG VG G VG VG 
Measurement (A6) P P VP VP VP 

Reusability (C3) Generator (A1) VG VG VG G G 
Simulator Driver (A2) VP P VP P P 
Service Facility (A3) F VP F P P 
Event List (A4) VP VP P P VP 
Queuing Facility (A5) G G F F F 
Measurement (A6) VG VG VG VG G 

Functionality 
(C4) 

Generator (A1) VP P VP VP P 
Simulator Driver (A2) VG VG VG G G 
Service Facility (A3) F F F G G 
Event List (A4) F F G G F 
Queuing Facility (A5) G G F F P 
Measurement (A6) VG VG F F G 

 

Weights of four criteria (application complexity (C1), operational profile (C2), reusability (C3) and 
functionality (C4)), from the fuzzy numbers of weights given in Table 10 using AHP method, can be 
determined as Lc1 = 0.2629, Lc2 = 0.2280, Lc3 = 0.2629 and Lc4 = 0.2462. 

Step 1: Design fuzzy decision matrix using triangular fuzzy membership function as shown in Table 
10. 

Table 10 
Fuzzy decision matrix for WQS 
 C1 C2 C3 C4 
A1 (2.2,4.2,6.2) (1.4,3.0,5.0) (6.2,8.2,9.0) (1.0,1.8,3.8) 
A2 (3.4,5.4,7.4) (6.2,8.2,9.0) (1.0,2.2,4.2) (6.2,8.2,9.0) 
A3 (6.2,8.2,9.0) (3.8,5.8,7.8) (1.8,3.4,5.4) (3.8,5.8,7.8) 
A4 (3.4,5.4,7.4) (4.2,6.2,8.2) (1.0,1.8,3.8) (3.8,5.8,7.8) 
A5 (6.2,8.2,9.0) (6.6,8.6,9.0) (3.8,5.8,7.8) (3.4,5.4,7.4) 
A6 (1.0,2.2,4.2) (1.0,1.8,3.8) (6.6,8.6,9.0) (5.0,7.0,8.2) 
Weight (6.2,8.2,9.0) (3.0,5.0,7.0) (6.2,8.2,9.0) (3.4,5.4,7.4) 

 

Step 2: Determine the normalized fuzzy decision matrix using Eqs. (4-6). Normalized fuzzy decision 
matrix is shown in Table 11. 

Table 11 
Normalized fuzzy decision matrix for WQS 

 C1 C2 C3 C4 
A1 (0.086,0.165,0.243) (0.054,0.116,0.193) (0.257,0.340,0.374) (0.039,0.070,0.148) 
A2 (0.133,0.212,0.291) (0.239,0.316,0.347) (0.042,0.091,0.174) (0.241,0.319,0.350) 
A3 (0.243,0.322,0.353) (0.147,0.224,0.301) (0.075,0.141,0.224) (0.148,0.226,0.304) 
A4 (0.133,0.212,0.291) (0.162,0.239,0.316) (0.042,0.075,0.158) (0.148,0.226,0.304) 
A5 (0.243,0.322,0.353) (0.255,0.332,0.347) (0.158,0.241,0.324) (0.132,0.210,0.288) 
A6 (0.039,0.086,0.165) (0.039,0.069,0.147) (0.274,0.357,0.374) (0.195,0.272,0.319) 
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Step 3: Design the weighted normalized fuzzy decision matrix by multiplying the normalized fuzzy 
criteria values with the corresponding values of crisp criteria weights (Lc1, Lc2, Lc3, Lc4) using Eqs. 
(7-9). Weighted normalized fuzzy decision matrix is shown in Table 12. 

