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 Suitable selection of various machining parameters for wire electrical discharge machining 
(WEDM) process heavily relies on the operator’s experience and manufacturer’s technologies 
because of their numerous and diverse operating ranges. Artificial neural networks have been 
introduced as an effective tool to predict values of responses and input parameters of different 
machining processes through forward and reverse modeling approaches respectively. This 
paper mainly focuses on predicting values of some machining responses, like machining rate, 
surface roughness, dimensional deviation and wire wear ratio using feed forward back 
propagation artificial neural network based on six WEDM process parameters, such as pulse 
on time, pulse off time, peak current, spark gap voltage, wire feed and wire tension. The 
corresponding reverse model is also developed to recommend the optimal settings of WEDM 
process parameters for achieving the desired responses according to the requirements of the 
end users. These modeling approaches are quite efficient to predict the values of machining 
responses as well as process parameter settings with reduced time and effort which otherwise 
have to be determined experimentally based on trial and error method. The predicted results 
are found to be in well congruence with the previously obtained experimental observations. 
 

Growing Science Ltd.  All rights reserved. 5© 201   

Keywords: 
WEDM  
Artificial neural network  
Feed forward  
Back propagation  
Reverse model 

 

 

 

 

1. Introduction 

 
Wire electrical discharge machining (WEDM) is a non-traditional material removal process mainly 
used to cut hard or difficult-to-cut materials, where the application of a mere traditional machining 
process is not at all convenient. WEDM is a special form of electrical discharge machining process in 
which the electrode is a continuously moving electrically conductive wire (made of thin copper, brass 
or tungsten of diameter 0.05-0.3 mm) (Mukherjee et al., 2012). The movement of this wire is 
numerically controlled to achieve the desired three-dimensional shape and accuracy of the workpiece. 
The wire is kept in tension using a mechanical device reducing the tendency of producing inaccurate 
shapes. The mechanism of material removal in WEDM process involves a complex erosion effect by 
rapid, repetitive and discrete spark discharges between the wire tool and the job immersed in a liquid 
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dielectric (kerosene/deionized water) medium. These electrical discharges melt and vaporize minute 
amounts of work material, which are ejected and flushed away by the dielectric, leaving small craters 
on the workpiece (Scott et al., 1991; Spedding & Wang, 1997a; Spedding & Wang, 1997b; Ho et al., 
2004). WEDM process offers several special advantages including higher machining rate, better 
precision and control, higher surface finish, and the capability to machine a wider range of workpiece 
materials. In general, it is perceived to be an extremely actuate process and there are various reasons 
behind this perception. In WEDM process, no direct contact takes place between the wire tool 
(electrode) and the workpiece; as a result, the adverse effects, such as mechanical stresses, chatter and 
vibration normally present in conventional machining processes are thus eliminated. The wire used as 
a tool has high mechanical properties and small diameter that can produce very fine, precise and clean 
cuts (Saha et al., 2008; Shandilya et al., 2013). Apart from tool and die, mold, and metalworking 
industries, WEDM process is also being widely used to machine a wide variety of miniature and micro-
parts in metals, alloys, sintered materials, cemented carbides, ceramics and silicon. Being a competitive 
and economical machining process, it can thus fulfill the demanding machining requirements of short 
product development cycle and high surface finish (Ghodsisyeh et al., 2013). 
 
The accuracy and success of WEDM process mainly depends on a large number of process parameters 
which influence the machining process significantly (Kumar et al., 2013a; Ugrasen et al., 2014). Thus, 
it is always suggested to determine the optimal operational settings of various WEDM process 
parameters for achieving enhanced machining performance. For having those optimal WEDM process 
parameter settings, the machine operator has to often rely on the manufacturer’s handbook or take the 
help of machining experts. In this paper, an attempt is made to develop an intelligent system to establish 
the input-output relationship of a WEDM process while utilizing forward and reverse mappings of 
artificial neural networks (ANNs). In forward mapping, machining rate, surface roughness, 
dimensional deviation and wire wear ratio values are predicted from a known set of six WEDM process 
parameters, such as pulse on time, pulse off time, peak current, spark gap voltage, wire feed and wire 
tension. An attempt is also made to develop the corresponding reverse model to predict the 
recommended process parameter settings for achieving the desired responses to meet the end user’s 
requirements. In this direction, a back propagation neural network (BPNN)-based approach is applied 
to develop the related ANN models. The batch mode of training is employed for both the supervised 
learning networks which requires a large set of training data. This requirement for having a large set of 
training data is fulfilled by artificially generating the necessary data with the help of simulation based 
on the real time experimental observations of the earlier researchers. The performance of BPNN is also 
validated against the past experimental data to show its effectiveness and suitability in advanced 
machining applications in selecting the settings of the most influential process parameters to achieve 
the desired responses. 
 
