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 This paper considers a multi-objective version of the Multiple Traveling Salesman Problem 
(MOmTSP). In particular, two objectives are considered: the minimization of the total traveled 
distance and the balance of the working times of the traveling salesmen. The problem is 
formulated as an integer multi-objective optimization model. A non-dominated sorting genetic 
algorithm (NSGA-II) is proposed to solve the MOmTSP. The solution scheme allows one to 
find a set of ordered solutions in Pareto fronts by considering the concept of dominance. Tests 
on real world instances and instances adapted from the literature show the effectiveness of the 
proposed algorithm.  
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1. Introduction 

 
The Multiple Traveling Salesman Problem (MTSP) is a generalization of the well-known Traveling 
Salesman Problem (TSP) arising when several Hamiltonian tours are considered. The MTSP is NP-
hard and has many applications in Transportation and Logistics (routing of school buses, mail delivery, 
etc.). The literature related to the MTSP and its practical applications has been reviewed in Bektas 
(2006). In this work, different formulations are highlighted, and exact and different heuristics methods 
for solving the problem are described. Early works that consider the MTSP have been proposed by 
Hong and Padberg (1977) and Rao (1980). Hong and Padberg (1977) considered the symmetric version 
of the MTSP with fixed charges (FCSmTSP). The FCSmTSP is reformulated as a standard Symmetric 
Traveling Salesman problem (STSP). Rao (1980) considered the symmetric and asymmetric versions 
of the MTSP with fixed charges. In this work, both problems are transformed into their corresponding 
standard versions of the TSP. Laporte and Nobert (1980) proposed an exact method for the MTSP by 
considering the sub-tour elimination and the integrality constraints. The algorithm proposed by Gavish 
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and Srikanth (1987) considers that all the traveling salesmen must be used to the performed 
Hamiltonian cycles. This assumption is also considered by Jonker and Volgenant (1988). In this work, 
a generalization of the standard formulation for the MTSP is proposed by considering Euclidean and 
non-Euclidean instances. 
 
Population-based metaheuristic algorithms for the MTSP were proposed by Sofge et al. (2002), Junjie 
and Dingwei (2006), Zhao et al. (2008), Király and Abonyi (2011) and Yu et al. (2012). Heuristics 
based on local search have been proposed by Hou and Liu (2012) and Levin and Yovel (2012). 
Successful implementations of the MTSP for real world problems have been proposed by Tang et al. 
(2000) and by Kergosien et al. (2009). Tang et al. (2000) considered hot rolling schedulling in a steel 
company in China. A modified genetic algorithm was used to solve the problem. Kergosien et al. (2009) 
considered the problem of assigning patients to nurses. A mixed integer linear programming model was 
proposed to solve the real world case. However, only few works have considered the multi-objective 
version of the MTSP (MOmTSP). Chang and Yen (2012) considered the routing problem of the courier 
service for a city. The problem is formulated as a MOmTSP by considering hard time windows 
(MOmTSPTW). A multi-objective scatter search is proposed to minimize the operating costs and to 
improve the level of service. The proposed method finds a set of Pareto-optimal solutions. 
 
Shim et al. (2012) presented a mathematical formulation of the MOmTSP which considers the objective 
function as the minimization of the weighted sum of the global distance traveled by the traveling 
salesmen and the distance traveled by a salesman. An estimation of distribution algorithm (EDA) with 
a gradient search was used for the solution of the considered problem. Finally, Labadie et al. (2014) 
considered a version of MOmTSP in which the objective is to determine m cycles by covering a set of 
potential customers maximizing the corresponding benefit and minimizing the total traveled distance. 
An evolutionary algorithm with a Path-relinking (PR) strategy is proposed to solve the problem. 
 
