
Decision Science Letters 4 (2015) 579–592 
 

 

Contents lists available at GrowingScience 
 

Decision Science Letters  
 

homepage: www.GrowingScience.com/dsl 
 
 
 

 

 

 

Location and multi-depot vehicle routing for emergency vehicles using tour coverage and 
random sampling 

 

Alireza Goli* and Mehdi Alinaghian  

 

Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran 
C H R O N I C L E                            A B S T R A C T 

Article history:  
Received  January 29, 2015 
Received in revised format:  
April 28, 2015 
Accepted May 5, 2015 
Available online  
May 7  2015 

 Distribution and optimum allocation of emergency resources are the most important tasks, 
which need to be accomplished during crisis. When a natural disaster such as earthquake, flood, 
etc. takes place, it is necessary to deliver rescue efforts as quickly as possible. Therefore, it is 
important to find optimum location and distribution of emergency relief resources. When a 
natural disaster occurs, it is not possible to reach some damaged areas. In this paper, location 
and multi-depot vehicle routing for emergency vehicles using tour coverage and random 
sampling is investigated. In this study, there is no need to visit all the places and some demand 
points receive their needs from the nearest possible location. The proposed study is 
implemented for some randomly generated numbers in different sizes. The preliminary results 
indicate that the proposed method was capable of reaching desirable solutions in reasonable 
amount of time.  
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1. Introduction 

 
During the past few years, there have been several disaster incidents in the world and many people have 
died because no immediate help and rescue efforts were provided (Knott, 1987; Cao & Lai, 2010). In 
the event of crises and catastrophes, time plays an essential role in development of providing 
humanitarian efforts (Croes, 1958; Feo & Resende, 1989). The number of casualties and damage 
increases dramatically as time increases when a natural disaster occurs. Therefore, the logistics 
activities must be provided in minimum amount of time to help rescue people as quickly as possible. 
Disaster relief presents several unique logistics challenges, with issues including damaged 
transportation infrastructure, limited communication, and coordination of multiple agents (Kaufmann, 
1975; Liu, 2004; Luis et al., 2012).  Abounacer et al. (2014) considered a three-objective location–
transportation problem for disaster response. The planned to determine the number, the position and 
the mission of needed humanitarian aid distribution centers (HADC) within the disaster area. The 
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transportation problem was associated with the distribution of aid from HADCs to demand points by 
considering three conflicting objectives. The first one minimized the total transportation duration of 
required products from the distribution centers to the demand points. The second one minimized the 
number of agents required to open and operate the selected distribution centers and finally, the last one 
minimized the non-covered demand for all demand points within the affected area. They proposed an 
epsilon-constraint technique for this problem and provided that it could construct the exact Pareto front. 
The results appeared to show that the computing time needed by the proposed method could be large 
for some instances and a heuristic method was developed for good approximation of the Pareto front 
in reasonable amount of computing times. Afshar and Haghani (2012) developed a model, which 
described the integrated logistics operations associated with natural disasters. They proposed a 
mathematical model, which control the flow of various relief commodities from the sources through 
the supply chain and until they were delivered to the hands of recipients. The structure of the network 
was in compliance with FEMA's complex logistics structure. The proposed model considered different 
issues such as vehicle routing and pick up or delivery schedules as well as finding the optimal locations 
for various layers of temporary facilities. The proposed model provided the opportunity for a 
centralized operation plan, which could eliminate delays and assign the limited resources to the best 
possible use. Barbarosoğlu et al. (2002) developed a mathematical model for helicopter mission 
planning during a disaster relief operation. Doerner et al. (2007) presented a multi-objective 
combinatorial optimization (MOCO) formulation for a location-routing problem in healthcare 
management. Ghaffari-Nasab et al. (2013) considered the location-routing problem with fuzzy 
demands (LRPFD), which could arise in many real-world situations in logistics management, and a 
fuzzy chance constrained program was designed to model it, based on the fuzzy credibility theory.  
 