2. Data mining and artificial neural networks  
  
Data mining, popularly known as knowledge discovery in databases (KDD), refers to the non-trivial 
extraction of implicit, previously unknown and potentially useful information from data in databases. 
While data mining and KDD are frequently treated as synonyms, data mining is actually a part of the 
knowledge discovery process. Various techniques of data mining have been successfully applied in 
diverse areas, such as computers and information technology, medical sciences, database management 
systems and manufacturing sciences for creating intelligent systems for prediction purposes.  
  
On the other hand, an ANN is a mathematical or computational model that is inspired by the structure 
and/or functional aspects of biological neural networks. A neural network consists of an interconnected 
group of artificial neurons, and it processes information using a connectionist approach to computation. 
These are powerful data mining tools for modeling, especially when the underlying data relationship is 
unknown. The ANNs can identify and learn correlated patterns between input data sets and the 
corresponding target values. After proper training, the ANNs can be used to predict the outcome of 
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new independent input data. A feed forward neural network is a biologically inspired classification 
algorithm. It consists of a (possibly large) number of simple neuron-like processing units, organized 
in layers. Every unit in a layer is connected with all the units in the previous layer. These connections 
are not all equal, each connection may have a different strength or weight. The weights on these 
connections encode the knowledge of a network. Often the units in a neural network are also 
called nodes. Data enters at the inputs and passes through the network, layer by layer, until it arrives at 
the outputs. During normal operation, that is when it acts as a classifier, there is no feedback between 
layers. This is why it is called as feed forward neural network. Thus, feed forward neural networks are 
one class of ANNs. Back propagation refers to a common method by which these networks can be 
trained. Training is the process by which the weight matrix of a neural network is adjusted automatically 
to produce the desired results. A back propagation network usually learns by examples. This algorithm 
takes datasets as inputs and tries to learn the hidden pattern from these inputs. It changes or adjusts the 
network’s weights according to the learning capability so that when the training is completed, it can 
provide the required output for a particular input. Back propagation neural networks are ideal for simple 
pattern recognition and mapping tasks (Sivanandam, 2003; Samarasinghe, 2006). 
 
3. ANN-based model development for WEDM process  
 
Kumar et al. (2013) conducted 54 experiments on a four-axis CNC type WEDM (Electronica Sprintcut 
734) setup and investigated the effects of six WEDM process parameters, i.e. pulse on time (Ton) , pulse 
off time (Toff), peak current (Ip), spark gap voltage (SV), wire feed (WF) and wire tension (WT) on 
four process responses, i.e. machining rate (M/c rate) (in mm/min), surface roughness (Ra) (in µm), 
dimensional deviation (Dd) (in µm) and wire wear ratio (WWR). Each of the six WEDM process 
parameters was set at three different levels, i.e. Ton at 112 µs, 116 µs and 120 µs; Toff at 44 µs, 50 µs 
and 56 µs; Ip at 120 A, 160 A and 200 A; SV at 40 V, 50 V and 60 V; WF at 4 m/min, 7 m/min and 10 
m/min; and WT at 500 g, 950 g and 1400 g. A work material of pure titanium in the form of a square 
plate and a brass wire electrode with 0.25 mm diameter were taken for the experimentation work. The 
detailed experimental plan along with the observed responses is given in Table 1. The related ANN-
based model to predict the responses for a given set of input parameters for the WEDM process is 
developed in Matlab utilizing the experimental data of Table 1. 
 
Selection of the optimal ANN architecture to be used for prediction is usually decided by hit and trial 
method, choosing the one which gives the lowest value of mean square error (MSE). The variation of 
MSE value with changing number of nodes in the hidden layer is exhibited in Fig. 1. Amongst several 
ANN architectures tried, it is found that the 6-5-4 architecture, as shown in Fig. 2, provides the 
minimum MSE value. The supervised learning process of an ANN generally requires a large set of 
training data. In actual practice, this requirement of huge data is fulfilled by generating artificial datasets 
through simulation. In this case, based on the experimentation data of Table 1, 5000 new datasets are 
generated for the training purpose. This training data is then linear normalized to achieve better training 
and prediction results. The details of the developed ANN model for predicting the responses for a given 
set of WEDM process parameters in forward mapping are given as below. 
 