In this paper, we introduce a new version of the MOmTSP by considering two objectives: i) the 
minimization of the total distance traveled and ii) the balance of the times traveled by the salesmen. 
We propose a multi-objective non-dominated sorting genetic algorithm NSGA-II for the considered 
problem. The solution scheme allows one to find a set of solutions ordered under the concept of Pareto 
dominance, coupled with a selection scheme of elite solutions by stacking distances on each Pareto 
front and a geometric distribution over the whole range of Pareto fronts. At each generation cycle, the 
proposed algorithm allows one to generate a different population. In addition, a local search strategy is 
applied, which uses different neighborhood structures such as Shift (1.0), Swap (1,1) and 2-Opt moves. 
The integration of this local search strategy with the traditional methodology of NSGA-II and the use 
of diversity strategies allow one to obtain high quality results. Computational experiments on real-
world instances and on adapted instances from the literature show the effectiveness of the proposed 
algorithm. 
 
2. Problem Description 
 
The MTSP could be defined by a complete (directed or undirected) graph 𝐺𝐺(𝑉𝑉,𝐴𝐴), where 𝑉𝑉 \ {0} is the 
set of 𝑛𝑛 nodes to be visited (customers), node 0 is the depot, and 𝐴𝐴 is the set of arcs connecting the 
nodes. A 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 value is associated with each arc (𝑖𝑖, 𝑗𝑗), which is traversed by the salesman 𝑘𝑘. The matrix 
𝐶𝐶 is symmetric when an undirected graph is considered and asymmetric otherwise. The traveled 
distance of a tour is calculated as the sum of the lengths of the arcs belonging to the tour. 
 
In addition, the travel time of a salesman for each arc (𝑖𝑖, 𝑗𝑗) of A is given by 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖. The travel time of a 
tour (i.e. the working time of a salesman) is calculated as the sum of the travel times of the arcs 
belonging to the tour. 
 
Given an integer 𝑚𝑚, the addressed problem consists of finding 𝑚𝑚 tours passing through the depot node. 
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Each node must be visited by a tour (i.e. by a traveling salesman) only once, so that the total traveled 
distance is minimized and the working times of the traveling salesmen are similar each other. 
 
2.1 Multi-objective optimization 
 
A multi-objective optimization problem considers several conflicting objectives. This means that a high 
quality solution for one of the objectives could be a poor quality solution for another objective. In 
particular, the traditional optimization methods do not provide solutions that are good for all the 
objectives of the considered problem. A multi-objective optimization problem can be formulated 
through a mathematical model defined by a set of ℎ objective functions which must be minimized or 
maximized, subject to a set of 𝑚𝑚 inequality constraints, a set of 𝑙𝑙 equality constraints and lower and 
upper limits in the 𝑘𝑘 decision variables, as illustrated below: 
 

𝑚𝑚𝑖𝑖𝑛𝑛 /𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓1 (𝑋𝑋)  
𝑚𝑚𝑖𝑖𝑛𝑛 /𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓2 (𝑋𝑋) 

. 

. 

. 
 

𝑚𝑚𝑖𝑖𝑛𝑛 /𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓ℎ (𝑋𝑋)  
 
subject to 

𝑔𝑔𝑖𝑖 (𝑋𝑋) ≤  0;∀𝑖𝑖 =  1, . . . ,𝑚𝑚  
ℎ𝑖𝑖 (𝑋𝑋) =  0;∀𝑖𝑖 =  1, . . . , 𝑙𝑙 
𝑚𝑚𝑖𝑖𝑙𝑙  

≤ 𝑚𝑚𝑖𝑖 ≤ 𝑚𝑚𝑖𝑖𝑢𝑢;∀𝑖𝑖 = 1, . . . , 𝑘𝑘 
 

3. Mathematical model 
 
The MOmTSP can be formulated as a multi-objective integer linear model with two objective functions. 
The first objective function (1) considers the minimization of the distance traveled by all the salesmen, 
while the second objective function (2) considers the balance of the working times of the salesmen, i.e., 
the travel times of the salesmen are similar each other. With each arc (𝑖𝑖, 𝑗𝑗) of 𝐺𝐺, is associated a binary 
variable , which takes the value of 1 if arc (𝑖𝑖, 𝑗𝑗) was traversed by the salesman 𝑘𝑘 into the final solution 
and 0 otherwise. 
 