Table 12 
Weighted normalized fuzzy decision matrix for WQS 

 C1 C2 C3 C4 
A1 (0.0226,0.0434,0.0639) (0.0123,0.0264,0.0440) (0.0676,0.0894,0.0983) (0.0096,0.0172,0.0364) 
A2 (0.0350,0.0557,0.0765) (0.0545,0.0720,0.0791) (0.0110,0.0239,0.0457) (0.0593,0.0785,0.0862) 
A3 (0.0639,0.0847,0.0928) (0.0335,0.0511,0.0686) (0.0197,0.0371,0.0589) (0.0364,0.0556,0.0748) 
A4 (0.0350,0.0557,0.0765) (0.0369,0.0545,0.0720) (0.0110,0.0197,0.0415) (0.0364,0.0556,0.0748) 
A5 (0.0639,0.0847,0.0928) (0.0581,0.0757,0.0791) (0.0415,0.0634,0.0852) (0.0325,0.0517,0.0709) 
A6 (0.0103,0.0226,0.0434) (0.0089,0.0157,0.0335) (0.0720,0.0939,0.0983) (0.0480,0.0670,0.0785) 

 

Step 4: Among these four criteria application complexity (C1) is the only non-beneficial attribute, 
where lower value is preferred and higher values are desired for operational profile (C2), reusability 
(C3) and functionality (C4). The overall rating of beneficial criteria is calculated using Eqs. (10-12) 
and the overall rating of non-beneficial criteria is calculated using Eqs. (13-14) and (15).The overall 
ratings for beneficial and non-beneficial criteria for the WQS is shown in Table 13. 

Table 13 
Overall ratings for beneficial and non-beneficial criteria for the WQS 

  S+    S-
  

 
 l m  u  l  m u 
A1 0.0895 0.1331 0.1788 0.0226 0.0434 0.0639 
A2 0.1249 0.1745 0.2110 0.0350 0.0557 0.0765 
A3 0.0897 0.1438 0.2024 0.0639 0.0847 0.0928 
A4 0.0844 0.1299 0.1884 0.0350 0.0557 0.0765 
A5 0.1322 0.1908 0.2352 0.0639 0.0847 0.0928 
A6 0.1289 0.1766 0.2104 0.0103 0.0226 0.0434 

 

Step 5: Derive the values of overall performance index of all the components of WQS by Eq. (16) to 
defuzzify the overall ratings for both beneficial and non-beneficial criteria, as illustrated in Table 14. 

Table 14 
Overall performance index values and the rank assignment of all the components for the WQS 

                             S Rank 
A1 S1 0.0926 4 
A2 S2 0.1159 2 
A3 S3 0.0734 6 
A4 S4 0.0826 5 
A5 S5 0.1098 3 
A6 S6 0.1479 1 

 

Step 6: The ranking of WQS components is shown in Table 14, therefore alternative A6 (Measurement) 
will contribute the most and alternative A3 (Service Facility) will contribute the least to the reliability 
estimation of overall application of WQS. Components ranks as follows (starting with the best 
alternative): A6 ≻ A2 ≻ A5 ≻ A1 ≻ A4 ≻ A3. 

5.3 Distributed Medical Informatics System 

In this case study, we considered a small component-based distributed medical informatics system 
(MIS) originally presented by Yacoub et al. (2004). This system has total five components namely: (1) 
AE Client (A1), (2) AE Server (A2), (3) DICOM Upper Layer Client (A3), (4) DICOM Upper Layer 
Server (A4) and (5) Network (A5). Ranking of components for CBSS reliability estimation problem 
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hierarchy is described in Fig. 6. Components available in the application are taken as alternatives. The 
graphical representation of the MIS is described in Fig. 7. Here, AE Client and AE Server subsystems 
(application entities) are connected via a Network subsystem. 

 

Fig. 6. MIS reliability estimation problem hierarchy 

 

Fig. 7. Graphical representation of MIS 

The following describes the fuzzy-MOORA approach analyses we conducted for MIS. 

5.3.1. Results 

Firstly, we set the linguistic ratings for all alternatives with respect to criteria. Linguistic variables and 
their fuzzy numbers are shown in Table 1. Weightage for each criteria is then collected by decision 
makers, as shown in Table 2. A team of five decision makers, D1, D2, D3, D4 and D5, was formed to 
evaluate the MIS. Now, by catering decision maker’s subjective judgement we develop the fuzzy 
criteria and then we use the linguistic variables to evaluate the ratings of alternative with respect to 
each criteria as shown in Table 15.  