Number of input nodes - 6 (Ton, Toff, Ip, SV, WF, WT) 
Number of output nodes - 4 (M/c rate, Ra, Dd, WWR) 
Network type - Feed forward back propagation neural network 
Training function - TRAINLIM 
Adaptation learning function - LEARNGDM 
Performance function - MSE 
Number of nodes in hidden layer - 5 
Transfer function between input and hidden layers - TANSIG 
Transfer function between hidden and output layers – PURELIN 
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Fig. 1. Variation of MSE with changing number of nodes in 
hidden layer 

Fig. 2. Optimal ANN architecture for 
forward mapping 

 

Table 1  
Experimental data for forward mapping (Kumar et al., 2013a) 
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Number of nodes in hidden layer

Exp. No. Ton Toff Ip SV WF WT M/c rate Ra Dd WWR 
1 120 50 200 50 7 500 1.14 3.22 160 0.095 
2 116 56 160 50 4 500 0.576 2.48 150 0.063 
3 112 50 160 60 4 950 0.42 2.23 145 0.079 
4 116 44 120 50 10 950 0.954 2.75 159 0.086 
5 116 50 120 60 7 500 0.544 2.47 152 0.061 
6 120 50 160 40 4 950 1.075 2.93 162 0.088 
7 116 56 160 50 10 1400 0.586 2.48 150 0.063 
8 116 50 160 50 7 950 0.695 2.65 152 0.080 
9 116 44 160 50 4 500 1.014 2.81 160 0.089 
10 120 50 160 40 10 950 1.075 2.94 160 0.088 
11 120 56 160 40 7 950 0.995 2.91 160 0.087 
12 120 50 160 60 4 950 0.809 2.83 159 0.079 
13 116 44 160 50 10 500 1.012 2.79 160 0.076 
14 116 50 160 50 7 950 0.573 2.61 150 0.064 
15 112 50 120 50 7 500 0.406 2.49 145 0.048 
16 116 50 160 50 7 950 0.697 2.68 152 0.082 
17 116 50 120 60 7 1400 0.538 2.49 150 0.059 
18 112 56 160 40 7 950 0.48 2.32 145 0.060 
19 116 56 120 50 10 950 0.535 2.31 151 0.056 
20 116 50 200 40 7 1400 0.825 2.89 152 0.079 
21 116 50 200 60 7 500 0.773 2.69 152 0.072 
22 116 56 200 50 10 950 0.792 2.57 153 0.074 
23 116 50 120 40 7 1400 0.625 2.71 152 0.068 
24 112 50 120 50 7 1400 0.425 2.51 145 0.054 
25 116 56 200 50 4 950 0.799 2.56 155 0.078 
26 120 50 160 60 10 950 0.81 2.82 153 0.081 
27 120 50 120 50 7 500 0.83 2.77 158 0.074 
28 112 50 160 40 10 950 0.521 2.35 150 0.085 
29 112 50 200 50 7 500 0.535 2.48 150 0.083 
30 112 44 160 40 7 950 0.858 2.70 153 0.089 
31 112 50 200 50 7 1400 0.54 2.51 150 0.082 
32 116 50 160 50 7 950 0.658 2.65 150 0.081 
33 116 44 200 50 4 950 1.02 2.88 159 0.092 
34 116 50 160 50 7 950 0.656 2.65 152 0.081 
35 120 44 160 40 7 950 1.28 3.28 165 0.107 
36 116 44 200 50 10 950 1.03 2.98 160 0.095 
37 116 50 200 40 7 500 0.829 2.84 155 0.079 
38 112 50 160 40 4 950 0.529 2.33 150 0.081 
39 116 56 160 50 10 500 0.589 2.50 150 0.064 
40 116 50 160 50 7 950 0.659 2.69 152 0.081 
41 120 56 160 60 7 950 0.792 2.66 153 0.070 
42 112 44 160 60 7 950 0.495 2.60 150 0.081 
43 116 50 200 60 7 1400 0.778 2.68 155 0.072 
44 116 44 120 50 4 950 0.959 2.75 155 0.086 
45 112 50 160 60 10 950 0.429 2.28 145 0.079 
46 120 50 120 50 7 1400 0.823 2.75 158 0.074 
47 112 56 160 60 7 950 0.395 2.15 140 0.064 
48 116 44 160 50 4 1400 0.981 2.85 159 0.088 
49 116 50 120 40 7 500 0.635 2.78 158 0.068 
50 120 44 160 60 7 950 1.000 3.00 159 0.085 
51 116 56 120 50 4 950 0.541 2.29 150 0.060 
52 120 50 200 50 7 1400 1.052 3.12 159 0.091 
53 116 44 160 50 10 1400 0.962 2.82 155 0.088 
54 116 56 160 50 4 1400 0.592 2.49 150 0.060 
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After the training phase using the new 5000 datasets, the developed ANN is employed for forward and 
backward prediction purposes (Chandrashekarappa et al., 2014). Forward mapping deals with 
predicting the responses/outputs of the WEDM process for known sets of input conditions. It thus fulfils 
the end user’s requirements of achieving the desired responses for varying values of WEDM process 
parameters. In forward mapping, the end user may also obtain the tentative response values for an 
unknown set of WEDM process parameters. Table 2 exhibits the experimentally observed and ANN 
predicted WEDM response values along with the estimated prediction error for the considered WEDM 
process based on the experimental data of Table 1. In forward mapping, it is also observed that for a 
new combination of WEDM process parameter settings (not considered in the actual experimental plan) 
of Ton = 112 µs, Toff = 50 µs, Ip = 170 A, SV = 50 V, WF = 7 m/min and WT = 950 g, the responses 
are predicted as M/c rate = 0.565 mm/min, Ra = 2.51 µm, Dd = 150.84 µm and WWR = 0.07. 
 
