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 The aim of this work is to present a reliability and profit analysis of a two-dissimilar 
parallel unit system under the assumption that operative unit cannot fail after post 
repair inspection and replacement and there is only one repair facility. Failure and 
repair times of each unit are assumed to be uncorrelated. Using regenerative point 
technique various reliability characteristics are obtained which are useful to system 
designers and industrial managers. Graphical behaviors of mean time to system 
failure (MTSF) and profit function have also been studied. In this paper, some 
important measures of reliability characteristics of a two non-identical unit standby 
system model with repair, inspection and post repair are obtained using regenerative 
point technique.  
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1. Introduction 

 
Reliability is an important area that is receiving attention globally and it is vital for proper utilization 
and maintenance of any industrial system. It involves techniques for increasing system effectiveness 
through reducing failure frequency and maintenance cost minimization. A two-unit system with one 
repairman has been one of the classical models in the literature of reliability theory. Several studies 
including Tuteja (1992) discussed the reliability and profit analysis of two single-unit models with three 
modes of the units normal (N), partial failure (P) and complete failure (F) and different repair policies 
of repairmen who appear and disappear randomly. This paper consists of two models: in model 1, the 
unit goes under repair the moment it fails partially, whereas in model 2 the unit goes for repair on 
complete failure. Pandey et al. (1995) explained the two non-identical unit systems with two types of 
repair, the internal and the external one. The external repair is called only when the internal staff failed 
to do the job. In the case of external repair, there was a provision of inspection, wherein if the repair is 
found unsatisfactory, it is sent for post repair. Hang (1997) investigated on non-destructive inspection, 
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in this paper his proposed approach was illustrated by two examples in evaluating reliability with 
inspection information and in selecting an optimal inspection and maintenance schedule by minimizing 
the probability of time to failure before inspection and before the time at the end of remaining service 
life. Li et al. (1998) studied the availability characteristics and the reliability of a three-unidentical-unit 
repairable system with two various repair supports. Under some practical assumptions, they obtained 
the explicit expressions of the state probabilities of the system and then the explicit expressions of some  
performance measures of the system like steady-state availability, steady-state failure frequency steady-
state renewal frequency etc. Tuteja et al. (1999) studied two server systems under the assumption that 
regular repairman is not always available with the system he/she appears disappears randomly.  Rizwan 
et al. (2005) analyzed a system with the provision of multiple post repair inspection and accident during 
inspection. Two models were discussed: one was single unit operative system and the other was a two-
unit cold standby system. In this paper, they assumed that after every repair, unit will go for further 
inspection to check whether it is in good mode or not. If not, it will again go for repair. This process is 
continued till the unit becomes operative. 
 
Yadavalli et al. (2005) studied the steady-state availability of a two-component system in series and 
parallel subject to individual failures (I-failures) and common-cause shock (CCS) failures which was 
studied from a Bayesian viewpoint with different types of priors assumed for the unknown parameters 
in the system. Barron et al. (2006) studied an R out of N repairable system consisting of N independent 
components, operating where, at least, R components are functioning. The system fails whenever the 
number of good components decreases from R to R − 1. A failed component is sent to a repair facility 
having several repairmen, in this paper both cold and warm stand-by systems are considered. Parashar 
and Taneja (2007) examined such a system wherein two PLC were working in master-slave fashion. 
Initially, the master unit is operative, and the slave unit is in hot standby. The slave unit can also fail, 
but with a lower failure rate than the master unit. Taneja et al. (2007) discussed the Profit evaluation of 
2-out-of-3 unit system for an ash handling plant where in situation of system failure did not arise. Yun‐
Shiow Chen et al. (2008) established an optimal inspection policies of reliability analysis for quantal‐
response product with Weibull lifetime components and considered a product consisting of m different 
components in series with lifetimes that follow Weibull distributions, and applied a competing failure 
model to examine the proposed series system for quantal‐response products. 
 