2. The proposed study  
 
In this paper, location and multi-depot vehicle routing for emergency vehicles using tour coverage and 
random sampling is investigated. In this study, there is no need to visit all the places and some demand 
points receive their needs from the nearest possible location. In this paper, demand is considered as 
uncertain parameters and we use fuzzy numbers to handle uncertainty as follows, 
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Here ( )D xµ


is a membership function of demand D at point x, which is defined in terms of trapezoid 
number. According to Eq. (1), customer’s demand is between 1d and 3d , therefore, the possibility (Pos), 
necessity (Nec) and credibility (Cr) of demand are defined as follows,  
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In this paper, to estimate demand, we use credibility function. In other words, given a credibility value, 
we estimate demand routing, which is determined based on the existing possibilities. An optimal value 
of credibility plays essential role for optimum routing system. In case, demand is over estimated, 
routing vehicle must return to depot with empty capacity and reschedule its trip. In addition, when 
demand is underestimated, it is possible to miss some demand, which increases the response time. The 
following algorithm determines optimum level of demand. 
 

Step 1: Repeat Steps 2 to 5 for Cr = 0:0.1:1 
Step 2: Given a Cr determine demand 
Step 3: Do the following to generate random numbers 
             Step 1: i=1 
             Step 2: Generate mi between lower and upper bounds for 

demand and calculate membership function for 
demand i 

             Step 3: Generate random number r between [0, 1] 
             Step 4: If r<f choose mi for demand point i and go to step 

4, otherwise got to 2 
             Step 5: increase i, otherwise, if i<n go to step 2, otherwise 

go to step 6 
             Step 6: End 
Step 4:  Calculate tour expense based on Cr 
Step 5: Repeat Step 3 and Step 4 1000 times and calculated the 

mean  
Step 6: Report the minimum Cr  
              

 
In this paper, an integrated model to locate temporary relief centers in the affected area, allocation and 
routing of damage to the goods required by these centers is offered. For all disaster relief operations, 
an immediate action is needed for the affected people for providing them necessary medical products.  
Therefore, all routes are considered as open routes and the primary objective is to minimize the total 
service time. All emergency facilities can be located inside or in the vicinity of the damaged units. 
Therefore, the services are divided into direct or coverage system. In other words, any service can be 
either delivered directly or placed in a place near the accident so that others can finish the operations. 
This type of service delivery is more suitable for rural areas facing natural disasters such as the 
earthquakes, fire, etc. is considered with negligible cost of establishment. There is also some main 
depots to provide necessary items required for these units. We assume there are some vehicles inside 
the main depots at time zero to provide necessary requirements such as drugs for other small depots.  
 

Sets:  
 

'R  Set of all possible points { }' 1,2,... , 1, 2,... , 1R P P P R R= + + + where R+1 is a dummy point 
Ba  Set of all possible points, which is not possible to have relief agency.  

'K  Set of all possible vehicles with ' {1,2,...,K}K =  
p  Set of main depots {1,2,..., }p P=  
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Parameters: 
 

ijt  Travel time between node i to node j 

id  Fuzzy demand for point i 

maxdis  Maximum cover radius 

aij A binary parameter, which is one of distance between node i and j is less than maxdis , and 
zero, otherwise  

vkp A binary parameter, which is one if vehicle p exits at point k at time zero 
Q Capacity of vehicle  
M A big number 

 
Decision variables: 
 
xijk A binary variable, which is one if route i-j is covered by vehicle k, and zero, otherwise 
CDi Accumulated demand at point i 
yi A binary variable, which is one if point i is covered by a truck and zero, otherwise 
Dij A binary variable, which is one of demand for point i is assigned to point j 
uik Time that vehicle k reaches to i 
Z  Time of delivering goods to the last demand point 

 
Mathematical model 
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Eq. (6) specifies that a vehicle only covers temporary stations. Eq. (7-8) guarantee that all vehicles are 
used in operations and they do not go back to their origins. Eqs. (9-10) guarantee that all vehicles must 
be connected to dummy depot R+1 and no vehicle is permitted to exist from this depot. Eq. (11) is used 
to make sure that once a vehicle is entered into a node it will exit for sure. Eq. (12) and Eq. (13) are 
used to assign possible demands of some nodes to their neighbors covered by. Eq. (14) and Eq. (15) 
are associated with capacity of vehicles. According to Eq. (16) if there is a demand for a point i it will 
not receive it from other points. Eq. (17) assures that temporary depots are not located in undesirable 
points. Eq. (18) and Eq. (19) are considered for removing sub-tour and finally Eq. (20) and Eq. (21) 
determine the type of variables. In this paper, we use a dummy variable R+1 to calculate the time trips 
and we assume that all vehicles must go to node R+1 with zero time. As we can see, Eq. (5) and Eq. 
(15) are nonlinear and we use the following equations to linearize them.  
 