Table 2  
ANN predicted results and prediction error for forward mapping 

Experimental results ANN predicted results Prediction error (%) 
M/c rate Ra Dd WWR M/c rate Ra Dd WWR M/c rate Ra Dd WWR 

1.14 3.22 160 0.095 1.10 3.12 161 0.092 3.51 3.11 0.63 3.16 
0.576 2.48 150 0.063 0.59 2.45 151 0.060 2.43 1.21 0.67 4.76 
0.42 2.23 145 0.079 0.41 2.28 144 0.075 2.38 2.24 0.69 5.06 

0.954 2.75 159 0.086 0.95 2.82 157 0.083 0.42 2.55 1.26 3.49 
0.544 2.47 152 0.061 0.55 2.50 151 0.066 1.10 1.21 0.66 8.20 
1.075 2.93 162 0.088 1.06 3.03 162 0.087 1.40 3.41 0 1.14 
0.586 2.48 150 0.063 0.60 2.49 151 0.068 2.39 0.40 0.67 7.94 
0.695 2.65 152 0.08 0.68 2.58 152 0.074 2.16 2.64 0 7.50 
1.014 2.81 160 0.089 1.00 2.90 158 0.092 1.38 3.20 1.25 3.37 
1.075 2.94 160 0.088 1.04 3.00 161 0.085 3.26 2.04 0.63 3.41 
0.995 2.91 160 0.087 0.96 2.91 160 0.080 3.52 0 0 8.05 
0.809 2.83 159 0.079 0.85 2.82 156 0.077 5.07 0.35 1.89 2.53 
1.012 2.79 160 0.076 0.97 2.87 158 0.077 4.15 2.87 1.25 1.32 
0.573 2.61 150 0.064 0.56 2.58 152 0.062 2.27 1.15 1.33 3.13 
0.406 2.49 145 0.048 0.43 2.56 147 0.052 5.91 2.81 1.38 8.33 
0.697 2.68 152 0.082 0.68 2.58 152 0.083 2.44 3.73 0 1.22 
0.538 2.49 150 0.059 0.50 2.58 151 0.058 7.06 3.61 0.67 1.69 
0.48 2.32 145 0.06 0.43 2.36 147 0.064 10.42 1.72 1.38 6.67 

0.535 2.31 151 0.056 0.51 2.30 150 0.053 4.67 0.43 0.66 5.36 
0.825 2.89 152 0.079 0.86 2.81 155 0.087 4.24 2.77 1.97 10.13 
0.773 2.69 152 0.072 0.80 2.83 155 0.070 3.49 5.20 1.97 2.78 
0.792 2.57 153 0.074 0.76 2.69 153 0.078 4.04 4.67 0 5.41 
0.625 2.71 152 0.068 0.65 2.67 151 0.065 4.00 1.48 0.66 4.41 
0.425 2.51 145 0.054 0.44 2.53 147 0.054 3.53 0.80 1.38 0 
0.799 2.56 155 0.078 0.76 2.71 153 0.082 4.88 5.86 1.29 5.13 
0.81 2.82 153 0.081 0.82 2.78 156 0.076 1.23 1.42 1.96 6.17 
0.83 2.77 158 0.074 0.86 2.79 158 0.073 3.61 0.72 0 1.35 

0.521 2.35 150 0.085 0.51 2.41 148 0.086 2.11 2.55 1.33 1.18 
0.535 2.48 150 0.083 0.54 2.48 149 0.079 0.93 0 0.67 4.82 
0.858 2.7 153 0.089 0.90 2.75 154 0.094 4.90 1.85 0.65 5.62 
0.54 2.51 150 0.082 0.51 2.41 146 0.077 5.56 3.98 2.67 6.10 

0.658 2.65 150 0.081 0.68 2.58 152 0.074 3.34 2.64 1.33 8.64 
1.02 2.88 159 0.092 1.01 3.01 157 0.095 0.98 4.51 1.26 3.26 

0.656 2.65 152 0.081 0.68 2.58 152 0.074 3.66 2.64 0 8.64 
1.28 3.28 165 0.107 1.33 3.28 166 0.101 3.91 0 0.61 5.61 
1.03 2.98 160 0.095 1.01 3.01 158 0.093 1.94 1.01 1.25 2.11 