Z. A. Siddiqui and K. Tyagi / Decision Science Letters 5 (2016) 
 

185 

Table 15 
Reliability ranking assignment matrix for MIS 

Criteria Candidate D1 D2 D3 D4 D5 
Application 
complexity (C1) 

AE Client (A1) F F P P P 
AE Server (A2) G G VG G VG 
DICOM UL Client (A3) F G F G G 
DICOM UL Server (A4) G G F G P 
Network (A5) VG VG VG G G 

Operational profile 
(C2) 

AE Client (A1) P F F P P 
AE Server (A2) VP VP VP F F 
DICOM UL Client (A3) F VG G G VG 
DICOM UL Server (A4) G G G F F 
Network (A5) VG VG G G G 

Reusability (C3) AE Client (A1) VP VP P P VP 
AE Server (A2) F F F G G 
DICOM UL Client (A3) VP VP VP P VP 
DICOM UL Server (A4) G G G F F 
Network (A5) VG VG VG G VG 

Functionality (C4) AE Client (A1) P VP VP P VP 
AE Server (A2) VP P F F VP 
DICOM UL Client (A3) G G P F F 
DICOM UL Server (A4) G G G F F 
Network (A5) VG VG VG G G 

 

Determine the weights of four criteria, application complexity (C1), operational profile (C2), 
reusability (C3) and functionality (C4), from the fuzzy numbers of weights given in Table 16 using 
AHP method as Lc1 = 0.2629, Lc2 = 0.2280, Lc3 = 0.2629 and Lc4 = 0.2462. 

Step 1: Design fuzzy decision matrix using triangular fuzzy membership function as shown in Table 
16. 

Table 16 
Fuzzy decision matrix for MIS 

 C1 C2 C3 C4 
A1  (1.8,3.8,5.8) (1.8,3.8,5.8) (1.0,1.8,3.8) (1.0,1.8,3.8) 
A2 (5.8,7.8,9.0) (1.8,2.6,4.6) (3.8,5.8,7.8) (1.8,3.0,5.0) 
A3 (4.2,6.2,8.2) (5.4,7.4,8.6) (1.0,1.4,3.4) (3.4,5.4,7.4) 
A4 (3.8,5.8,7.8) (4.2,6.2,8.2) (4.2,6.2,8.2) (4.2,6.2,8.2) 
A5 (6.2,8.2,9.0) (5.8,7.8,9.0) (6.6,8.6,9.0) (6.2,8.2,9.0) 
Weight (6.2,8.2,9.0) (3.0,5.0,7.0) (6.2,8.2,9.0) (3.4,5.4,7.4) 

 

Step 2: Determine the normalized fuzzy decision matrix using Eq. (4), (5) and (6). Normalized fuzzy 
decision matrix is shown in Table 17. 

Table 17 
Normalized fuzzy decision matrix for MIS 

 C1 C2 C3 C4 
A1 (0.071.0.150,0.228) (0.078,0.164,0.250) (0.046,0.084,0.176) (0.047,0.084,0.177) 
A2 (0.228,0.307,0.354) (0.078,0.112,0.198) (0.176,0.269,0.362) (0.084,0.140,0.233) 
A3 (0.165,0.244,0.323) (0.233,0.319,0.370) (0.046,0.065,0.158) (0.158,0.251,0.345) 
A4 (0.150,0.228,0.307) (0.181,0.267,0.353) (0.195,0.288,0.381) (0.196,0.289,0.382) 
A5 (0.244,0.323,0.354) (0.250,0.336,0.388) (0.306,0.399,0.418) (0.289,0.382,0.419) 

 

Step 3: Design the weighted normalized fuzzy decision matrix by multiplying the normalized fuzzy 
criteria values with the corresponding values of crisp criteria weights (Lc1, Lc2, Lc3, Lc4) using Eq. 
(7), (8) and (9). Weighted normalized fuzzy decision matrix is shown in Table 18. 
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Table 18 
Weighted normalized fuzzy decision matrix for MIS 

