
Decision Science Letters 4 (2015) 537–550

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

A study on the performance of differential search algorithm for single mode resource
constrained project scheduling problem

Nazanin Rahmania, Vahid Zeighamib and Reza Akbaric*

aCollege of Engineering, Science and Research Branch, Islamic Azad University, Yasuj, Iran,
bDepartment of Mathematics and Industrial Engineering, Ecole Polytechnique, de Montreal, Montreal, Quebec, Canada
cDepartment of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
C H R O N I C L E A B S T R A C T

Article history:
Received March 29, 2015
Received in revised format:
May 12, 2015
Accepted May 12, 2015
Available online
May 18 2015

 Differential Search (DS) algorithm is a new meta-heuristic for solving real-valued
numerical optimization. This paper introduces a new method based on DS for solving
Resource Constrained Project Scheduling Problem (RCPSP). The RCPSP is aimed to
schedule a set of activities at minimal duration subject to precedence constraints and
the limited availability of resources. The proposed method is applied to PSPLIB case
studies and its performance is evaluated in comparison with some of state of art
methods. Experimental results show that the proposed method is effective. Also, it is
among the best algorithms for solving RCPSP.

Growing Science Ltd. All rights reserved. 5© 201

Keywords:
Differential search algorithm
Resource constrained project
scheduling problem
Single mode

1. Introduction

The resource constrained project scheduling problem (RCPSP) is an important problem in project
management, manufacturing and resource optimization. The RCPSP occurs frequently in high scale
projects management such as software development, construction of power plants, industrial projects,
etc. (Hartmann & Kolisch, 2000; Kolisch & Hartmann, 2006). RCPSP can be separated in different
classes such as single mode RCPSP and multi-mode RCPSP with non-regular objective functions,
stochastic RCPSP, bin-packing-related RCPSP problems, and multi resource constrained project
scheduling problem. A comprehensive study on different types of RCPSP has been presented by Yang
et al. (2001). In single mode RCPSP, a project consisting of a set of activities with fixed durations and
resource requirements is considered (Zeighami et al., 2013). In multi-mode RCPSP, each activity can
be executed under different durations with renewable and non-renewable resources (Coelho &
Vanhoucke, 2011). In stochastic RCPSP, activity durations are not deterministic because during the
project implementation there may be a series of random factors affecting the duration of activities

* Corresponding author.
E-mail address: akbari77@gmail.com (R. Akbari)

© 2015 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.dsl.2015.5.005

mailto:akbari77@gmail.com

 538

(Zheng et al., 2014). In RCPSP with non-regular objective functions, the goal is to minimize the
activities’ costs (Neumann & Zimmermann, 1999). In bin-packing-related RCPSP problems, the
resource capacity represents the bin size, while a task’s resource consumption requirement represents an
item size (Kumar, 2014). In multi-resource-constrained project scheduling problems, a job may require
a set of operations, or a set of successive resources (Kumar, 2014).
In this work, the basic single mode RCPSP is considered. This type of RCPSP is a difficult problem to
solve. Limitation of resources and precedence constraint makes it difficult. The RCPSP consists of
executing a group of activities limited by constraints. Processing every activity requires predefined
amount of resources. Every project has its own precedence constraints, which means that each activity
can be processed when all its predecessors are finished. Otherwise, an activity cannot start before the
completion of all of its predecessors. In general, the purpose of project schedules is to minimize its
completion time or makespan (𝑆𝑆𝑛𝑛+1), subject to precedence and resource constraints (Kolisch &
Hartmann, 2006). In recent years, different types of algorithms (e.g. exact, heuristics, and meta-
heuristics) have been proposed to solve single-mode RCPSP. A comprehensive survey on project
scheduling under resource constraint has been presented in (Orji & Wei, 2013). Like other NP-hard
problems, exact methods are no efficient in solving large-sized RCPSP problems. The exact methods
are suitable for small-sized RCPSP problems.
To solve large-sized RCPSP, alternative methods are required and the meta-heuristic methods can be
used (Hartmann & Kolisch, 2000; Kolisch & Hartmann, 2006; Kolisch & Hartmann, 1999; Kolisch &
Padman, 2001). These methods have the ability to generate near-optimal solutions even for large-sized
RCPSP problems. It is possible to categorize these methods in two classes. The first class includes
methods that keep one solution during each iteration. For example tabu search (Baar et al., 1998) and
simulated annealing (Bouleimen & Lecocq, 2003) set in this class. These methods start by single solution
and try to improve the solution, iteration by iteration until the termination condition is met. The second
class includes methods that keep a set of solution during each iteration and try to solve the problem with
a population of individuals. In recent years, many population and swarm based optimization algorithms
have been presented in literature that can be used to solve RCPSP. Most of representative methods in
this field are based on genetic algorithms, particle swarm optimization and bee algorithms. Genetic
algorithms have been used to solve RCPSP (Hartmann, 1998; Hartmann, 2002; Mendes et al., 2009;
Ranjbar et al., 2008). These methods showed the efficiency in solving single mode RCPSP. A magnet
based crossover operator was used by Zamani (2013) to improve the performance of genetic algorithm
in solving RCPSP. Different variants of particle swarm optimization have been used to solve RCPSP
(Jarboui et al., 2008; Luo et al. 2006; Zhang et al., 2008). Recently, a particle swarm optimization (PSO)
based hyper-heuristic algorithm for solving RCPSP has been presented by Koulinas et al. (2014). The
hyper-heuristic is aimed to work as an upper-level algorithm that controls several low-level heuristics
which operates to the solution space. The multiple justification particle swarm optimization (MJPSO)
using stacking justification for further improvement has been presented by Fahmy et al. (2014). A hybrid
particle swarm optimization procedure to solve the preemptive RCPSP in which a maximum of one
interruption per activity is allowed has been presented by Shou et al. (2015). A pseudo PSO (P-PSO)
has been introduced by Nasiri (2012) to cope with the complexity of scheduling problem. In P-PSO,
particles use the path relinking procedure to fly toward local and global best positions. The improved
PSO presented by Jia and Seo (2013) uses particle swarm and employs a double justification and an
operator for particle movement along with rank-priority-based representation, greedy random search,
and serial scheduling scheme.
Three variants of bee algorithms called Bees Algorithm (BA), Artificial Bee Colony (ABC), and Bee
Swarm Optimization (BSO) have been used to solve RCPSP (Ziarati et al., 2011; Akbari et al., 2012).
Also, the facility layout problem (FLP) concept and integration with the permutation-based artificial bee
colony (PABC) algorithm has been used by Jia and Seo (2013) for RCPSP. Beyond the methods
considered in above paragraphs, other meta-heuristic methods have been used to solve RCPSP. An
Activity-List based Nested Partitions (ANLP) algorithm for solving RCPSP was presented by Xiao et
al. (2014). This method partitions the feasible solution space which is formulated by activity-lists into
sub-regions by the nested partitions approach. Ant colony optimization (Merkle et al., 2002) is another
swarm-based optimization algorithm used to solve RCPSP. Firefly algorithm is known as another meta-