𝑚𝑚𝑖𝑖𝑛𝑛 𝑍𝑍1 = ���𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

     
𝑚𝑚

𝑖𝑖=1

 
 

(1) 

min𝑍𝑍2 = ��𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑡𝑡𝑖𝑖�     
𝑚𝑚

𝑖𝑖=1

 
 

(2) 

where: 
 𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 is the average travel time of the tours defined by Eq. (3) as follows, 
 

𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ ∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

𝑚𝑚
 

(3) 

where 𝑡𝑡𝑖𝑖 is the time spent on each tour 𝑘𝑘 (𝑘𝑘 =  1,··· ,𝑚𝑚) defined by Eq. (4). 
 

𝑡𝑡𝑖𝑖 = ��𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

;      ∀𝑘𝑘 = 1, … ,𝑚𝑚 
(4) 
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In addition, the problem is subject to the following set of constraints: 

��𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

;   ∀𝑗𝑗 = 1, … ,𝑛𝑛 
(5) 

��𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

;   ∀𝑖𝑖 = 1, … ,𝑛𝑛 
(6) 

��𝑚𝑚𝑖𝑖0𝑖𝑖 = 𝑚𝑚
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 
(7) 

��𝑚𝑚0𝑖𝑖𝑖𝑖 = 𝑚𝑚
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 
(8) 

��𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∉𝑆𝑆

≥ 1
𝑖𝑖∈𝑆𝑆

;   ∀𝑘𝑘 = 1, … ,𝑚𝑚,   ∀𝑆𝑆 ⊆ 𝑉𝑉; 0 ∈ 𝑆𝑆 (9) 

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} (10) 

Eq. (5) and Eq. (6) are related to the degree restrictions and ensure that each node, except the depot 
node, is visited only once by a single traveling salesman. Eq. (7) and Eq. (8) ensure that each traveling 
salesman must leave and return to the depot node. Constraints (9) called connectivity constraints avoid 
sub-tours generation on the final solution. Finally, constraints (10) impose that the decision variables 
are binary. 

4. Non-dominated sorting genetic algorithm (NSGA-II) 
 
One of the most appropriate strategies to determine a good approximate solution of an NP-hard multi-
objective problem is a metaheuristic algorithm based on population which evolves along the solution 
space to find a set of non-dominated solutions. In this paper, we propose a methodology based on the 
non-dominated sorting genetic algorithm NSGA-II introduced by Deb (2001). The main objective of 
algorithm NSGA-II is to find a set of solutions ordered by fronts under the concept of Pareto 
dominance. 

The algorithm starts with a population of feasible solutions (parents) of size 𝑁𝑁 (where 𝑁𝑁 is a given 
parameter), called 𝑃𝑃𝑡𝑡, which is generated randomly by an initialization procedure. From 𝑃𝑃𝑡𝑡, a population 
𝑄𝑄𝑡𝑡, of feasible solutions (descendants) of size 𝑁𝑁 (where 𝑁𝑁 is a given parameter) is created by using 
selection, recombination and mutation operators. In this paper, the population of descendants is 
generated by using an event selection according to the objective function 𝑍𝑍1 described in the previous 
section. After that, a recombination process and an improvement process (mutation operator) over the 
solution resulting from the recombination process are performed. Finally, a combination of the 
population of parents and descendants is performed to obtain a population 𝑅𝑅𝑡𝑡 of size 2𝑁𝑁 (where 𝑁𝑁 is a 
given parameter). The population 𝑅𝑅𝑡𝑡 is organized in Pareto fronts, which are sorted and ranked from 
the front having the best quality to the front having the worst quality (𝐹𝐹1,𝐹𝐹2, . . . ,𝐹𝐹𝑁𝑁), by using the 
concept of Pareto dominance. 