0.829 2.84 155 0.079 0.87 2.81 156 0.078 4.95 1.06 0.65 1.27 
0.529 2.33 150 0.081 0.56 2.43 149 0.075 5.86 4.29 0.67 7.41 
0.589 2.5 150 0.064 0.60 2.47 151 0.068 1.87 1.20 0.67 6.25 
0.659 2.69 152 0.081 0.68 2.58 152 0.074 3.19 4.09 0 8.64 
0.792 2.66 153 0.07 0.79 2.74 155 0.073 0.25 3.01 1.31 4.29 
0.495 2.6 150 0.081 0.47 2.41 147 0.077 5.05 7.31 2.00 4.94 
0.778 2.68 155 0.072 0.78 2.73 154 0.076 0.26 1.87 0.65 5.56 
0.959 2.75 155 0.086 0.94 2.78 156 0.087 1.98 1.09 0.65 1.16 
0.429 2.28 145 0.079 0.41 2.28 144 0.075 4.43 0 0.69 5.06 
0.823 2.75 158 0.074 0.82 2.75 156 0.072 0.36 0 1.27 2.70 
0.395 2.15 140 0.064 0.39 2.26 144 0.069 1.27 5.12 2.86 7.81 
0.981 2.85 159 0.088 0.98 2.90 156 0.092 0.10 1.75 1.89 4.55 
0.635 2.78 158 0.068 0.68 2.75 152 0.068 7.09 1.08 3.80 0 
1.00 3.00 159 0.085 0.99 2.97 158 0.085 1.00 1.00 0.63 0 

0.541 2.29 150 0.06 0.50 2.44 149 0.059 7.58 6.55 0.67 1.67 
1.052 3.12 159 0.091 1.05 3.07 160 0.090 0.19 1.60 0.63 1.10 
0.962 2.82 155 0.088 0.95 2.88 156 0.088 1.25 2.13 0.65 0 
0.592 2.49 150 0.06 0.58 2.48 149 0.063 2.03 0.40 0.67 5.00 
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In WEDM process, machining rate is a desirable response characteristic and it should be as maximum 
as possible to have the least machining cycle time leading to increased productivity (Saha et al., 2007). 
The most widely used surface quality indicator is the center line average (Ra) value. It plays a crucial 
role in evaluating and measuring the quality of a machined part. The ability of a machined part to 
withstand stresses, temperature, friction and corrosion is greatly affected by its roughness. In addition, 
roughness has also an impact on other properties, like wear resistance, light reflection and coating. The 
difficulty in controlling surface roughness is mainly due to the intrinsic complexity of the phenomenon 
that generates its formation (Pontes et al., 2009). For these reasons, surface modeling has become not 
just an especially defying issue but an area of great interest for research. Dimensional deviation is the 
difference between the observed and the target dimensional values, and it is a measure of accuracy of 
a machining process (Kumar et al., 2013b). Wire wear ratio is normally defined as the ratio of the weight 
loss of wire after the WEDM process to the initial wire weight. Many researchers (Prasad et al., 2014; 
Goswami & Kumar, 2014) have investigated the effects of different WEDM process parameters on 
WWR, and have experimentally observed that increasing values of pulse duration and open circuit 
voltage would cause an increment in WWR, whereas, increasing wire speed and dielectric fluid 
pressure would decrease it. Figs. 3-6 compare the experimental and ANN predicted values of M/c rate, 
Ra, Dd and WWR respectively for the considered WEDM process, and it is interesting to observe that 
for all the four responses, the ANN predicted responses closely match with those obtained 
experimentally. It is also observed that the average prediction errors for M/c rate, Ra, Dd and WWR 
are only 3.17%, 2.30%, 1.01% and 4.35% respectively which confirm the developed ANN model to 
almost accurately predict the output responses for a given set of WEDM process parameters. 
 

 
 

Fig. 3. Comparison of experimental and ANN predicted values for machining rate  
 

 
Fig. 4. Comparison of experimental and ANN predicted surface roughness values  
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Fig. 5. Comparison of experimental and ANN predicted dimensional deviations 

 

    
Fig. 6. Comparison of experimental and ANN predicted wire wear ratio values  

 
An ANN model is also developed for reverse mapping of the considered WEDM process based on a 4-
5-6 ANN architecture. This model for reverse mapping is also trained using the simulated data and is 
subsequently used for prediction of the tentative settings of the WEDM process parameters based on a 
set of desired response characteristics. It can also be treated as an advisory system which in absence of 
human experts, can predict the settings of various process parameters in a WEDM set-up in order to 
achieve the desired responses according to the requirements of the end users. Table 3 provides a set of 
40 simulated data as used for training of the developed ANN for reverse mapping. The predicted values 
of various WEDM process parameters for the given set of responses are shown in Table 4. From this 
table, it is observed that the average prediction errors for the six WEDM process parameters, i.e. Ton, 
Toff, Ip, SV, WF and WT are 2.21%, 4.33%, 3.66%, 4.59%, 3.63% and 4.49% respectively.  
 