N. Rahmani et al. / Decision Science Letters 4 (2015)

539

heuristic methods which has been used by Sanaei et al. (2013) for scheduling problems. Generally,
different types of meta-heuristics have been used to solve this type of RCPSP. DS is one of the most
recently introduced meta-heuristics by Pinar Civicioglu (2012) to solve optimization problems. DS is
based on simulation of Brownian-like random-walk movement used by an organism to migrate. The DS
has been designed based on the superorganism migration. Using the migration aliving being such as
superorganism can find food, protection, in new fertile position. Amount of fertility can be used to
inspire an algorithm from the behaviors of superorganism migration. It seems that DS has the ability to
solve complex engineering problems. This work is aimed to study the performance of DS algorithm in
solving RCPSP problems.
The remaining of this paper is organized as follows: the problem formulation is given in Section 2. In
Section 3, the basic concepts of DS algorithm is presented. Section 4 presents the details of the proposed
method for solving RCPSP problems. The experimental results are given in Section 5. Finally, section
6 concludes this work.

2. Problem formulation

The single mode resource constrained project scheduling is a type of constrained optimization problems
that can be defined as follows:

Assume that we have a project 𝑃𝑃𝑃𝑃𝑃𝑃 which is shown as a directed acyclic Graph 𝐺𝐺 = (𝐴𝐴,𝐸𝐸) where 𝐴𝐴
represents a set of activities of the project which are represented by nodes and 𝐸𝐸 shows the precedence
relationships among the activities which are represented by edges of the graph. As an example, a project
with nine activities is shown in Fig. 1. We assume that the project has 𝑛𝑛 + 1 activities and 𝐾𝐾 renewable
resource type 𝑅𝑅 = {𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝐾𝐾} where 𝑅𝑅𝑖𝑖 is the finite capacity of resource type 𝑖𝑖. 𝐴𝐴 =
{𝐴𝐴0,𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛+1} is a set of 𝑛𝑛 + 1 activities. 𝐴𝐴0 and 𝐴𝐴𝑛𝑛+1 are dummy activities (e.g. activities 𝐴𝐴0
and 𝐴𝐴10 in Figure 1). They specify start and end of the project. When all activities are processed, the
project is completed. Each activity 𝐴𝐴𝑖𝑖 has fixed duration 𝑑𝑑𝑖𝑖. 𝐷𝐷 = {𝑑𝑑0,𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛+1} is a set of
durations. For dummy activities 𝐴𝐴0 and 𝐴𝐴𝑛𝑛+1, duration is zero (𝑑𝑑0 = 𝑑𝑑𝑛𝑛+1 = 0). Each activity 𝐴𝐴𝑖𝑖
requires 𝑃𝑃𝑖𝑖𝑖𝑖 units of resource 𝑅𝑅𝑖𝑖 during each period of its execution (Kolisch & Hartmann, 1999). The
time and resource requirements of each activity in Figure 1 is given in Table 1. Here, we assume that
each activity needs only one resource 𝑅𝑅1 with 7 instances.

Fig. 1. A project with nine activities

Dummy activities do not require any resources (𝑃𝑃0𝑖𝑖 = 𝑃𝑃𝑛𝑛+1,𝑖𝑖 = 0 where 𝑃𝑃 ∈ {1,2,3, … ,𝐾𝐾}). Precedence
between activities (edges in Graph) are represented by 𝐸𝐸. Set of pairs such as �𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖� ∈ 𝐸𝐸 means that
activity 𝐴𝐴𝑖𝑖 precedes activity 𝐴𝐴𝑖𝑖. 𝐴𝐴𝑖𝑖 is finished before 𝐴𝐴𝑖𝑖 is started. Considering the precedence
limitation, we assume that 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛+1} is a feasible schedule where 𝑆𝑆𝑖𝑖 is the start time of
activity 𝐴𝐴𝑖𝑖. The objective is to find an ordering of the activities that minimizes the makespan of the
schedule 𝑆𝑆𝑛𝑛+1 under resource and precedence constraints. The problem can be modeled as:

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 (𝑆𝑆𝑛𝑛+1) (1)