Goyal et al. (2010) performed a comparative study between two models for sulphated juice pump 
systems working seasonally and having different configurations. Papageorgiou and Kokolakis (2010) 
studied a parallel (2, n-2)-system  where two units start their operations, simultaneously and each was 
replaced instantaneously on its failure by one of the (n-2) warm standbys. They assumed the availability 
of n non-identical, non-repairable units. The unit-lifetimes in full operational mode and in partial 
operational mode have general distribution functions Gi and Hi (i=1, …, n),  respectively. The system 
reliability is evaluated by recursive relations. Sharma et al. (2010) presented the Availability Evaluation 
of an Agricultural Machine but without any inspection after repair. They assumed that repaired unit 
would work as well as new one after repair. Bhatti et al. (2011) discussed two identical unit cold standby 
systems with single repair man facility where concept of inspection policy has also been introduced for 
detecting the kind of failures (major or minor) before the failed unit get repaired by repairman.  Narang 
et al. (2012) discussed the profit analysis of two unit standby oil delivering system with three types of 
failure complete failure, where normal to partial failure and partial to complete failure was also 
analyzed. Initially one unit is operative and the other is standby. In case of partial failure, repair of unit 
is accomplished by switching off the unit. When both units fail then for repairing, priority is given to 
partially failed unit over completely failed unit.  

Kakkar et al. (2013) studied a two dissimilar parallel unit oil delivering system with preventive 
maintenance of both units with one repairman under the assumption that each unit is as good as new 
after the preventive maintenance and repair. Kumar et al. (2012) discussed the reliability modelling of 
a computer system with independent hardware and software failures subject to maximum operation and 
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repair times. They discussed a reliability model in which a single server who visits the system 
immediately may do all the work of preventive maintenance (PM), repair and replacement of the units 
consisted by the system according to their failures. The unit undergoes for PM after a maximum 
operation time at normal mode. If repair of the component is not possible up to a pre-specific time 
(called Maximum Repair Time), the components are replaced by new one with some replacement time. 
However, only replacement of the software components by new one is made after failures. Gupta and 
Gupta (2013) discussed the one unit reliability model where they tried to minimize the cost incurred in 
component replacement of a system during post repair when system goes under all the process of 
repairing policy. Gupta et al. (2013) presented a profit analysis of a reliability model, which consists of 
one-unit system with post inspection, post repair, preventive maintenance and replacement of a 
particular unit. Bulama et al. (2013) discussed the stochastic modeling of a repairable warm standby 
system and explained a redundant system with warm standby units. They developed the explicit 
expressions for mean time to system failure (MTSF), steady-state availability, busy period and profit 
function by using Kolmogorov’s forward equation method by assuming that after repair, unit is as good 
as the new one and there is no need for any further inspection. Gupta and Taneja  (2014)  investigated 
the reliability and profit analysis of a cement grinding system with failure in the nine important 
components namely; belt conveyor, bucket elevator, separator, roller press, diverting gate, process fan, 
cyclone, ball mill and fly ash system. Only one type of failure was considered for each of these 
components except diverting gate. Kakkar et al. (2014) discussed the probability analysis of a complex 
system working in a sugar mill with repair equipment failure and correlated life time. They presented 
a reliability analysis of a complex (SJP) system in a sugar mill with the assumption that repair 
equipment may also fail during the repair. They considered the analysis of a three-unit system with one 
big unit and two small identical units of a SJP System in a sugar mill. Failure and Repair times of each 
unit were assumed to be correlated.   

All the above studies assumed that after repair each failed unit is “as good as the new”. However, in 
real existing situations we observe that there are many sophisticated, expensive equipment where it is 
necessary to inspect a repaired equipment to check whether the repair executed is up to the desirable 
level or not. It has been observed before that the failed equipment may be sent for post-repair if repair 
is not found satisfactory during inspection. It has been also observed that when both units fail then there 
is no need of inspection after repair. Keeping the above real situation in view, we analyze a two-
dissimilar-unit-system model in which a unit goes for repair, inspection and post repair as it fails 
whereas if the second unit also fails with another one then no unit will go for inspection after repair. 
The proposed approach has been applied to two unit parallel system in northern part of India. Keeping 
the above situation in view we analyze a two unit non identical parallel system introducing the concept 
of single post repair inspection and replacement. 
 
