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 Reliability is one of the most important characteristics of the electrical and mechanical systems 
with applications in the space communication industries, internet networks, telecommunication 
systems, power generation systems, and productive facilities. What adds to the importance of 
reliability in these systems are system complications, nature of competitive markets, and 
increasing production costs due to failures. This paper investigates availability optimization of 
a system using both repairable and non-repairable components, simultaneously. The 
availability-redundancy allocation problems involve the determination of component 
availability (i.e., life time and repair time of the components) and the redundancy levels that 
produce maximum system availability. These problems are often subject to some constraints 
on their components such as cost, weight, and volume. To maximize the availability and to 
minimize the total cost of the system, a new Mixed Integer Nonlinear Programming (MINLP) 
model is presented. To solve the proposed model, an improved version of the genetic algorithm 
is designed as an efficient meta-heuristic algorithm. Finally, in order to verify the efficiency of 
the proposed algorithm, a numerical example of a system is presented that consists of both 
repairable and non-repairable components. 
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1. Introduction 

 
Reliability optimization is an important topic that has attracted the attention of many researchers. In 
reliability optimization, the aim is to design a system structure that achieves a higher level of reliability 
at minimum budget and recourses. In order to improve the reliability of a specific system, one of the 
following approaches may be adopted: a) increasing the reliability of each component in the system, b) 
using the redundant components in parallel, c) combining (a) and (b) above, and d) reassignment of 
interchangeable components (Kuo & Prasad, 2000). 
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Many different types of the reliability optimization problems have been encountered and investigated. 
However, the two common types include the Redundancy Allocation Problem (RAP) and the 
Reliability-Redundancy Allocation Problem (RRAP) (Kuo & Prasad, 2000). In RAP, there are discrete 
component choices with predefined characteristics such as reliability, cost and weight, where the goal 
is to find the optimal number of redundancies in each subsystem in order to maximize system reliability 
considering some system constraints. The Reliability-Redundancy Allocation Problem (RRAP) is 
formulated as a mixed-integer non-linear programming problem. It is a more complicated version 
compared with the RAP since the reliability and, therefore, other related specifications of the 
components are not predetermined and considered as decision variables. The purpose of RRAP is to 
maximize system reliability by selecting component reliability and component redundancy levels, 
which forms a difficult but realistic optimization problem. Component specifications such as cost, 
weight, and volume are defined as increasing non-linear functions of component reliability (Coit, 2003). 
Because of the complex nature of this problem, most classical mathematical methods have failed to 
yield optimal or near optimal solutions for this problem (Coelho, 2009). All previous studies of RRAP 
considered the system as a non-repairable one. In this paper, we considered, for the first time, RRAP 
when the system consists of both repairable and non-repairable components. Therefore, the problem 
may be renamed as the Availability-Redundancy Allocation Problem (ARAP). 

Generally, the reliability of a system (or a component) is the probability that it will adequately perform 
its specified purpose for a specified period of time under specified environmental conditions (Barlow 
& Proschan, 1981) and availability is defined as the probability that a system is in its intended 
functional condition and, therefore, capable of being used in a stated environment (Hamadani, 1980). 
The main difference between these two concepts is that “availability” is used for repairable components 
while “reliability” is a functional index for the non-repairable ones. Furthermore, the term “reliability” 
can be used for the first failure of a repairable component while the term “availability” is used for the 
entire life of repairable components.  

A system usually consists of a number of subsystems in which each subsystem uses several components 
in parallel. These components are placed in each subsystem according to the system application 
requirements; and each component has its own predefined availability (reliability), weight, volume, and 
cost, which should be considered in designing the system and in determining its optimization 
conditions. Optimization of such a system can be turned into a multi-objective problem due to the 
presence of several and, sometimes, conflicting objectives such as maximizing availability (or 
reliability), minimizing system cost, weight, and volume. 

Since RAP and RRAP belong to the NP-hard class of optimization problems (Chern, 1992; Ha & Kuo, 
2006) they are generally too difficult and time-consuming to solve using traditional optimization 
methods. More specifically when the problem size is large, most classical mathematical methods have 
failed to handle these optimization problems properly (Soltani, 2014). 