The resource limitation constraint is describe as:

0A 2A

1A

3A

10A 8A 5A

7A 4A

9A 6A

 540

� 𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑃𝑃(𝑡𝑡)

≤ 𝑅𝑅𝑖𝑖 𝑃𝑃 = 1,2, … ,𝐾𝐾 𝑀𝑀𝑛𝑛𝑑𝑑 0 ≤ 𝑡𝑡 ≤ 𝑆𝑆𝑛𝑛+1 (2)

where 𝑃𝑃(𝑡𝑡) = {𝑖𝑖 ∈ 𝐴𝐴|𝑆𝑆𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑆𝑆𝑖𝑖 + 𝑑𝑑𝑖𝑖} and 𝑡𝑡 is the specified time. Set 𝑃𝑃 presents all the activities
in time 𝑡𝑡 that can be processed. These activities were started but they were not finished.
Precedence limitation can be described as:

𝑆𝑆𝑖𝑖 + 𝑑𝑑𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆 𝑀𝑀𝑛𝑛𝑑𝑑 �𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖� ∈ 𝐸𝐸 (3)

According to this equation, if 𝐴𝐴𝑖𝑖 precedes activity 𝐴𝐴𝑖𝑖 then 𝐴𝐴𝑖𝑖 starts when 𝐴𝐴𝑖𝑖 is completely executed.
For given example, the minimum makespan is 11.

Table 1
The time and resource requirements of activities in Fig. 1

Activity 𝐴𝐴1 𝐴𝐴𝟐𝟐 𝐴𝐴𝟑𝟑 𝐴𝐴𝟒𝟒 𝐴𝐴𝟓𝟓 𝐴𝐴𝟔𝟔 𝐴𝐴𝟕𝟕 𝐴𝐴𝟖𝟖 𝐴𝐴𝟗𝟗
Time 2 3 3 3 2 1 5 3 2

Resource 3 4 2 1 2 3 1 4 2

3. Differential Search Algorithm

Differential Search Algorithm is a new and effective evolutionary algorithm which was inspired by
migration of superorganisms utilizing the concept of Brownian-like random-walk motion (Civicioglu,
2012). In DS algorithm, it is assumed that random solution of the population is matching to the
artificial-superorganism migration to optimum solution of the problem. During the movement,
artificial-superorganism examines whether some randomly selected area are desirable and it is a fertile
area. If the selected area during the migration is temporarily a good choice to stop over, the members
of the artificial-superorganism decide to stay at this area. They repeatedly continue their movement
from this area to find more suitable areas. Pseudo-code of DS algorithm is given in Appendix A. In this
Pseudo-code, 𝑁𝑁 represents number of organisms in the superorganism and 𝐷𝐷 is the size of the respective
problem. Artificial-organisms are shown by 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖,𝑖𝑖(𝑖𝑖 ∈ {1,2,3, …𝑁𝑁} 𝑀𝑀𝑛𝑛𝑑𝑑 𝑃𝑃 ∈ {1,2,3, …𝐷𝐷}) and
artificial-superorganism is shown by 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑔𝑔 = [𝑋𝑋𝑖𝑖] (𝑆𝑆 ∈ {1,2,3, … ,𝑀𝑀𝑀𝑀𝑥𝑥𝑆𝑆𝑀𝑀𝑛𝑛}). An
artificial-superorganism contains 𝑁𝑁 artificial-organisms as its elements. Artificial-organisms have
members where each member is shown by 𝑥𝑥𝑖𝑖,𝑖𝑖(𝑃𝑃 ∈ {1,2,3, … ,𝐷𝐷}) and each 𝑥𝑥𝑖𝑖,𝑖𝑖 is initially defined by:

𝑥𝑥𝑖𝑖,𝑖𝑖 = 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑 × �𝑆𝑆𝑀𝑀𝑖𝑖 − 𝑙𝑙𝑆𝑆𝑙𝑙𝑖𝑖� + 𝑙𝑙𝑆𝑆𝑙𝑙𝑖𝑖. (4)

Randomly selected individuals of the artificial-organisms move in the direction of the targets of
𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑃𝑃 = [𝑋𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛𝑔𝑔(𝑖𝑖)] in order to find stopover sites. 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑𝑆𝑆𝑀𝑀_𝑀𝑀ℎ𝑆𝑆𝑢𝑢𝑢𝑢𝑙𝑙𝑖𝑖𝑛𝑛𝑆𝑆 is a function that
randomly changes the order of the numbers of the members in the set of 𝑖𝑖 = {1,2,3, . . . ,𝑁𝑁}. Considering
the DS Pseudo-code, scale variable (which is defined as 𝑆𝑆𝑆𝑆𝑀𝑀𝑙𝑙𝑀𝑀 = 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑𝑆𝑆 [2 × 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑] ×
(𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑2 – 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑3)) controls the size of the change occurred in the positions of the members of the
artificial-organisms. 𝑅𝑅𝑀𝑀𝑛𝑛𝑑𝑑𝑔𝑔 that is a gamma random number generator and standard random function
together make scale value. This is made that an artificial-superorganism direction is changed in the
habitat. Members of the artificial-organisms take part in stopover site search by a random search. Lines
8-29 from the DS Pseudo-code show this matter. Stopover site is generated using the following
equation:

𝑆𝑆𝑡𝑡𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡𝑀𝑀 = 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀 + 𝑆𝑆𝑆𝑆𝑀𝑀𝑙𝑙𝑀𝑀 × (𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑃𝑃 – 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀) (5)

In Lines 31-33, the stopover site is controlled to remain in determined search space range. In DS
algorithm, the stopover site found by the search process is evaluated and if the new discovered stopover
site of an artificial-organism has better quality than the current sources of that artificial-organism, it
goes to that stopover site. While the artificial-organisms of a superorganism change site, that respective
superorganism continues its movement in the direction of the global optimum.