2. System model description and assumptions 
 
 i)   The system consists of two non-identical units (unit-1 and unit-2). Initially, system starts its 
operations from state S0 in which unit-A and B both are operative.  
 ii)  After the repair of a unit A or B is accomplished, it goes for inspection to decide whether the repair 
is perfect or not. If the repair of a unit is found to be perfect then the repaired unit becomes operational, 
otherwise it is sent either for post repair or for replacement. The probability of having a perfect repair 
is fixed. 
iii)  Upon failure of both units, no unit goes for inspection after repair.  
 
3.  Notations 

A0 : Unit A is in operative mode. 
B0: Unit B is in operative mode. 
Af Unit A is in failure mode.  
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Bf:  Unit B is in failure mode.  
AI:  Unit A is in inspection mode. 
BI:  Unit B is in inspection mode. 
Af1/ Bf1:  Unit A and unit B are in failure mode before inspection. 
Af2 /Bf2 : 

AfR/BfR : 
Unit A and unit B are in failure mode after inspection. 
Unit A and unit B are in replacement mode after inspection. 

λi(i=1,2): Constant rate of failure of  unit A and B, respectively, 
g1(t): Rate of repair of  unit A and B, respectively, 
g2(t): Rate of repair of  unit A and B, respectively, 
a/x: 
b/y: 
p/q: 

Probability of post repair  after inspection of unit A and B, 
Probability of replacement of unit  after inspection of  A and B, 
Probability of  unit is perfect after inspection of unit A and B,  

h1(t)): Rate of  inspection of  the Unit A 
h2(t): Rate of  inspection of the Unit  B 

(.), (.) :ij ijq Q  pdf & cdf of transition time from regenerative states Si  to Sj, 

:iµ  Mean sojourn time in state Si, 
 

⊕ : Symbol of Laplace Convolution ( )A t ⊕
0

( ) ( ) ( )
t

B t A t u B u du= −∫ ,     

⊗ : 
Symbol of  laplace Stieltjes convolution         ( )A t ⊗

0

( ) ( ) ( )
t

B t A t u dB u= −∫ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Transition Diagram 
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3.1 Transition Probability and Sojourn Times 
 

The steady state transition probability can be as follows 
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Here we can see that 
P01+P02=1, (13) 
P13+P17=1, (14) 
P20+ P24+P28=1, (15) 
P30+ P36+P39=1, (16) 
P40+ P45+P410=1. (17) 

Mean sojourn times: 
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'* ( ),3 1h 0µ =  
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)0(
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24 h=µ . (22) 

4. Analysis of Characteristics  

4.1 MTSF (Mean Time to System Failure) 

To determine the MTSF of the system, we regard the failed state of the system as absorbing state, 
by probabilistic arguments, we get  

( ) ( ) ( ),0 01 1 02 2t Q t Q tφ φ φ= ⊗ + ⊗  (23) 
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( ) ( ) ( ),1 13 3 17t Q t Q tφ φ= ⊗ +  (24) 

( ) ( ) ( ),2 24 4 28t Q t Q tφ φ= ⊗ +  (25) 

( ) ( ) ( ) ( ),3 30 0 36 6 39 9t Q t Q t Q tφ φ φ φ= ⊗ + ⊗ + ⊗  (26) 

( ) ( ) ( ) ( ),4 40 0 45 5 410 0t Q t Q t Q tφ φ φ φ= ⊗ + ⊗ + ⊗  (27) 

( ) ( ),5 50 0t Q tφ φ= ⊗  (28) 

( ) ( ),6 60 0t Q tφ φ= ⊗  (29) 

( ) ( ),9 90 0t Q tφ φ= ⊗  (30) 

( ) ( ).10 100 0t Q tφ φ= ⊗  (31) 

Taking Laplace Stieltjes transforms of these relations and solving for **
0 ( )sφ , 

**
0

( )( ) ,
( )

N ss
D s

φ =  
(32) 

where    

( ) ( ) ( ),0 14 41 1 01 02 41 2 01 14 02N 1 P P P P P P P Pµ µ µ= − + + + +  (33) 

( ) .14 41 01 10 02 41 10D 1 P P P P P P P= − − +  (34) 

4.2 Availability Analysis 

Let ( )iA t  be the probability that the system is in up-state at instant t given that the system entered 
regenerative state i at t=0. Using the arguments of the theory of a regenerative process the point wise 
availability ( )iA t  is seen to satisfy the following recursive relations 