)22( min Z 

)23( 
( 1 )      R kZ u k K+≥ ∀ ∈ 

)24( 1
'

2 1
1,2,...,

R R

lmk k
l m

x Q k K
+

= =

≤ =∑∑ 

)25( ' 1,..., 1,2,..., 1 1,2,...,lmk lmkx M x l P R m R k K≤ = + = + = 

)26( ' 2,3,..., 1,2,..., 1 1,2,...,lmk lx CD l R m R k K≤ = = + = 

)27( ' ( 1 ) 1,..., 1,2,..., 1 1,2,...,lmk l lmkx CD M x l P R m R k K≥ − − = + = + = 

The resulted mixed integer programming can be solved for optimality for small sized problems. 
However, as the size of the problem increases, the problem can be time consuming and therefore, we 
propose metaheuristics; namely Variable Neighborhood Search (VNS) (Fleszar et al., 2009) to solve 
the resulted problem. VNS was first developed by Mladenović and Hansen (1997) and first it develops 
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several initial solution and then it improves the resulted solution. When it is not possible to improve 
the existing optimal solution, the algorithm expands the existing structure. Consider Nl with 

max{1,2,..., }l l= , which is structure of existing neighborhood and Nl (x) is the set of neighborhood x with 
Nl. The algorithm has two phases of shake and local search. The proposed VNS uses two strings to 
generate the solution. Fig. 1 shows the first string  
 

1 0 0 1 0 1 1 
 

Fig. 1. The first string visiting and transition nodes 
 

In Fig. 1, each node with a value of one represents a visiting node and a node with zero value represents 
a transition node.  In this figure, nodes 1, 2, 4 and 7 are visiting nodes and nodes 3, 5 and 6 are transition 
nodes. The second string demonstrates the vehicle and routing. For example, Fig. 2 shows a sample in 
line with Fig.1. 
 

6 7 5 2 1 0 3 4 1 
 

Fig. 2. The second string for route and vehicle  
 

According to Fig. 2 and based on the information of Fig. 1, first vehicle starts from node 1 and visits 
node 4 and node 3, which is a transition node and receives its service from node 4. The second vehicle 
also starts from node 1 and visits nodes 2 and 7, respectively. Nodes 5 and 6 are covered by nodes 2 
and 7 depending on their distances. The proposed study of this paper uses two methods of serial and 
parallel for generating initial solutions. In both methods, the proposed study generates 1000 randomly 
generated solutions and then it chooses the best ones as candidates. Both algorithms use an initial step 
where all vehicles start trip from the main depot and calculates the following 

D
( )jk vratio
CP

= , 
(28) 

where D is the distance of node j from the last visiting node by vehicle k and CP is the number of point 
in the vicinity of node j. We consider a value of 0.5 for v, which appears to be appropriate method, 
empirically.  
 
2.1. Serial operations 
 
The serial operations consists of the following steps, 
 
Step 1: Set SP R= where R represents total number of nodes, and choose the nodes with minimum 

ratio according to Eq. (28), Choose K points and assigns vehicle to them and remove these 
points from NV, 

Step 2: Start from the first vehicle, 
Step 3: Update Eq. (28) for all remaining nodes located in NV, and randomly assigns some vehicles to 

the first node by considering the capacity, 
Step 4: Remove the visited node as well as other neighbors, which are visited by this vehicle, update 

Eq. (28) and go to step 2, 
Step 5: If the capacity of the vehicle is complete, choose another vehicle, 
Step 6: If NV is complete, ends the algorithm, otherwise go to step 2. 
 