N. Rahmani et al. / Decision Science Letters 4 (2015)

541

4. DS algorithm for RCPSP

This section presents the proposed DS algorithm for solving RCPSP problem in details. Considering
the performance of the DS in optimization problems, it seems that the method could be effective to
solve RCPSP problems. The flowchart of the proposed method is presented in Fig. 2.

According to Fig. 2, DS for the RCPSP has four phases: 1) Input, 2) Initialization, 3) Update, 4)
Terminate. The Input phase receives triples (𝑁𝑁,𝐷𝐷,𝐺𝐺) as input and transfer them to the initialization
phase. The second phase places the organisms on the search space randomly using Eq. (4). In
Initialization and Update phases, each artificial organism represents a schedule for the RCPSP problem.
If the problem has 𝑁𝑁 activities, the artificialorganism will migrate in the search space with 𝑁𝑁
dimensions. A position is represented as a priority list 𝑃𝑃�⃗ (𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑛𝑛) where each element of this list
fixedly represents an activity and its corresponding value shows the priority of that activity (Akbari et
al., 2012). Based on this representation, the position vector 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛) of artificial organism
i represents the priority values of N activities. The lower and upper bounds of each priority value are
set at 0 and 1, respectively. The priority values smaller than 0 are set to 0 and the priority values larger
than 1 are set to 1 (Ziarati et al., 2011).

The third phase receives the initial solutions as input and iteratively updates these solution until the
termination condition is met. The solutions are based on the behavior of superorganism and its
members. The member of an artificial-superorganism controls its migration by considering the amount
of fertility of targets. Members of superorganism migrate to more fertile locations by considering the
fertile intensity that associated with that location.

Fig. 2. Flowchart of the proposed method

Naturally, the fertile locations represent better solutions. The method needs to evaluate the fitness of
the solutions proposed by each of the artificial organism. To evaluate the fitness, amount of fertility of
area should be determined. For this purpose, the method needs to generate the schedule from the priority
list. The stopover site is considered as the makespan of the schedule which is presented by an
artificialorganism. Hence, we need to use a schedule generation scheme (SGS) such as Serial-SGS or
Parallel-SGS (Kolisch, 1996). In this work both of the SGS methods are considered. For this purpose,
a random number in range of [0,1] is generated in order to select the SGS which is used by the algorithm

Update phase

Receive inputs

Initialize DS

Start a cycle

New population

Return best schedule

Stopping

Cycle=cycle+1

Serial-Parallel SGS

No

Yes

 542

to construct the schedule. If the random number is larger than 0.5, the Parallel-SGS is selected else the
Serial-SGS is selected. The Serial-Parallel SGS provides the ability for DS algorithm to use advantage
of both scheme. The Serial-Parallel SGS module in Fig. 2 performs this task.

Next, the positions of the artificial organisms are updated using the migration pattern of the standard
DS and a permutation method. The proposed method uses the permutation-based representation which
was first introduced by Hong et al. (2005). After calculating the new position of the artificial organism
𝑖𝑖, the permutation process is used by the algorithm to permute this new solution. Each of the artificial
organisms 𝑖𝑖 represents feasible activity lists and their corresponding priority lists. The priority list of
the artificial organisms 𝑖𝑖 is updated and a new priority list will be obtained. After that a random list is
generated (Ziarati et al., 2011). Then, each priority value of the artificial organism 𝑖𝑖 is compared with
its corresponding value in the random vector. If the random value is smaller than its corresponding
priority value, then the corresponding activity will be swapped with its neighbor. After swapping the
priority values and their corresponding activities, the obtained activity list is examined against the
constraints according to Eq. (1) and Eq. (2). If the constraints satisfaction is violated, the infeasible
activity list is resolved to the feasible one. After moving to the new position, the fertile intensity of the
new artificial organism is evaluated. If the better fertile site is obtained, the position of the artificial
organism is updated. This comparison is accomplished for each artificial organisms. After the
comparison, the artificial organisms are ranked based on the amount of fertility of their stopover site
and the best solution found is updated. The fourth phase terminates the search process after the
maximum number of generation 𝐺𝐺 is reached. It should be noted that the input parmeter 𝐺𝐺 is set in such
a way that the maximum number of schedules defined in the experiment are produced. After
termination, the best schedule (i.e. the schedule with minimum makespan) which is found by DS
algorithm is returned as output. It seems that the proposed method is capable to solve RCPSP problem
efficiently. The specifications of sample project described in Fig. 1 and Table 1 is given to the DS
algorithm. The proposed algorithm has the ability to solve this problem successfully. The obtained
result by DS algorithm is given in Fig. 3. As it can be seen, the minimum makespan for this project is
given by DS methods under resource and precedence constraints in Table 1 and Fig. 1.

Fig. 3. The scheduling obtained by DS algorithm for sample given in Fig. 1

5. Experiments
This section presents the performance of the proposed DS method on the single mode test cases in
PSPLIB library (Project Scheduling Problem Library) in terms of success rate and the deviation from
the optimal solution. The performance of the proposed method is considered under the following
configurations. Two types of experiments are conducted: the first experiments study the effect of SGS
and the second experiments show the comparative performance.