( ) ( ) ( ) ( ),0 0 01 1 02 2A t M t q A t q A t= + ⊕ + ⊕  (35) 

.( ) ( ) ( ) ( ),1 1 13 3 12 7 2A t M t q A t q A t= + ⊕ + ⊕
 

(36) 

.( ) ( ) ( ) ( ),2 2 24 4 21 8 1A t M t q A t q A t= + ⊕ + ⊕
 

(37) 

( ) ( ) ( ) ( ) ( ),3 3 30 0 36 6 39 9A t M t q A t q A t q A t= + ⊕ + ⊕ + ⊕
 

(38) 

( ) ( ) ( ) ( ) ( ),4 4 40 0 45 5 410 10A t M t q A t q A t q A t= + ⊕ + ⊕ + ⊕
 

(39) 

( ) ( ) ( ),5 5 50 0A t M t q A t= + ⊕
 

(40) 

( ) ( ) ( ),6 6 60 0A t M t q A t= + ⊕
 

(41) 

( ) ( ) ( ),9 9 90 0A t M t q A t= + ⊕
 

(42) 

( ) ( ) ( ).10 10 100 0A t M t q A t= + ⊕
 

(43) 

Now, taking Laplace transform of these equations and solving them for *
0 ( ),A s  we get  

* 1
0

1

( )( ) .
( )

N sA s
D s

=  
(44) 

The steady state availability is  

* 1
0 0

0 1

( ( ))lim
s

NA sA s
D→

= = , 
(45) 

where 
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(47) 

 
4.3 Busy Period Analysis of the Repairman 

Let Bi(t) be the probability that the repairman is busy at instant t, given that the system is entered to 
regenerative state i at t=0. By probabilistic arguments, we have the following recursive relations for 
Bi(t). 

( ) ( ) ( ),0 01 1 02 2B t q B t q B t= ⊕ + ⊕  (48) 

.( ) ( ) ( ) ( ),1 1 13 3 12 7 2B t W t q B t q B t= + ⊕ + ⊕
 

(49) 

.( ) ( ) ( ) ( ),2 2 24 4 21 8 1B t W t q B t q B t= + ⊕ + ⊕
 

(50) 

( ) ( ) ( ) ( ),3 30 0 36 6 39 9B t q B t q B t q B t= ⊕ + ⊕ + ⊕
 

(51) 

( ) ( ) ( ) ( ),4 40 0 45 5 410 10B t q B t q B t q B t= ⊕ + ⊕ + ⊕
 

(52) 

( ) ( ) ( ),5 5 50 0B t W t q B t= + ⊕
 

(53) 

( ) ( ) ( ),6 6 60 0B t W t q B t= + ⊕
 

(54) 

( ) ( ),9 90 0B t q B t= ⊕
 

(55) 

( ) ( ).10 100 0B t q B t= ⊕
 

(56) 
 
 
 
   
                                                                                                                                                   

   
                                                              

Taking Laplace transform of the equations of busy period analysis and solving them for *
0 ( )B s yields 

* 2
0

1

( )( )
( )

N sB s
D s

= . 
(57) 

In the steady state  

* 2
0 0

0 1

( ( ))lim
s

NB sB s
D→

= =  
(58) 

where   

)]1()1()()1()[1( 41147.1156657841147.117815146.45517865567.18712302 PPPPPPPPPPPPPPPPPPPPN −−+−−−++−−= µ  (59) 

D1 has already been specified. 

4.4 Busy Period Analysis of the Repairman (Inspection time only) 

Let IBi(t) be the probability that the repairman is doing his job, inspection time of repairing at instant t, 
given that the system is entered to regenerative state i at t=0. By probabilistic arguments we have the 
following recursive relations for IBi(t) 

( ) ( ) ( ),0 01 1 02 2IB t q IB t q IB t= ⊕ + ⊕  (60) 

.( ) ( ) ( ),1 13 3 12 7 2IB t q IB t q IB t= ⊕ + ⊕
 

(61) 