4.1 Concept of dominance 

The concept of dominance is applied to multi-objective problems to compare two solution candidates 
𝑋𝑋1, 𝑋𝑋2, and determine if a solution dominates the other one. In particular, the dominance is a method 
for the classification of the solutions which ensures the selection of the best solution in the resulting 
population 𝑅𝑅𝑡𝑡. 
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Definition 4.1. Given two solutions 𝑋𝑋1 and 𝑋𝑋2, solution 𝑋𝑋1  dominates solution 𝑋𝑋2, if the following 
conditions are satisfied: 

1. solution 𝑋𝑋1 is not worse than 𝑋𝑋2 for all the objectives; 
2.  solution 𝑋𝑋1  is strictly better than 𝑋𝑋2 for at least one objective. 

 

When a complete set 𝑅𝑅𝑡𝑡 is classified according to the above criteria, the best dominant 𝑁𝑁 solutions are 
selected for making the population 𝑃𝑃𝑡𝑡+1. This process is performed by a controlled elitist selection, 
which allows each front to have at least one solution representing it in the next generation. 

4.1.1 Controlled elitism in NSGA-II 

We propose to keep a predetermined distribution of solutions in order to maintain a different population 
in each generation of the evolutionary process. Therefore, each Pareto front provides solutions to the 
next generation. In particular, a geometric distribution is used. From the population 𝑅𝑅𝑡𝑡 of size 2𝑁𝑁 
organized in 𝑘𝑘 non-dominated fronts, the maximum number 𝑁𝑁𝑖𝑖 of solutions of front 𝑖𝑖 (𝑖𝑖 =  1, … ,𝑘𝑘) 
which pass to the new population 𝑃𝑃𝑡𝑡+1 of size 𝑁𝑁 is calculated by the Eq. (11): 
 

𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑟𝑟𝑖𝑖−1
1 − 𝑟𝑟

1 − 𝑟𝑟𝑖𝑖
 (11) 

where 𝑟𝑟 is a reduction factor (𝑟𝑟 <  1). 
 
Since 𝑟𝑟 <  1, the first Pareto front provides the largest number of candidate solutions of the new 
generation, and the following fronts contribute with a number of solution which is reduced 
exponentially. In addition, there are two considerations concerning to the use of Eq. (11). The first issue 
arises when front 𝑖𝑖 contains a number of solutions 𝑁𝑁𝑖𝑖𝑡𝑡 less than 𝑁𝑁𝑖𝑖 , therefore the solutions of front 𝑖𝑖 are 
considered for the next generation of solutions. The number of solutions which must fill front 𝑖𝑖 are 
calculated as 𝜌𝜌𝑖𝑖  =  𝑁𝑁𝑖𝑖  −  𝑁𝑁𝑖𝑖𝑡𝑡, and the maximum number of solutions provided by front 𝑖𝑖 +  1 is 
increased to 𝑁𝑁𝑖𝑖+1 + 𝜌𝜌𝑖𝑖. This process is performed until 𝑁𝑁 individuals are obtained. The second issue 
occurs when front 𝑖𝑖 contains a number of solutions 𝑁𝑁𝑖𝑖𝑡𝑡 greater than 𝑁𝑁𝑖𝑖. In this case only 𝑁𝑁𝑖𝑖   solutions 
which have been allowed on front 𝑖𝑖 by using the concept of ”stacking distances” are chosen (see Deb 
(2001) and the following sections). These aspects show that the use of the geometric distribution 
contributes to the lateral range of the selected solutions, while the concept of stacking distances 
provides diversity on each front, as shown in Figure 1. 
 
4.1.2 Stacking Distances 
 
The selection of the maximum number of solutions for each front 𝑖𝑖 is performed by using the concept 
of “stacking distances”. In particular, the main objective is to determine the density of the solution 
space for a given solution 𝑋𝑋𝑖𝑖 by considering the average distance between two neighborhood solutions 
located on both sides of 𝑋𝑋𝑖𝑖  for each objective function. The stacking distance is an estimate of the 
perimeter of the cuboid by using the pair of nearest neighbors of solution 𝑋𝑋𝑖𝑖 as its vertices. The solutions 
found at the end of the front take a stacking distance equal to infinity.  
 