The population size (N) is set at 30. Different number of schedules are used here as the termination
condition of the DS method. The numbers of schedules are set at 1000, 5000, and 50000 to evaluate
the effect of SGS and 1000, and 5000 for the comparison study. The success rates of the DS method
are obtained over the j30, j60, and j120 case studies from the PSPLIB. Similarly, for the comparison
study, j30, j60, and j120 are used. For both of the experiments, the average results of 10 independent
runs are reported.

N. Rahmani et al. / Decision Science Letters 4 (2015)

543

5.1. The effect of SGS
The social behaviors in DS method provide the ability to use it for scheduling problem successfully.
The effect of SGS on the performance of the proposed method in terms of success rate and average
deviation is considered here.

Table 2
The effect of SGS on the average deviation of DS

 SGS 1000 5000 50000
J30 parallel 0.32 0.22 0.07

serial 0.29 0.19 0.04
both 0.20 0.11 0.02

J60 parallel 12.41 11.85 11.35
serial 12.35 11.65 11.20
both 11.75 11.10 10.90

J120 parallel 36.50 35.51 34.86
serial 35.84 35.13 34.55
both 35.14 33.67 33.14

Table 2 shows the effects of SGS on the average deviation. It can be seen that the best results are
obtained when both schemes are used. Also, using serial-SGS provides the ability for the DS method
to obtain better performance compared with parallel-SGS. The results show that the type of SGS has
positive effect on the performance of DS method. The success rate shows the number of instances in a
case study which are successfully solved by DS method. Table 3 shows the success rates of the
proposed algorithm. From the results, it can be seen that the DS method obtains better performance
when it uses both serial and parallel SGS. Based on this experiment, both of the SGS are used by DS
method in comparison study given in the next section.

Table 3
The effect of SGS on the success rate of DS

 SGS 1000 5000 50000
J30 parallel 85.41% 90.62% 96.87%

serial 87.92% 91.45% 97.50%
both 88.96% 93.96% 98.33%

J60 parallel 72.30% 73.54% 77.70%
serial 72.50% 74.16% 78.13%
both 72.91% 74.58% 78.75%

J120 parallel 29.84% 31.33% 33.33%
serial 30.00% 31.66% 34.16%
both 30.33% 32.66% 35.00%

5.2. Comparative study
The success rates and average deviations obtained in the previous experiment showed that DS method
had efficiency in solving RCPSP problem. In this section, the best results obtained by the proposed
algorithm are compared with a set of state of art methods. DJ in the proposed method DS-DJ is related
to double justification which is used for generating better schedules (Akbari et al., 2012). In DJ, the
right and left justifications are used to adjust the start time of each activity in scheduling. Better
performance may be obtained by DJ used in DS algorithm. Due to the large number of methods
presented in recent years for RCPSP, only a subset of these methods are selected for comparison.
However, we tried to select different types of meta-heuristics for this comparison.

The average deviations and success rates of the proposed method in comparison with the other state-
of-art methods over the j30 case study after 1000 and 5000 schedule generation are given in Table 4.
The results of the other methods reported in Tables 4, 5 and 6 are directly obtained from their
corresponding papers. In some papers, average deviation and success rate of their presented methods
for one of the experiments (i.e. 1000 and 5000 schedule generation) have not been reported. In such

 544

cases “-” sign is used to show the unavailability of the results. The results show that the proposed
method obtains the first rank after 1000 schedule generations and obtains the fourth rank after 5000
schedule generation. DS method has the best success rates after 1000 and 5000 schedules. It seems that
the proposed method has competitive performance and produce comparable results in comparison with
the other methods.

The performance of the proposed DS method over the j60 case study after 1000 and 5000 schedule
generation is given in Table 5. Due to the larger number of activities in this case study, the proposed
method and the other ones have more difficulty to solve. The success rates decrease compared to J30
case study as well as the algorithms have more deviation. The second rank is obtained by the proposed
DS method after 1000 schedule generation. However, the proposed method surpass the other methods
after 5000 schedule generation. The investigated method has more difficulty in solving j120 case study
and their performance decrease drastically. Table 6 shows the results obtained over the j120 case study.
The results show that the DS algorithm had good and competitive performance compared with other
methods. The first and the second rank is obtained by the proposed method after 1000 and 5000
schedule generation, respectively. The best success rates after 1000 and 5000 schedules are obtained
by DS algorithm.

Table 4
Average deviation and success rates over J30

 J30 Average Deviation:opt Success Rate
Approach Reference 1000 5000 1000 5000

DS-DJ The propsoed study 0.20 0.11 88.96 93.96
MJPSO Fahmy et al., 2014 0.22 0.05 - -
PSO-HH Koulinas et al., 2014 0.26 0.04 - -
FA-DJ Sanaei et al., 2013 - 0.12 - 93.75
P-PSO Nasiri, 2012 0.30 0.10
PABC Qiong & Seo, 2013 0.34 0.17 86.60 91.74
ABC Akbari et al., 2012 0.35 0.12 -

BA-DJ Ziarati et al., 2011 0.42 0.19 83.96 91.05
BSO-DJ Ziarati et al., 2011 0.45 0.22 83.55 90.21
ABC-DJ Ziarati et al., 2011 0.47 0.28 82.50 90.00

Improved PSO Jia & Seo, 2013 0.49 - - -
BA Ziarati et al., 2011 0.63 0.33 78.54 86.25

BSO Ziarati et al., 2011 0.65 0.36 77.30 85.63
ABC Ziarati et al., 2011 0.98 0.57 72.71 83.84
GA Alcaraz & Maroto, 2001 0.33 0.12 - –

GA-DJ Valls et al., 2005 0.34 0.20 - –
GA Hartmann, 2002 0.38 0.22 - –
SA Bouleimen & Lecocq, 2003 0.38 0.23 - -
TS Nonobe & Ibaraki, 2002 0.46 0.16 - -
GA Hartmann, 1998 0.54 0.25 81.50 -
PSO Chen et al., 2010 0.54 - -
AS Schirmer, 2000 0.65 0.44 -

PSO Zhang, 2005 0.69 0.42 - -
GA Hartmann, 1998 1.38 1.22 70.60 -

ACO Chen et al., 2010 1.57 - -

In general, based on the results obtained for PSPIB scheduling problems, the proposed DS method
provides well in solving single-mode RCPSP problems.