2.2. Parallel operations 
 
The parallel operation requires the following steps, 
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Step 0: Assign all nodes, which are not visited by any vehicle to NV, 
Step 1: Consider all vehicles, 
Step 2: For all vehicles, update Eq. (28) for all nodes, 
Step 3: Set SP R= where R represents total number of nodes, and choose the nodes with minimum 

ratio according to Eq. (28), Choose one point for each vehicle and assign only the node with 
minimum amount, 

Step 4: For the visiting node and its neighbor, if demand is bigger than capacities of these node, remove 
them from NV and go to step 2, otherwise assign them to the node and its neighbor with possible 
capacity and remove it from NV, 

Step 5: If NV is complete, ends the algorithm, otherwise go to step 2. 
 
2.3. Shaking phase 
 
The primary objective of this phase is to make some big changes on the solution and this could be 
accomplished through two methods of changing point and coverage of the visited points.  
 
2.3.1. Moving point 
 
Moving point strategy selects two vehicle and changes the routes and coverages of these two vehicles. 
Fig 3 shows a sample of this change. 
 
 
 

 

 
 
 
 

Fig. 3. Moving change 
In Fig. 3, first l1=1, 2, 3 and l2=1, 2, 3 are chosen and four possible exchanges of 1 2( 1, 0)l l= = , 

1 2( 1, 1)l l= =  , 1 2( 1, 2)l l= =  and 1 2( 3, 2)l l= =  are chosen for exchange.  
 

2.3.2 Changing covering and not covering points 
 

In this strategy, a meeting point in a vehicle is selected from a tour and if there are some points crossings 
the tour and they are within the range, the points are covered by the best possible point, otherwise, no 
change is applied. Table 1 shows details of change and notations. 
 
Table 1 
Different possible change in shaking phase 

The method for creating neighborhood K 
Covering the meeting point 1 
Changing the covering and not-covering point 2 

=1) 2l=1, 1l(  point Changing one point with one 3 
=2)2l=1, 1l( Changing one point with two points 4 
=2)2l=2, 1l( Changing two points with two points 5 
=2)2l=3, 1l( Changing two points with three points 6 
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2.3.3. Local Search 
 
Local searches improve the quality of solutions and in this paper, we use two methods; change point 
and 2-opt algorithm. The first method simply considers all possible choices and selects the possible 
choice. The second method is executed either randomly or optimally. Consider a tour 

{1,..., i, i 1,..., j, j 1,..., }j n∈ + + where ( , 1), ( , 1)i i j j+ + is removed and ( , ), ( 1, 1)i j i j+ + is added. In 
optimal process, all possible choices of {1,2,..., 2 }i n∈ −  and { 2,..., }j i n∈ + are considered and the 
best choice is selected while in 2-opt we choose two positions of i and j randomly and execute the 
replacement. Fig. 4 demonstrates the structure of a sample of 2-opt change. 
 
 
 

 
 
 
 
 

 
 
 

Fig. 4. The structure of 2-opt 
 

We use three types of VNS; namely VNSI, VNSII and VNSIII. VNSI first applies shaking phase and 
after choosing the points, which have been changed, the algorithm performs 2-Opt on them to improve 
the performance. In VNSII, we apply local search on two changed points and finally, in VNSIII, the 
first best improvement is chosen. There is also another method named Adaptive VNS, which is similar 
to VNSI with the difference that shaking phase is executed based on special pattern.  In this research, 
shaking phase is applied in special way that shaking steps given in Table 1 are not executed in order 
shown in the table and to generate neighborhood search, we use roulette wheel method. Let Pk be the 
possible of choosing Kth method given in Table 1 and Wk be the weight given for the improvement of 
method k. Therefore, we have  

/k k i
i

P W W= ∑  
 

(29) 

The following summarizes the method. 
 