.( ) ( ) ( ),2 24 4 21 8 1IB t q IB t q IB t= ⊕ + ⊕
 

(62) 
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( ) ( ) ( ) ( ) ( ),3 3 30 0 36 6 39 9IB t W t q IB t q IB t q IB t= + ⊕ + ⊕ + ⊕
 

(63) 

( ) ( ) ( ) ( ) ( ),4 4 40 0 45 5 410 10IB t W t q IB t q IB t q IB t= + ⊕ + ⊕ + ⊕
 

(64) 

( ) ( ),5 50 0IB t q IB t= ⊕
 

(65) 

( ) ( ),6 60 0IB t q IB t= ⊕
 

(66) 

( ) ( ),9 90 0IB t q IB t= ⊕
 

(67) 

)()( 010010 tIBqtIB ⊕= .
 

(68) 

Taking Laplace transform of the equations of busy period analysis and solving them for  )(*
0 sIB yields 

* ( )( ) .
( )

3
0

1

N sIB s
D s

=  
(69) 

In the steady state  

1

3*
000 ))((lim

D
N

ssIBIB
s

==
→

 

(70) 

where 
    

. .( ) ( ).3 0 23 47 8 2 02 51 18 7 02 41 48 02 41 48N 1 P P P P P P P P P P Pµ µ= − + + + +  (71) 

D1 has already been specified in Eq. (47). 

4.5 Expected Number of Visits by the Repairman 

We define ( )iV t  as the expected number of visits by the repairman in (0,t], given that the system initially 
starts from regenerative state Si 

By probabilistic arguments we have the following recursive relations for ( )iV t  
( ) ( ( )) ( ( )),0 01 1 02 2V t Q 1 V t Q 1 V t= ⊗ + + ⊗ +  (72) 

.( ) ( ) ( ),1 13 3 12 7 2V t Q V t Q V t= ⊗ + ⊗
 

(73) 

.( ) ( ) ( ),2 24 4 21 8 1V t Q V t Q V t= ⊗ + ⊗
 

(74) 

( ) ( ) ( ) ( ),3 30 0 36 6 39 9V t Q V t V V t Q V t= ⊗ + ⊗ + ⊗
 

(75) 

( ) ( ) ( ) ( ),4 40 0 45 5 410 10V t Q V t Q V t Q V t= ⊗ + ⊗ + ⊗
 

(76) 

( ) ( ),5 50 0V t Q V t= ⊗
 

(77) 

( ) ( ),6 60 0V t Q V t= ⊗
 

(78) 

( ) ( ),9 90 0V t Q V t= ⊗
 

(79) 

( ) ( ).10 100 0V t Q V t= ⊗
 

(80) 

Taking Laplace stieltjes transform of the equations of expected number of visits and solving them for
**

0 ( )V s yields,  

)(
)()(

1

4**
0 sD

sNsV = . 
(81) 

In steady state  
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*lim( ( )) ,4
0 0s 0

1

NV sV s
D→

= =  
(82) 

where   
)1()()()1( 028.47878480244841027.18510222304 PPPPPPPPPPPPN ++++++−= µµµµ  (83) 

D1 has already been specified in Eq. (47). 

4.6 Expected Number of   Replacement 

We define Ri (t) as the expected number of replacement in (0,t],given that the system  initially starts 
from regenerative state Si  By probabilistic arguments we have the following recursive relations for Ri 
(t),                      

( ) ( ) ( )),0 01 1 02 2R t Q R t Q R t= ⊗ + ⊗            
(84) 

.( ) ( ) ( ),1 13 3 12 7 2R t Q R t Q R t= ⊗ + ⊗
 

        
(85) 

.( ) ( ) ( ),2 24 4 21 8 1R t Q R t Q R t= ⊗ + ⊗
 

        
(86) 

( ) ( ) ( ) ( ( )),3 30 0 36 6 39 9R t Q R t R R t Q 1 R t= ⊗ + ⊗ + ⊗ +
 

        
(87) 

( ) ( ) ( ) ( ( )),4 40 0 45 5 410 10R t Q R t Q R t Q 1 R t= ⊗ + ⊗ + ⊗ +
 

        
(88) 

( ) ( ),5 50 0R t Q R t= ⊗
 

        
(89) 

( ) ( ),6 60 0R t Q R t= ⊗  
(90) 