N. Rahmani et al. / Decision Science Letters 4 (2015)

545

Table 5
Average deviation and success rates over J60

J60 Average Deviation:lb Success Rate
Approach Reference 1000 5000 1000 5000
PSO-HH Koulinas et al., 2014 11.74 11.13
DS-DJ This study 11.75 11.10 72.91 74.58
MJPSO Fahmy et al., 2014 11.86 11.19 - -
FA-DJ Sanaei et al., 2013 - 11.20 - 74.37
P-PSO Nasiri, 2012 12.02 11.33 - -

Improved PSO Jia & Seo, 2013 12.12 - - -
PABC Qiong & Seo, 2013 12.35 11.96 72.50 74.03
BA-DJ Akbari et al., 2012 12.55 12.04 72.30 73.96

BSO-DJ Ziarati et al., 2011 12.58 12.29 72.08 73.34
ABC-DJ Ziarati et al., 2011 12.61 12.24 71.67 73.34

ABC Ziarati et al., 2011 12.75 11.48 - -
BA Ziarati et al., 2011 13.35 12.83 66.25 68.34

BSO Ziarati et al., 2011 13.67 12.70 64.38 70.63
ABC Ziarati et al., 2011 14.57 13.12 61.88 67.09
GA Hartmann, 2002 12.21 11.70 - -

B & B Dorndorf et al., 2000 12.50 - - 76.20
GA Hartmann, 1998 12.68 11.89 - -
GA Hartmann, 1998 12.74 12.74 - -

GA-DJ Valls et al., 2005 12.21 11.27 - -
GA Alcaraz & Maroto, 2001 12.57 11.86 - -
SA Bouleimen & Lecocq, 2003 12.75 11.90 - -
AS Schirmer, 2000 12.94 12.58 - -
TS Nonobe & Ibaraki, 2002 12.97 12.18 - -

Table 5
Average deviation and success rates over J120

J120 Average Deviation:lb Success Rate
Approach Reference 1000 5000 1000 5000

DS-DJ The propsoed study 35.15 33.67 30.33 32.66
PSO-HH Koulinas et al., 2014 35.20 32.59 - -
MJPSO Fahmy et al., 2014 35.60 33.78 - -
FA-DJ Sanaei et al., 2013 - 34.07 - 32.16
PABC Qiong & Seo, 2013 36.84 35.79 29.50 31.20
P-PSO Nasiri, 2012 36.77 35.16 - -
ABC Akbari et al., 2012 36.29 34.18 - -

Improved PSO Jia & Seo, 2013 37.22 - - -
BA-DJ Ziarati et al., 2011 37.72 36.76 29.84 31.17

BSO-DJ Ziarati et al., 2011 37.84 36.51 29.17 30.84
ABC-DJ Ziarati et al., 2011 37.85 36.82 29.34 30.34
ALNP Xiao et al., 2014 37.49 36.74 - -

BA Ziarati et al., 2011 40.38 38.12 17.84 20.84
BSO Ziarati et al., 2011 41.18 37.86 17.00 22.50
ABC Ziarati et al., 2011 43.24 39.87 15.34 18.17

p-ACO Herbots et al., 2004 - 36.01 - 19.00
ACO Herbots et al., 2004 - 37.85 - 29.33
ACO Merkle et al., 2002 - 38.02 - 26.50

s-ACO Merkle et al., 2002 - 39.82 - 26.70
GA-DJ Valls et al., 2005 35.39 33.24 - -

GA Hartmann, 2002 37.19 35.39 - -
GA Alcaraz & Maroto, 2001 39.36 36.57 - -
GA Hartmann, 1998 39.37 36.74 - -
AS Schirmer, 2000 39.85 38.70 - -
GA Hartmann, 1998 39.93 38.49 - -
TS Nonobe & Ibaraki, 2002 40.86 37.88 - -
SA Bouleimen & Lecocq, 2003 42.81 37.68 - -

 546

6. Conclusion and future works

In recent years, different types of meta-heuristics have been presented by researchers to cope with
complex problems. Differential Search Algorithm which is one of the most recently introduced methods
of this type which was originally proposed for solving real-valued numerical optimization problems. In
this work a new method based on DS for solving resource-constrained project scheduling problem was
proposed. The proposed method gives a set of initial schedules and tries to improve them using the
migration behavior of the superorganism. For this purpose, the DS method is adapted to obtain an
arrangement of the activities which results the best schedule. The comparative study of the well-known
PSPLIB benchmarks showed that the proposed DS algorithm had the ability to produce competitive
results compared to the other metaheuristic methods. In addition, the proposed DS method has high
efficiency in solving RCPSP problems. It seems that this method has high potential to incorporate
different types of heuristics, local search, and constraint handling approaches, etc. in order to improve
its performances. Also, hybridization of the DS method with other heuristic or meta-heuristics may
provide a way to improve their efficiency.