Figs. 7-12 respectively compare the simulated and ANN predicted values of all the six WEDM process 
parameters. This reverse model is now specifically applied for a single input dataset which can be 
thought of as the requirement of the end user, and it successfully predicts the necessary WEDM process 
parameter settings to achieve those desired response values. For the response values of M/c rate = 1.5 
mm/min, Ra = 2.00 µm, Dd = 150 µm and WWR = 0.1, the corresponding WEDM process parameters 
are to be set at Ton = 116 µs, Toff = 53 µs, Ip = 174 A, SV = 37 V, WF = 2 m/min and WT = 876 g. For 
the considered WEDM process, it is thus recommended to set the neighborhood process settings at Ton 

= 116 µs, Toff = 50/56 µs, Ip = 160 A, SV = 40 V, WF = 4 m/min and WT = 950 g in order to achieve 
the desired responses. 
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The pulse on time represents the duration of machining time in micro seconds during which the current 
is flowing in each cycle. During this time, the voltage is applied across the electrodes. The single pulse 
discharge energy increases with increasing pulse on time, resulting in higher machining rate. With 
higher values of pulse on time, however, surface roughness tends to be higher. The higher value of 
discharge energy may also cause wire breakage.   
 
Table 3   
Simulated data for reverse mapping 

Exp. No. Ton Toff Ip SV WF WT M/c rate Ra Dd WWR 
1 120 56 160 60 7 950 0.792 2.66 153 0.07 
2 112 44 160 60 7 950 0.495 2.6 150 0.081 
3 116 50 200 60 7 1400 0.778 2.68 155 0.072 
4 116 44 120 50 4 950 0.959 2.75 155 0.086 
5 112 50 160 60 10 950 0.559 3.03 149 0.099 
6 120 50 200 50 7 500 0.684 2.30 153 0.082 
7 116 56 160 50 4 500 0.925 2.92 146 0.089 
8 112 50 160 60 4 950 0.653 2.26 154 0.068 
9 116 44 120 50 10 950 1.123 2.70 158 0.076 

10 116 50 120 60 7 500 0.679 2.41 145 0.093 
11 120 50 160 40 4 950 0.763 2.99 161 0.088 
12 116 56 160 50 10 1400 0.693 2.47 148 0.100 
13 116 50 160 50 7 950 1.056 2.76 162 0.074 
14 116 44 160 50 4 500 0.549 3.17 149 0.064 
15 120 50 160 40 10 950 1.136 3.11 160 0.100 
16 120 56 160 40 7 950 0.712 3.01 156 0.084 
17 120 50 160 60 4 950 0.708 2.41 159 0.071 
18 116 44 160 50 10 500 0.805 2.72 149 0.053 
19 116 50 160 50 7 950 1.064 3.05 152 0.073 
20 112 50 120 50 7 500 0.446 2.72 161 0.054 
21 116 50 160 50 7 950 1.007 2.89 152 0.099 
22 116 50 120 60 7 1400 0.530 2.86 150 0.055 
23 112 56 160 40 7 950 0.884 3.06 147 0.088 
24 116 56 120 50 10 950 1.057 3.00 146 0.074 
25 116 50 200 40 7 1400 0.509 2.96 147 0.078 
26 116 50 200 60 7 500 1.016 2.65 156 0.065 
27 116 56 200 50 10 950 0.551 3.27 146 0.094 
28 116 50 120 40 7 1400 1.053 3.18 161 0.054 
29 112 50 120 50 7 1400 1.076 3.09 155 0.052 
30 116 56 200 50 4 950 0.793 3.00 145 0.105 
31 120 50 160 60 10 950 0.866 3.16 146 0.097 
32 120 50 120 50 7 500 1.135 2.65 152 0.104 
33 112 50 160 40 10 950 0.612 2.49 146 0.049 
34 112 50 200 50 7 500 1.036 2.60 157 0.069 
35 112 44 160 40 7 950 0.678 2.83 150 0.057 
36 112 50 200 50 7 1400 1.069 2.80 151 0.065 
37 116 50 160 50 7 950 1.000 2.95 158 0.051 
38 116 44 200 50 4 950 0.786 2.78 148 0.065 
39 116 50 160 50 7 950 0.938 3.24 151 0.058 
40 120 50 200 60 4 500 0.443 3.02 152 0.054 