( ) ( ),9 90 0R t Q R t= ⊗  
(91) 

( ) ( ).10 100 0R t Q R t= ⊗  
(92) 

After Taking Laplace Stieltjes Transform of the equations of expected number of visits and solving 
them for **

0 ( )V s , we get  

)(
)(

)(
1

5**
0 sD

sN
sR =  

(93) 

In steady state 

1

5*
000 ))((lim

D
N

ssRR
s

==
→

 
(93) 

 where   

028.47878480244841020228.472305 )()1( PPPPPPPPPPPN µµµµ ++++−=  (94) 

D1 has already been specified above in Eq. (47). 

5. Profit analysis and conclusion  

The expected total profit incurred to the system in steady state is given by      
 P=C0A0 -C1B0-C2IB0-C3V0-C4R0,                                                                                                                 (96) 
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where  

0C =Revenue/unit up time of the system, 

1C =Cost/unit time for which repairman is busy, 

2C =Cost/unit time for which repairman is busy in inspection, 
C3=Cost/visit of the repairman, 
C4 = Cost/unit replacement. 
 

For the graphical interpretation, the following particular case is considered 
 

( ) tetg 1
11

θθ −= , ( ) tetg 2
22

θθ −= , ( ) teth 1
12

φφ −= , ( ) teth 2
22

φφ −= , 
 

where  and 1 2θ θ  are the repair rate and  and 1 2φ φ    are the inspection rate of units A and B, respectively. 
For a more clear understanding of the system characteristics w.r.t. the various parameters involved, we 
trace the graphs for availability, MTSF and Profit Function in Fig. 2, Fig. 3 and Fig. 4, respectively 
w.r.t the failure rate parameters of unit A for three different values of p (probability of perfectness of 
unit after inspection) while the other parameters are kept constant  as 
a=0.05, b=0.01,  x=0.02 ,y=0.004, 006.0,004.0,03.0,02.,002.0,003.0 212121 ====== θθλλββ  

100,30,50,500,700,001.0,005.0 4321021 ======= CCCCCφφ . 
According to Fig. 2, availability decreases as the failure rate increases irrespective of other parameters. 
This bend also indicates that, for the same value of the failure rate, availability of the system is higher 
for higher values of “p”, so here we can see that the high value of “p” tends to increase the expected 
life time of the system. It can be interpreted from Fig.3 that as the failure rate is moving to the right 
hand side of the graph, MTSF goes down, this concludes that the reliability of the system also decreases 
with an increase in the failure rate. Also Fig. 4 reveals the variation in profit with respect to the failure 
rate and we can see that profit decreases as the failure rate increases. Also for the fixed value of failure 
rate, the profit is higher for higher value of “p”. It can be interpreted from Fig. 5 that with an increase 
in repair rate, profit increases. This concludes that reliability and profit of the system also increases as 
the repair rate increases. The observations drawn from the Fig. 4 is more interesting as for a  specific 
value of p=0.7 (probability of perfectness of unit after inspection) the profit of the system is -ve  if the 
failure rate is  greater than 0.91, profit is nil (=0)   if the failure rate is equal to 0.91 and profit is +ve  if  
the failure rate is less than  0.91, so by doing this we can find the threshold limit for the failure rate, 
beyond this limit, profit will be no more. From Fig. 6 it is clear that as the revenue per unit up time of 
the system increases profit of the system moves up and for a fixed value of  “C0”( Revenue/unit up time 
of the system) we can observe that the profit is higher for higher value of  “p” (probability of perfectness 
of unit after inspection). From the cut-off points of the revenue per unit up time, the cost for visiting 
the repairman can be fixed. Here we can conclude that cut off points for various failure rates and repair 
rates can be obtained which helps in deciding the optimum acceptable values of rates so that the system 
may be profitable. That is, the upper limit of the failure rate can be obtained so that the system can give 
the desirable profit. 
 

  
Fig. 2. Avalability vs Failure Rate Fig. 3. MTSF vs Failure Rate 
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Fig. 4. Profit vs Failure Rate Fig. 5.  Profit vs Repair Rate 

 
Fig. 6.  Profit vs Revenue(CO) 
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