References
Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the resource-constrained

project scheduling problem. Computers & Operations Research, 38(1), 44-50.
Akbari, R., Zeighami, V., & Ziarati, K. (2011). Artificial bee colony for resource constrained project

scheduling problem. International Journal of Industrial Engineering Computations, 2(1), 45-60.
Akbari, R., Zeighami, V., & Akbari, I. (2012). An ABC-Genetic method to solve resource constrained

project scheduling problem. Artificial Intelligence Research, 1(2), p185.
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project

scheduling. Annals of Operations Research, 102(1-4), 83-109.
Baar, T., Brucker, P., & Knust, S. (1999). Tabu search algorithms and lower bounds for the resource-

constrained project scheduling problem (pp. 1-18). Springer US.
Bouleimen K. and Lecocq H.. (2003). A new efficient simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple mode version. European Journal of
Operational Research, 149(2), 268-281.

Chen, W., Shi, Y. J., Teng, H. F., Lan, X. P., & Hu, L. C. (2010). An efficient hybrid algorithm for
resource-constrained project scheduling. Information Sciences, 180(6), 1031-1039.

Chen, R. M., Wu, C. L., Wang, C. M., & Lo, S. T. (2010). Using novel particle swarm optimization
scheme to solve resource-constrained scheduling problem in PSPLIB. Expert systems with
applications, 37(3), 1899-1910.

Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using
differential search algorithm. Computers & Geosciences,46, 229-247.

Coelho, J., & Vanhoucke, M. (2011). Multi-mode resource-constrained project scheduling using
RCPSP and SAT solvers. European Journal of Operational Research, 213(1), 73-82.

Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000). A time-oriented branch-and-bound algorithm for
resource-constrained project scheduling with generalised precedence constraints. Management
Science, 46(10), 1365-1384.

Fahmy, A., Hassan, T. M., & Bassioni, H. (2014). Improving RCPSP solutions quality with Stacking
Justification–Application with particle swarm optimization. Expert Systems with
Applications, 41(13), 5870-5881.

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem. European Journal of Operational
Research, 127(2), 394-407.

Hartmann, S. (1998). A competitive genetic algorithm for resource‐constrained project
scheduling. Naval Research Logistics (NRL), 45(7), 733-750.

N. Rahmani et al. / Decision Science Letters 4 (2015)

547

Hartmann, S. (2002). A self‐adapting genetic algorithm for project scheduling under resource
constraints. Naval Research Logistics (NRL), 49(5), 433-448.

Herbots, J., Herroelen, W., & Leus, R. (2004). Experimental investigation of the applicability of ant
colony optimization algorithms for project scheduling. DTEW Research Report 0459, 1-25.

Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization
for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and
Computation, 195(1), 299-308.

Jia, Q., & Seo, Y. (2013). Solving resource-constrained project scheduling problems: conceptual
validation of FLP formulation and efficient permutation-based ABC computation. Computers &
Operations Research, 40(8), 2037-2050.

Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained
project scheduling problem. The International Journal of Advanced Manufacturing
Technology, 67(9-12), 2627-2638.

Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-
heuristic algorithm for the classic resource constrained project scheduling problem. Information
Sciences, 277, 680-693.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation. European Journal of Operational Research, 90(2), 320-333.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained
project scheduling: An update. European journal of operational research, 174(1), 23-37.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project
scheduling problem: Classification and computational analysis (pp. 147-178). Springer US.

Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project
scheduling. Omega, 29(3), 249-272.

Kumar, N. (2014). Study on meta-heuristics for resource constrained project scheduling problem.
International Journal of Engineering, Management & Sciences, 1(2), 14-24.

Luo, X., Wang, D., Tang, J., & Tu, Y. (2006, June). An improved pso algorithm for resource-
constrained project scheduling problem. In Intelligent Control and Automation, 2006. WCICA 2006.
The Sixth World Congress on (Vol. 1, pp. 3514-3518). IEEE.

Mendes, J. J. D. M., Gonçalves, J. F., & Resende, M. G. (2009). A random key based genetic algorithm
for the resource constrained project scheduling problem. Computers & Operations Research, 36(1),
92-109.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained
project scheduling. Evolutionary Computation, IEEE Transactions on, 6(4), 333-346.

Nasiri, M. M. (2013). A pseudo particle swarm optimization for the RCPSP. The International Journal
of Advanced Manufacturing Technology, 65(5-8), 909-918.

Neumann, K., & Zimmermann, J. (1999). Methods for resource-constrained project scheduling with
regular and nonregular objective functions and schedule-dependent time windows. In Project
Scheduling (pp. 261-287). Springer US.

Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource constrained
project scheduling problem. In Essays and surveys in metaheuristics (pp. 557-588). Springer US.

Orji, I. M., & Wei, S. (2013, April). Project scheduling under resource constraints: a recent survey.
In International Journal of Engineering Research and Technology (Vol. 2, No. 2 (February-2013)).
ESRSA Publications.

Ranjbar, M., Kianfar, F., & Shadrokh, S. (2008). Solving the resource availability cost problem in
project scheduling by path relinking and genetic algorithm. Applied Mathematics and
Computation, 196(2), 879-888.

Sanaei, P., Akbari, R., Zeighami, V., & Shams, S. (2013, January). Using firefly algorithm to solve
resource constrained project scheduling problem. InProceedings of Seventh International
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) (pp. 417-428).
Springer India.

 548

Schirmer, A. (2000). Case‐based reasoning and improved adaptive search for project scheduling. Naval
Research Logistics (NRL), 47(3), 201-222.

Shou, Y., Li, Y., & Lai, C. (2015). Hybrid particle swarm optimization for preemptive resource-
constrained project scheduling. Neurocomputing, 148, 122-128.