The concept of stacking distance allows one to rank the solutions belonging to a specific Pareto front 
𝑖𝑖. Therefore, the solutions having the largest diversity (i.e., the solutions which the least populated 
zones of the front) are chosen. Figure 1 shows an overview of the proposed algorithm. The Figure 1 
desirables a classification by Pareto fronts of a complete set 𝑅𝑅𝑡𝑡 and the process of selecting elite 
solutions which belong to population 𝑃𝑃𝑡𝑡+1. 



 564 

 

Fig. 1. NSGA-II Algorithm 

4.2 Initial population 𝑃𝑃𝑡𝑡 
 

The initial population 𝑃𝑃𝑡𝑡 is composed of 𝑁𝑁 approximate solutions of the classical TSP obtained by 
applying the heuristic algorithm proposed by Christofides (1976) and by considering: a) The complete 
set of nodes except the depot (Escobar et al., 2013), and b) A different starting node at each execution 
of the heuristic algorithm. This strategy obtains 𝑁𝑁 sequences (permutations) of nodes called giant 
TSP’s. The steps for constructing each solution of the initial population are: 

i. The giant tour is split into m subsequences of nodes by using a sweeping strategy, where the number 
of nodes belonging to each subsequence is chosen randomly. The nodes of each subsequence are 
visited according to the order established by the giant tour. The two extreme nodes of each 
subsequence are connected with the depot node.  

ii. Each solution is evaluated according to Eq. (1) and Eq. (2) in order to obtain the initial value for 
each of the two objectives considered in the considered problem.  

4.3 Population of descendants 𝑄𝑄𝑡𝑡 
 
The population of descendants 𝑄𝑄𝑡𝑡 is obtained from the population 𝑃𝑃𝑡𝑡 by considering several genetic 
operators. 
 

• Tournament selection: From population 𝑃𝑃𝑡𝑡 five solutions are chosen randomly. Then, these 
solutions are ordered from the best to the worst quality according to the objective function 𝑍𝑍1. 
Two solutions having the best quality are selected to be the parents of a single descendant, 
which is obtained by using recombination and mutation genetic operators. 

 

• Recombination: Different methods for recombining sequences for the TSP have been proposed 
in the literature. These methods try to obtain feasible tours, so that each node is visited exactly 
once by one of the tours. Among the most used methods, we mention PMX (Goldberg and 
Lingle, 1985), OX (Oliver et al., 1987), OX2 (Syswerda, 1991), and PBX (Syswerda, 1991). In 
this paper, we use the recombination method PMX, because it is a coding based on 
permutations. 

 

• Mutation: In this paper, the concept of mutation is applied by using neighborhood structures, 
whit the goal of finding a neighborhood of good quality to improve one of the two objectives 
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of the considered problem. The mutation is applied as an improvement strategy after the 
recombination method. The following neighborhood structures are considered: 

 
1. Shif (1-0). A node is removed from its current position, and is inserted in a different position 

of a different tour. 
2. Swap (1-1). Two nodes (belonging to different tours) exchange their positions.  
3. 2-Opt. Two non-adjacent arcs belonging to the same tour are removed, and two new arcs 

are added in order to find a new tour. The nodes invloved in the moves are selected 
randomly. 

 
The algorithm 1 shows the pseudocode of the proposed approach. 
 
5. Computational results 
 
The proposed algorithm has been implemented in C++ on a CPU Intel Core 2 Duo with 3 GHz and 2 
GB of RAM. The parameters used for the proposed algorithm are: the rate of recombination is 95%, 
the number of iterations is 30, and the size 𝑁𝑁 of the initial population is 50. 
 
The proposed methodology is validated with two instances. The first instance (F1) concurs a real world 
Colombian courier company in Cali with 29 nodes to be visited (customers) and one depot. Three 
salesmen are considered (m=3). 
 