Define the neighborhood structures Nκ with K = 1, .., Kmax 
Generate initial solution S 
Improve initial solution by local search 
K ← 1 
repeat 
{Adaptive Shaking} 
Select shaking method and generate S_ ∈ Nκ(S) 
{Local Search} 
S* ← localSearch(S_) 
{Acceptance Decision} 
           if  f(S*)<f(S) then 
                S ← S* 
                K ← 1 
           else        
                K ← K + 1 
           end if       
Update weights and probabilities of shaking methods 
until K<=Kmax 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
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3. Results 
 
In order to measure the performance of the proposed method, we generate several test problems in 
different sizes of small scales [ 10 10 ]× and large scales [ 50 50 ]× . Demand is a fuzzy number with 
lower limit of ( 3,8 )U , middle distribution of (1,5 )U and upper limit of (1,6 )U . The capacity of trucks 
is designed based on 0.85 of upper limits of trucks. The coverage ratio for small problems is between 
0.2 and 0.4 and for large scale problems is 0.2 0.01± .  In addition, between five to ten percent of the 
points are not eligible for establishing a depot. Table 2 demonstrates the parameters used for different 
test problems. 
 

Table 2 
The summary of test problems 

ρ maxdis Q K n R Test Problem 
0.17 4 15 3 4 5  1 
0.33 6 19 3 5 6  2 
0.21 6 24 3 6 8  3 
0.43 9 30 3 7 9  4 
0.28 8 27 3 7 10  5 
0.30 7 35 3 9 10  6 
0.14 5 34 3 7 11  7 
0.36 8 30 3 8 21  8 
0.21 6 38 3 8 13  9 
0.25 7 36 3 9 13  10 
0.27 17 125 3 15 20  11 
0.25 15 210 3 25 30  12 
0.26 17 290 3 35 40  13 
0.25 16 200 5 40 45  14 
0.26 15 225 5 45 50  15 

 
Next, for each test problem given in Table 2, we provide the optimal solutions for different credit 
demand using CPLEX software package.  
 
Table 3 
The summary of simulation  

Problem Cr 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P1 B 14.9 14.9 14.9 14.9 13.7 13.7 13.7 13.7 13.7 13.7 13.7 
M 14.9 20.5 18.8 18.4 17.1 19.4 19.5 20.3 21.8 22 22.5 

P2 B 29.6 29.6 26.9 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 
M 29.6 74.4 74.4 74.4 24.8 24.8 51.5 52.5 74.4 74.4 74.4 

P3 B 29.3 29.3 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 
M 29.3 74.4 74.4 27.5 42.7 52.5 56.1 74.4 74.4 74.4 74.4 

P4 B 21.2 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 
M 21.2 18.4 18.4 18.4 18.4 18.4 18.4 18.4 36 42.7 42.7 

P5 B 35.4 31.8 31.8 31.8 29.1 28.6 28.6 28.6 28.6 28.6 28.6 
M 35.4 41.5 41.4 41.4 41.4 44.4 41.5 41.5 41.5 41.5 41.5 

P6 B 24.9 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 
M 24.9 55.2 54.8 18.5 18.5 18.4 18.5 44.2 55 55 55.1 

P7 B 52.8 22.9 19.7 19.7 18.4 18.4 18.4 18.4 18.4 16.5 15.2 
M 52.8 58.2 19.7 22.7 45.6 45.6 49.9 50 50 55.1 60.5 

P8 B 24.7 24.7 24.7 24.7 24.7 24.7 24.7 18.6 18.6 18.6 18.6 
M 24.7 24.7 24.7 24.7 24.7 24.7 24.7 49.3 51.3 55.8 59.4 

P9 B 52.8 28.9 19.7 19 18.6 18.4 18.4 18.4 18.4 16.5 15.2 
M 52.8 49.6 65.3 64.6 68.5 68.3 68.3 73.4 69.4 74.7 76.7 

P10 B 18.6 18.6 18.6 18.6 18.4 18.4 18.4 18.4 18.4 18.4 18.4 
M 18.6 50.5 49.9 48.3 20.2 45.6 48.7 49.9 51 50.1 51.3 

P1 B 64.3 70.7 59.1 42.8 21.5 23.4 23.4 26.5 31.6 32.3 35 
M 64.3 75 73.1 53.8 21.5 29.4 35.4 49.5 61.6 70.1 121.7 

P2 B 124.6 124.6 123.8 100.8 95 86.5 79.7 79.6 72.3 59.3 59.9 
M 124.6 124.6 129.7 103.5 97.3 88.3 89.6 96.5 100 130.8 126.3 