Tseng, L. Y., & Chen, S. C. (2006). A hybrid metaheuristic for the resource-constrained project
scheduling problem. European Journal of Operational Research, 175(2), 707-721.

Valls, V., Ballestı́n, F., & Quintanilla, S. (2005). Justification and RCPSP: A technique that
pays. European Journal of Operational Research, 165(2), 375-386.

Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research, 185(2), 495-
508.

Xiao, L., Tian, J., & Liu, Z. (2014, June). An Activity-List based Nested Partitions algorithm for
Resource-Constrained Project Scheduling. In Intelligent Control and Automation (WCICA), 2014
11th World Congress on (pp. 3450-3454). IEEE.

Yang, B., Geunes, J., & O’brien, W. J. (2001). Resource-constrained project scheduling: Past work and
new directions. Department of Industrial and Systems Engineering, University of Florida, Tech.
Rep.

Zamani, R. (2013). A competitive magnet-based genetic algorithm for solving the resource-constrained
project scheduling problem. European Journal of Operational Research, 229(2), 552-559.

Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-
constrained project scheduling. Automation in Construction, 14(3), 393-404.

Zhang, C., Sun, J., Zhu, X., & Yang, Q. (2008). An improved particle swarm optimization algorithm
for flowshop scheduling problem. Information Processing Letters, 108(4), 204-209.

Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-
constrained project scheduling. Automation in Construction, 14(3), 393-404.

Zeighamia, V., Akbarib, R., & Ziaratic, K. (2013). Development of a method based on particle swarm
optimization to solve resource constrained project scheduling problem. Scientia Irancia, 20(6),
2123-2137.

Zheng, H. Y., Wang, L., & Wang, S. Y. (2014, July). A co-evolutionary teaching-learning-based
optimization algorithm for stochastic RCPSP. InEvolutionary Computation (CEC), 2014 IEEE
Congress on (pp. 587-594). IEEE.

Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms for resource-
constrained project scheduling problem. Applied Soft Computing, 11(4), 3720-3733.

N. Rahmani et al. / Decision Science Letters 4 (2015)

549

Appendix A
Pseudocode of the proposed DS method for RCPSP (Civicioglu, 2012)
__
Input (𝑵𝑵,𝑫𝑫,𝑮𝑮):

N: The size of the population, where i={1,2,3,…,N}
D: The dimension of the problem.
G:Number of maximum generation.

Initialization:

1: Superorganism=initialize(), where Superorganism=[ArtificialOrganismi]
2: yi=Evaluate(ArtificialOrganismi)

Update:

3: for cycle= 1:G do
4: donor= SuperorganismRandom_shuffling(i)
5: Scale= randg [2.rand].(rand2 – rand3)
6: StopoverSite= Superorganism + Scale . (donor – Superorganism)
7: p1= 0.3 .rand4 and p2= 0.3.rand5
8: if rand6< rand7 then
9 : if rand8< p1 then
10: r= rand(N,D)
11: for Counter1= 1: N do
12: r(Counter1,:) = r(Counter1,:) <rand9

13: endfor
14: else
15: r = ones(N,D)
16: for Counter2= 1: N do
17: r(Counter2, randi(D)) = r(Counter2, randi(D))<rand10
18: endfor
19: endif
20: else
21: r = ones(N,D)
22: for Counter3= 1:N do
23: 𝑑𝑑 = 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑𝑖𝑖(𝐷𝐷, 1, ⌈𝑃𝑃2 ∙ 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑 ∙ 𝐷𝐷⌉)
24: for Counter4= 1: size(d) do
25: r(Counter3, d(Counter4))=0
26: endfor
27: endfor
28: endif
29: 𝑖𝑖𝑛𝑛𝑑𝑑𝑖𝑖𝑆𝑆𝑖𝑖𝑑𝑑𝑆𝑆𝑀𝑀𝑙𝑙𝑀𝑀𝐼𝐼,𝐽𝐽 ← 𝑃𝑃𝐼𝐼,𝐽𝐽 > 0|𝐼𝐼 ∈ 𝑖𝑖 , 𝐽𝐽 ∈ [1,𝐷𝐷]
30: StopoverSite(individuals I,J) := Superorganism(individuals I,J)
31: if (StopoverSitei,j< lowi,j or StopoverSitei,j> upi,j) then
32: StopoverSitei,j :=rand. (upj – lowj)+lowj
33: endif
34: yStopoverSite;i = evaluate(StopoverSitei)
35 if �𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖 < 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟;𝑖𝑖 � then
36 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟,𝑖𝑖 ≔ 𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖
37 else
38 𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖: = 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟;𝑖𝑖

 550

39 endif
40 if �𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖 < 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟;𝑖𝑖 � then
41 𝐴𝐴𝑃𝑃𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑖𝑖𝑀𝑀𝑙𝑙𝐴𝐴𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖 ≔ 𝑆𝑆𝑡𝑡𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡𝑀𝑀𝑖𝑖
42 else
43 𝐴𝐴𝑃𝑃𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑖𝑖𝑀𝑀𝑙𝑙𝐴𝐴𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖 ≔ 𝐴𝐴𝑃𝑃𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑖𝑖𝑀𝑀𝑙𝑙𝐴𝐴𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖
44 endif
45 endfor

Terminate
46 Return 𝑏𝑏𝑀𝑀𝑀𝑀𝑡𝑡 𝑀𝑀𝑡𝑡𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃 𝑀𝑀𝑖𝑖𝑡𝑡𝑀𝑀

	3. Differential Search Algorithm