The second instance (F2) is adapted from the literature. In particular, we have considered initially the 
instance pr76 proposed in Reinelt (2014), which has 75 customers and one depot. The travel time for 
each arc has been defined by considering a speed on the arc randomly generated between 20 km/ hour 
and 90 km / hour. Three salesmen are considered (m=3). 
 

 
Algorithm 1. Pseudo code for solving the MOmTSP 
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The Fig. 2 and Fig. 3 show the Pareto fronts found by the proposed methodology for the instances F1 
and F2, respectively. Each of the Pareto fronts offers a range of possibilities depending on the objectives 
for the proposed problem. In this case, the best solution depends on the specific interests of the decision 
maker. However, there are different ways to select the optimum solution Pareto front. 

  

Fig. 2. Optimal Pareto Front for F1 Fig. 3. Optimal Pareto Front for F2 

5.1 Selecting a solution of the Pareto front 

The criterion max-min is used to select a solution from each Pareto optimal front, in order to show 
solutions that represent each set of data. This method finds a solution that is equidistant from the ends 
of each objective. The criterion is defined as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑖𝑖𝑛𝑛 �
𝐹𝐹𝐹𝐹1,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐹𝐹1,𝑖𝑖

𝐹𝐹𝐹𝐹1,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐹𝐹1,𝑚𝑚𝑖𝑖𝑛𝑛
,
𝐹𝐹𝐹𝐹2,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐹𝐹2,𝑖𝑖

𝐹𝐹𝐹𝐹2,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐹𝐹2,𝑚𝑚𝑖𝑖𝑛𝑛
�� 

(12) 

where 

𝐹𝐹𝐹𝐹1,𝑚𝑚𝑚𝑚𝑚𝑚 = Maximum value of the objective function 1,  
𝐹𝐹𝐹𝐹1,𝑚𝑚𝑖𝑖𝑛𝑛 = Minimum value of the objective function 1,  
𝐹𝐹𝐹𝐹2,𝑚𝑚𝑚𝑚𝑚𝑚 = Maximum value of the objective function 2,  
𝐹𝐹𝐹𝐹2,𝑚𝑚𝑖𝑖𝑛𝑛 = Minimum value of the objective function 2,  
𝐹𝐹𝐹𝐹1,𝑖𝑖 = Value of the objective function 1 for solution 𝑖𝑖,  
𝐹𝐹𝐹𝐹2,𝑖𝑖 = Value of the objective function 2 for solution 𝑖𝑖.  
 
The criterion max-min selects from each Pareto front a specific solution (enclosed in boxes in Figures 
2 and 3), whose characteristics are shown in Tables 1 and 2. 

Table 1  
Chosen solution of the Pareto front for F1 

Traveling 
Salesman Distance [km] Travel time [min] Fobj 1 Fobj 2 

1 24.9 74.4 
71.8 11.9  2 23.8 63.0 

 3 23.1 69.5 
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Table 2  
Chosen solution of the Pareto front for F2 

Traveling 
Salesman Distance [km] Travel time [min] Fobj 1 Fobj 2 

1 53353 61.0 
152888 3.3  2 47177 62.8 

 3 52358 59.6 
 
6. Conclusion 
 
In this paper, a methodology to solve the Multi-objective Multiple Traveling Salesman Problem is 
presented by implementing a Non-dominated Sorting Genetic Algorithm (NSGA-II). In order to 
evaluate the performance of the proposed approach, tests have been performed on two instances. The 
results show a set of non-dominated solutions organized in a Pareto optimal front, reflecting the conflict 
between the two considered objectives. Therefore, the proposed approach provides the opportunity to 
choose any of the solutions of the front according to the criteria chosen by the decision maker. In 
addition, a criterion for choosing a good quality solution for each instance is proposed. The results 
show the minimization of the traveled distances and the balance of the work times for the traveling 
salesmen. 
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