P3 B 155.1 146.8 135.6 121.9 100.6 100.2 98.3 78.4 77.5 58 112 
M 155.1 150.6 135.6 140.4 100.9 105.2 100.2 98.3 100.6 138.1 152 

P4 B 148.6 144.2 138.2 130.8 115.7 105.6 101 105.5 104 97.6 94.2 
M 148.6 144.2 138.2 140.4 121 140.5 150.3 139.2 140.6 152 155.1 

P5 B 106.2 99.6 103 91.9 103.1 91.1 104.2 107.4 102.8 92.3 82.2 
M 106.2 99.6 103 91.9 103.1 91.1 150.1 169.3 174.2 180.2 180.7 

AVERAGE 60.2 70.8 68.1 59.3 51 54.4 61.5 68.4 73.4 81.1 86.3 
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The actual objective function is estimated and based on the failure occurs, the problem is repeated 1000 
times and the mean of these 1000 times is measured and the optimal credit level is determined based 
on the measured means. Table 3 shows the results where B denotes the planned demands and M 
represents objective function resulted from simulation procedure.  
 
 

 
 

Fig. 5. The summary of mean of objective function for small sized problems 
 
As we can observe from the results of Fig. 5, CR value increases as the mean of the objective function 
increases. Moreover, Table 5 demonstrates the results of the gap between different methods. 
 
Table 5 
The results of the proposed model for small scale problems 

PROBLEM 
CPLEX VNS I VNS II VNS III AVNS 

B T B T GAP B T GAP B T GAP B T GAP 
P1 16.6 0.61 16.6 4.9 0 16.6 4.39 0 16.6 4.46 0 16.6 4.46 0 
P2 16.6 0.83 16.6 6.2 0 16.6 4.34 0 16.6 4.49 0 16.6 4.49 0 
P3 24.8 2.27 24.8 5.67 0 24.8 4.45 0 24.8 4.86 0 24.8 4.3 0 
P4 24.8 4.2 24.8 5.37 0 24.8 4.77 0 24.8 5.23 0 24.8 5.5 0 
P5 23.9 8.75 23.9 5.68 0 23.9 5.34 0 23.9 5.02 0 23.9 5.9 0 
P6 18.5 12.45 18.5 6.4 0 18.5 4.69 0 18.5 5.45 0 18.5 6.4 0 
P7 24.8 11.62 24.8 5.33 0 24.8 4.52 0 24.8 4.41 0 24.8 5.4 0 
P8 18.4 84.39 18.4 10.63 0 19.2 10.27 4.17 19.2 11.75 4.17 18.9 12.9 2.65 
P9 15.6 170.11 16.5 10.11 5.45 16.2 12.78 3.7 16.2 12.85 3.7 15.9 13.3 1.89 
P10 18.6 3600 19.6 20.9 5.1 19.7 12.15 5.58 19.7 21.8 5.58 18.8 20.1 1.06 
P11 30.6 3600 30 11.01 0 31.5 10.87 2.86 31.5 10.08 2.86 30 10.1 0 
P12 42.22 3600 43.5 22.71 2.94 43.7 20.39 3.39 44.9 13.94 5.97 43.5 15.4 2.94 

AVERAGE 22.952 924.603 23.167 9.576 1.124 23.358 8.247 1.642 23.458 8.695 1.857 23.092 9.021 0.712 

 
The results presented in Table 5 are given in seconds and GAP represents the relative gap between 
metaheuristic and actual solver. According to the results, CPLEX could solve only 9 problems in less 
than one hour and for three problems, it can only find a feasible solution. For four scenarios, final error 
was less than 0.7% for AVNS, 1.1% for VNSI and the second scenario has performed the best among 
all possible four methods in terms of time. Fig. 6 shows the summary of CPU time for four methods. 
Table 6 presents the results of the implementation of the proposed methods for large scale problems.  
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Fig. 6. The summary of CPU time for four methods 
 

Table 6 
The summary of the results of the proposed methods for large scale problems 

PROBLEM 

P_B
1

 P_B
2

 P_B
3

 P_B
4

 P_B
5

 P_B
6

 P_B
7

 P_B
8

 P_B
9

 P_B
10

 P_B
11

 P_B
12

 P_B
13

 P_B
14

 P_B
15

 