 
The pulse off time represents the duration of time in micro seconds between two simultaneous sparks. 
The voltage is absent during this part of the cycle. With a lower value of pulse off time, there are more 
number of discharges in a given time, resulting in increase in sparking efficiency. As a result, the 
machining rate also increases. Using very low values of pulse off time, however, may cause wire 
breakage which in turn reduces the machining efficiency. As and when the discharge conditions become 
unstable, the pulse off time can be increased. This will allow lower pulse duty factor and will reduce 
the average gap current. From Fig. 7 and Fig. 8, it is observed that the predicted values of pulse on and 
pulse off times match well with the simulated dataset values. There are some small deviations between 
the simulated and predicted values which can be minimized further using more accurate training data. 
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The peak current is the maximum value of the current passing through the electrodes for a given pulse. 
An increase in peak current will increase the pulse discharge energy which in turn can improve the 
machining rate further. For higher values of peak current, gap conditions may become unstable with 
improper combination of other process parameter settings. Wire feed is the rate at which the wire 
electrode travels along the wire guide path and is fed continuously for sparking. It is always desirable 
to set the wire feed to be maximum. This will result in less wire breakage, better machining stability 
and slightly more cutting speed. Both the process parameters, i.e. peak current and wire feed are 
considered to be critical in WEDM process.  
 

 
Fig. 7 Comparison of simulated and ANN predicted pulse on time values 

 

 
Fig. 8 Comparison of simulated and ANN predicted pulse off time values 

 
It can be confirmed from Fig. 9 and Fig. 10 that the developed reverse ANN model is quite successful 
in predicting both these process parameters. The spark gap voltage is a reference voltage for the actual 
gap between the workpiece and the wire used for the machining operation. On the other hand, wire 
tension determines how much the wire needs to be stretched between the upper and lower wire guides. 
This is a gram equivalent load with which the continuously fed wire is kept under tension so that it 
remains straight between the wire guides. More the thickness of the workpiece, more is the wire tension 
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required. Improper setting of tension may result in job inaccuracies as well as wire breakage. The 
developed reverse ANN model is also capable to successfully predict the spark gap voltage and wire 
tension which can be validated from Fig. 11 and Fig. 12. 
 

Table 4   
ANN predicted results in reverse mapping 

Input responses  ANN predicted process parameters Prediction error (%) 
M/c rate Ra Dd WWR Ton Toff Ip SV WF WT Ton Toff Ip SV WF WT 