 C1 C2 C3 C4 
A1 (0.0187,0.0394,0.0599) (0.0178,0.0374,0.0570) (0.0121,0.0221,0.0463) (0.0116,0.0207,0.0436) 
A2 (0.0599,0.0807,0.0931) (0.0178,0.0255,0.0451) (0.0463,0.0707,0.0952) (0.0207,0.0345,0.0574) 
A3 (0.0434,0.0641,0.0849) (0.0531,0.0727,0.0844) (0.0121,0.0171,0.0415) (0.0389,0.0618,0.0849) 
A4 (0.0394,0.0599,0.0807) (0.0413,0.0609,0.0805) (0.0513,0.0757,0.1002) (0.0483,0.0712,0.0940) 
A5 (0.0641,0.0849,0.0931) (0.0570,0.0766,0.0885) (0.0804,0.1049,0.1099) (0.0712,0.0940,0.1032) 

 

Step 4: Among these four criteria application complexity (C1) is the only non-beneficial attribute, 
where lower value is preferred, whereas higher values are desired for operational profile (C2), 
reusability (C3) and functionality (C4). The overall rating of beneficial criteria is calculated using Eqs. 
(10-12) and the overall rating of non-beneficial criteria are calculated using Eqs. (13-15).The overall 
ratings for beneficial and non-beneficial criteria for the WQS is shown in Table 19. 

Table 19 
Overall ratings for beneficial and non-beneficial criteria for the MIS 

  S+    S-
  

 
 l m  u  l  m u 
A1 0.0414 0.0802 0.1468 0.0187 0.0394 0.0599 
A2 0.0847 0.1307 0.1977 0.0599 0.0807 0.0931 
A3 0.1041 0.1516 0.2108 0.0434 0.0641 0.0849 
A4 0.1408 0.2077 0.2747 0.0394 0.0599 0.0807 
A5 0.2086 0.2756 0.3015 0.0641 0.0849 0.0931 

 

Step 5: Derive the values of overall performance index of all the components of MIS by using Eq. (16) 
to defuzzify the overall ratings for both beneficial and non-beneficial criteria as illustrated in Table 20. 

Table 20 
Overall performance index values and the rank assignment of all the components for the MIS 

 S Rank 
A1 S1 0.0569 5 
A2 S2 0.0684 4 
A3 S3 0.0952 3 
A4 S4 0.1525 2 
A5 S5 0.1832 1 

 

Step 6: The ranking of MIS components is shown in Table 20, therefore alternative A5 (Network) will 
contribute the most and alternative A1 (AE Client) will contribute the least to the reliability estimation 
of overall application of MIS. Components ranks are as follows (starting with the best alternative): A5 
≻ A4 ≻ A3 ≻ A2 ≻ A1. These results clearly suggest the usefulness, accuracy, feasibility and 
scalability of fuzzy-MOORA method in ranking the components of CBSS for reliability estimation. 

6. Conclusions 

Multi-criteria decision problems include both qualitative and quantitative factors. Generally, these 
factors cannot be quantified easily. This is because of vagueness in information, fuzziness in human 
perception, unavailability of reliable and complete information. Fuzzy-MOORA plays a vital role in 
such environment. The proposed approach is very simple and comprehensible which may handle large 
number of selection criteria. It gives the ranking of components as well as the usage frequency due to 
resulted performance index based on chosen criteria as suggested by subject matter experts (SMEs) and 
this ranking will help to estimate the overall reliability of application. Ranking of components of any 
CBSS may be calculated using this study. This method is also applicable to the problems with large 
numbers of scenarios and objectives. However, a limitation of this approach is that it is a time 
consuming process for complex software application and needs an automated tool to do this job also 
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rules are made by SMEs which may take time and may be of diverse opinion. In this study, we have 
selected four most critical criteria but there may be some more good criteria according to other SMEs, 
also a criterion depends upon the application itself. 
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