Mean 

VNS I 
B 200.93 85.11 105.91 62.95 268.57 103.85 123.61 142.53 156.43 177.73 173.92 193.42 190.52 286.66 278.05 

AV 203.76 112.84 112.48 89.57 279.86 150.32 146.85 152.91 200.17 202.72 186.75 214.35 234.58 309.92 299.11 
T 6.28 6.95 10.77 9.88 9.54 13.06 23.38 18.93 28.82 22.91 30.43 31.73 35.09 41.2 75.52 24.299 

GAP Best (%) 0.2 5.8 6.5 0 5.8 0 1.9 5.8 0.4 3.5 0 2.1 7.4 2.0 0 2.7 
GAP Average (%) 0 9.0 4.0 0.1 3.3 6.2 4.9 2.4 6.3 6.5 0 0 6.3 0 0 3.3 

VNS II 
B 207.43 80.63 98.93 64.85 252.96 111.33 123.61 134.91 163.77 183.17 176.52 189.28 191.16 295.68 301.94  AV 208.69 109.47 107.9 90.35 279.9 140.89 139.62 151.61 195.63 189.39 193.62 216.82 232.64 324.25 326.74 
T 5.73 6.57 8.09 8.79 8.8 17.16 14.06 15.99 17.13 21.18 21.27 31.03 30.45 40.65 71.64 21.236 

GAP Best (%) 3.3 0.5 0 2.9 0 6.7 1.9 0.5 4.9 6.4 1.4 0 7.7 5 7.9 3.2 
GAP Average (%) 2.3 6.2 0 1.0 3.3 0 0 1.6 4.2 0 3.5 1.1 5.5 4.4 8.4 2.8 

VNS III 
B 200.93 84.63 100.16 67.46 252.96 110.85 121.25 134.2 159.54 171.44 179.04 199.33 181.93 293.89 294.95  AV 207.37 106.46 112.84 89.42 272.79 146.94 145.51 149.18 187.39 193.97 200.06 219.32 219.63 316.46 320.88 
T 5.68 6.53 8.11 8.76 9.4 16.41 14.39 15.23 16.53 16.1 25.04 30.32 25.78 39.88 68.83 20.466 

GAP Best (%) 0.2 5.2 1.2 6.6 0 6.3 0 0 2.3 0 2.8 5.0 3.0 4.4 5.7 2.8 
GAP Average (%) 1.7 3.6 4.3 0 0.8 4.1 4.0 0 0 2.3 6.6 2.2 0 2.0 6.7 2.5 

AVNS V 200.51 80.16 98.98 65.23 260.29 111.18 121.25 135.4 155.74 180.28 181.98 200.88 176.34 280.91 290.06  AV 203.76 102.61 110.27 93.54 270.41 145.8 150.26 154.12 189.53 192.39 194.49 224.84 221.17 310.99 307.33 
T 10.44 11.25 16.19 15.89 15.26 23.47 27.95 33.2 23.48 39.06 44.83 47.73 45.19 50.71 81.39 32.403 

GAP Best (%) 0 0 0.0 3.5 2.8 6.5 0 0.8 0 4.9 4.4 5.7 0 0 4.1 2.2 
GAP Average (%) 0 0 2.1 4.4 0 3.3 7.0 3.2 1.1 1.5 3.9 4.6 0.7 0.3 2.6 2.3 

 
As we can observe from the results of Table 6, AVNS has performed the best followed by VNSIII. Fig. 
7 shows the results of CPU time used for each method. 
 

 
 

Fig. 7. The results of CPU time for the implementation of the proposed method 
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As we can observe from the results of Fig. 7, VNS II and VNS III perform the best in terms of CPU 
time.  
 
4. Conclusion 
 
In the event of crises and catastrophes, time plays an essential role in development of providing 
humanitarian efforts. The number of casualties and damage increases dramatically as time increases 
when a natural disaster occurs. Therefore, the logistics activities must be provided in minimum amount 
of time to help rescue people as quickly as possible. In this study, we have provided a comprehensive 
model to aid people who face crisis. The proposed study presented a location and multi-depot vehicle 
routing for emergency vehicles using tour coverage and random sampling. The proposed model has 
been solved using some metaheuristics for some randomly selected problems in small and large scales. 
The preliminary results have indicated that the method could find good quality solutions in reasonable 
amount of time.   
 