0.792 2.66 153 0.07 118.03 50.77 165.29 61.22 7.76 934.76 1.64 9.34 3.31 2.03 10.86 1.60 
0.495 2.6 150 0.081 117.65 46.44 162.94 60.03 7.69 1008.34 5.04 5.55 1.84 0.05 9.86 6.14 
0.778 2.68 155 0.072 117.66 51.23 200.15 58.89 7.21 1395.66 1.43 2.46 0.08 1.85 3.00 0.31 
0.959 2.75 155 0.086 117.89 46.80 120.29 49.37 4.24 947.85 1.63 6.36 0.24 1.26 6.00 0.23 
0.559 3.03 149 0.099 119.70 49.28 160.69 56.83 9.72 946.65 6.88 1.44 0.43 5.28 2.80 0.35 
0.684 2.30 153 0.082 117.61 49.99 196.36 50.48 6.87 468.10 1.99 0.02 1.82 0.96 1.86 6.38 
0.925 2.92 146 0.089 117.75 50.57 158.29 53.18 3.62 458.44 1.51 9.70 1.07 6.36 9.50 8.31 
0.653 2.26 154 0.068 117.64 50.98 150.31 61.23 4.09 892.30 5.04 1.96 6.06 2.05 2.25 6.07 
1.123 2.70 158 0.076 117.79 48.23 122.17 50.83 9.29 967.82 1.54 9.61 1.81 1.66 7.10 1.88 
0.679 2.41 145 0.093 117.48 51.61 118.36 58.55 7.09 463.44 1.28 3.22 1.37 2.42 1.29 7.31 
0.763 2.99 161 0.088 116.35 50.45 166.54 42.17 3.88 852.47 3.04 0.90 4.09 5.43 3.00 10.27 
0.693 2.47 148 0.100 117.96 52.42 172.92 50.90 9.25 1398.10 1.69 6.39 8.07 1.80 7.50 0.14 
1.056 2.76 162 0.074 115.13 50.95 154.58 50.23 7.05 878.77 0.75 1.90 3.39 0.46 0.71 7.50 
0.549 3.17 149 0.064 116.93 49.04 166.82 51.43 3.96 487.17 0.80 11.45 4.26 2.86 1.00 2.57 
1.136 3.11 160 0.100 117.83 51.45 158.25 42.56 9.11 856.32 1.81 2.90 1.09 6.40 8.90 9.86 
0.712 3.01 156 0.084 118.50 54.70 177.88 40.72 7.69 846.03 1.25 2.32 11.18 1.80 9.86 10.94 
0.708 2.41 159 0.071 116.22 51.77 145.96 58.95 4.09 898.29 3.15 3.54 8.78 1.75 2.25 5.44 
0.805 2.72 149 0.053 117.40 45.36 147.91 52.64 9.73 472.22 1.21 3.09 7.56 5.28 2.70 5.56 
1.064 3.05 152 0.073 120.51 48.20 162.23 46.27 7.20 891.33 3.89 3.60 1.39 7.46 2.86 6.18 
0.446 2.72 161 0.054 118.63 49.56 119.48 55.80 7.44 515.51 5.92 0.88 0.43 11.60 6.29 3.10 
1.007 2.89 152 0.099 117.06 49.05 167.54 51.53 6.92 996.11 0.91 1.90 4.71 3.06 1.14 4.85 
0.530 2.86 150 0.055 117.50 50.62 120.14 60.40 7.03 1355.23 1.29 1.24 0.12 0.67 0.43 3.20 
0.884 3.06 147 0.088 117.27 57.74 157.46 40.51 7.57 945.95 4.71 3.11 1.59 1.28 8.14 0.43 
1.057 3.00 146 0.074 117.76 51.24 120.98 48.58 9.91 1000.08 1.52 8.50 0.82 2.84 0.90 5.27 
0.509 2.96 147 0.078 113.61 49.85 209.69 42.13 6.93 1252.06 2.06 0.30 4.85 5.33 1.00 10.57 
1.016 2.65 156 0.065 116.74 48.77 200.62 57.97 7.58 498.78 0.64 2.46 0.31 3.38 8.29 0.24 
0.551 3.27 146 0.094 117.87 53.77 202.27 53.96 9.45 881.49 1.61 3.98 1.14 7.92 5.50 7.21 
1.053 3.18 161 0.054 115.11 52.69 119.42 42.53 6.93 1405.41 0.77 5.38 0.48 6.33 1.00 0.39 
1.076 3.09 155 0.052 116.04 52.72 133.62 47.57 7.03 1363.97 3.61 5.44 11.35 4.86 0.43 2.57 
0.793 3.00 145 0.105 116.32 53.10 206.32 50.87 3.83 914.36 0.28 5.18 3.16 1.74 4.25 3.75 
0.866 3.16 146 0.097 118.06 52.57 169.70 61.38 9.65 952.88 1.62 5.14 6.06 2.30 3.50 0.30 
1.135 2.65 152 0.104 118.09 53.01 122.30 52.97 7.67 477.80 1.59 6.02 1.92 5.94 9.57 4.44 
0.612 2.49 146 0.049 110.21 48.29 165.78 42.66 9.58 923.14 1.60 3.42 3.61 6.65 4.20 2.83 
1.036 2.60 157 0.069 116.88 49.19 182.71 48.60 7.55 552.46 4.36 1.62 8.65 2.80 7.86 10.49 
0.678 2.83 150 0.057 114.39 48.15 171.19 41.40 6.73 989.42 2.13 9.43 6.99 3.50 3.86 4.15 
1.069 2.80 151 0.065 117.75 50.63 202.64 48.75 7.03 1356.08 5.13 1.26 1.32 2.50 0.43 3.14 
1.000 2.95 158 0.051 115.44 48.37 162.28 50.45 6.83 946.13 0.48 3.26 1.43 0.90 2.43 0.41 
0.786 2.78 148 0.065 114.76 49.29 183.68 52.03 3.60 1000.23 1.07 12.02 8.16 4.06 10.00 5.29 
0.938 3.24 151 0.058 116.32 51.67 146.90 46.56 7.58 856.13 0.28 3.34 8.19 6.88 8.29 9.88 
0.443 3.02 152 0.054 121.30 48.30 193.70 57.80 4.10 498.50 1.08 3.40 3.15 3.67 2.50 0.30 

 

 
Fig. 9. Comparison of simulated and ANN predicted peak current values 
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Fig. 10. Comparison of simulated and ANN predicted wire feed values 

 

 
Fig. 11. Comparison of simulated and ANN predicted spark voltages  

 

 
Fig. 12. Comparison of simulated and ANN predicted wire tension values 
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4. Conclusions  
 
In this paper, a data mining approach employing artificial neural networks has been applied to a wire 
electrical discharge machining process for prediction of its four responses based on six process 
parameters, i.e. pulse on time, pulse off time, peak current, wire feed, wire tension and servo voltage 
through forward mapping. Using a reverse mapping approach, based on the end user’s requirements 
for the desired values of various responses, the optimal settings of WEDM process parameters were 
also predicted. It has been observed that the ANN predicted results closely corroborate with the 
experimental and simulated results which prove the capability of artificial neural networks as an 
effective tool for developing such prediction models to cater the needs of both the operators and the 
end users. It can also be extended further for modeling other complex machining processes with a large 
number of control parameters and responses.  
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