Acknowledgement 
 
The authors would like to thank the anonymous referees for constructive comments on earlier version 
of this paper. 
 
References 
 
Abounacer, R., Rekik, M., & Renaud, J. (2014). An exact solution approach for multi-objective 

location–transportation problem for disaster response. Computers & Operations Research, 41, 83-
93. 

Afshar, A., & Haghani, A. (2012). Modeling integrated supply chain logistics in real-time large-scale 
disaster relief operations. Socio-Economic Planning Sciences, 46(4), 327-338. 

Barbarosoğlu, G., Özdamar, L., & Cevik, A. (2002). An interactive approach for hierarchical analysis 
of helicopter logistics in disaster relief operations. European Journal of Operational 
Research, 140(1), 118-133. 

Cao, E., & Lai, M. (2010). The open vehicle routing problem with fuzzy demands. Expert Systems with 
Applications, 37(3), 2405-2411. 

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations Research, 6(6), 
791-812. 

Doerner, K., Focke, A., & Gutjahr, W. J. (2007). Multicriteria tour planning for mobile healthcare 
facilities in a developing country. European Journal of Operational Research, 179(3), 1078-1096. 

Feo, T. A., & Resende, M. G. (1989). A probabilistic heuristic for a computationally difficult set 
covering problem. Operations research letters, 8(2), 67-71. 

Fleszar, K., Osman, I. H., & Hindi, K. S. (2009). A variable neighbourhood search algorithm for the 
open vehicle routing problem. European Journal of Operational Research, 195(3), 803-809. 

Ghaffari-Nasab, N., Ahari, S. G., & Ghazanfari, M. (2013). A hybrid simulated annealing based 
heuristic for solving the location-routing problem with fuzzy demands. Scientia Iranica, 20(3), 919-
930. 

Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets (Vol. 1, No. 8). New York: Academic 
Press. 

Knott, R. (1987). The logistics of bulk relief supplies. Disasters, 11(2), 113-115. 
Liu, B. (2004). Uncertainty Theory. An Introduction to Its Axiomatic Foundation, vol. 154 of. Studies 

in Fuzziness and Soft Computing. 
Luis, E., Dolinskaya, I. S., & Smilowitz, K. R. (2012). Disaster relief routing: Integrating research and 

practice. Socio-economic planning sciences, 46(1), 88-97. 
Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations 

Research, 24(11), 1097-1100. 



A. Goli and M. Alinaghian / Decision Science Letters 4 (2015) 
 

591 

 
Appendix 
 
 
Table 7 
The input parameters for small problem 

Ba ρ maxdis Q K n R Problem 

0 29.0 7 15 3 4 5 P1 

0 0.20 6 30 3 5 6 P2 

0 0.25 5 30 3 6 8 P3 

0 0.25 8 25 3 7 9 P4 

0 0.23 7 30 3 7 10 P5 

0 25/0 7 40 3 9 11 P6 

1 0.27 7 35 3 7 11 P7 

2 0.27 8 50 3 10 13 P8 

2 0.35 9 45 3 10 15 P9 

1 0.1 2 125 3 15 20 P10 

3 0.27 7 125 3 15 20 P11 

3 0.27 7 125 3 15 25 P12 
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Table 8  
The results of large scale problem 

Problem R n K Q dismax Ba 

B_P1 15 12 3 86 21 3 

B_P2 20 15 3 119 21 3 

B_P3 25 22 5 103 23 3 

B_P4 30 25 5 120 20 4 

B_P5 35 20 5 95 20 4 

B_P6 40 35 5 166 23 4 

B_P7 50 40 8 119 21 5 

B_P8 60 50 8 148 23 6 

B_P9 70 55 8 156 23 6 

B_P10 75 65 8 210 22 6 

B_P11 80 70 10 163 22 7 

B_P12 90 80 10 183 23 8 

B_P13 100 90 10 208 22 10 

B_P14 150 130 10 296 23 15 

B_P15 200 160 20 187 23 20 

 
 
 
 