Different methods have been developed for solving the RAPs. Exact optimization methods like 
dynamic programming (Fyffe et al., 1968; Ng & Sancho, 2001), integer programming (Misra & 
Sharma, 1991), Lagrangean multipliers (Misra, 1972), and various types of the meta-heuristic 
algorithms such as genetic algorithm (Hamadani & Khorshidi, 2013; Ardakan & Hamadani, 2014; 
Ardakan et al., 2015), ant-colony optimization (Chia & Smith, 2004), Immune algorithm (Chen & You, 
2004), the surrogate constraint method (Onishi et al., 2007), variable neighborhood search (VNS) 
algorithms (Liang & Chen, 2007), Tabu search (TS) algorithm (Ouzineb et al., 2008), and particle 
swarm optimization (Beji et al., 2010; Wu et al., 2011; Garg, 2013) have been used for maximizing 
system reliability. 

For solving the RRAPs, numerous meta-heuristic algorithms such as genetic algorithm (Zoulfaghari et 
al., 2014; Ardakan & Hamadani, 2014), artificial bee colony algorithm (Yeh & Hsieh, 2011), Particle 
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Swarm Optimization (Coelho, 2009),  harmony search (Zou et al., 2011; Wang &  Li, 2012; Zou et al., 
2012), cuckoo search algorithm (Valian, 2012; Valian et al., 2013), and imperialist competitive 
algorithm (Afonso et al., 2013) have been widely employed over the past decade. 

As already mentioned, this paper deals with the RRAPs whose main difference from similar problems 
lies in the assumption that the system involves both repairable and non-repairable components; hence 
it must be considered as ARAP. To solve this problem, a new mixed integer non-linear programming 
model is introduced and solved by an improved version of Genetic Algorithm (GA). To solve the 
proposed mathematical model and to show the capability of the proposed GA in handling the problem, 
a modified problem from the literature is considered and the GA results are compared with those of the 
Improved Particle Swarm Optimization (IPSO) algorithm (Wu et al., 2011) as one of the best algorithms 
reported in the literature. 

In contrast to the studies conducted on reliability optimization, fewer studies have been devoted to the 
availability allocation and optimization to investigate the optimal failure and repair rates of each 
component in a system aimed at maximizing (or minimizing) the objectives. In most cases, the problem 
of availability allocation and optimization can be defined as a multi-objective optimization problem, 
which aims to maximize system availability and minimize tits cost (Elegbede & Adjallah, 2003). 
Levitin and Lisnianski (2001) introduced a model in which the cost of designing the system is fixed 
and its purpose is to optimize system availability. Also, Zio and Bazzo (2011) presented an analysis on 
level diagrams of Pareto front for the redundancy allocation problem. Their aims were to maximize 
system availability and minimize the cost and weight of the whole system. Chiang and Chen (2007) 
proposed a new multi-objective genetic algorithm, namely the simulated annealing based on a multi-
objective genetic algorithm (MOGA), to resolve the availability allocation and optimization problems 
of a repairable system. In the existing literature, a number of researchers have investigated the 
theoretical problems of availability modeling (Srivasvata & Fahim, 1988; Zhao, 1994; Lee, 2000; Cao 
et al., 2002; Sericola, 1999; Ma et al., 2001; Dewinter, 2002). The present article aims at both 
availability and reliability allocation and availability optimization. 

The rest of the paper is organized as follows. In Section 2, the structure of the problem is presented and 
the proposed model is established. A description of the proposed genetic algorithm is provided in 
Section 3 and a numerical example for the problem is given Section 4. Finally, the paper concludes 
with results, conclusions, and some suggestions for future study. 

2. Problem definition and the proposed model 
 

Series-parallel systems are used here as a well-known system structure for describing the proposed 
model. The common structure of a series-parallel system is illustrated in Fig. 1.  
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Fig.1. General structure of series-parallel system. 
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Without loss of generality, it is supposed that all the components in each subsystem are identical (the 
components have the same reliability and availability). In general, one has two objectives for these 
types of systems: maximizing system availability and minimizing system cost (Elegbede & Adjallah, 
2003). 

As already mentioned in the previous sections, most studies on redundancy allocation problems have 
considered optimization of system reliability and it has been supposed that all the components are non-
repairable, at the cost of neglecting the availability and maintainability of components. Furthermore, in 
cases where system availability is considered, it has been assumed that the system consists of only 
repairable components. This is while in real world conditions, there are a few systems that are designed 
to use either repairable or non-repairable components. In fact, most complicated systems consist of 
both repairable and non-repairable subsystems. Examples include systems composed of electronic and 
mechanical sections such as automobile motor systems, and airplane systems, production systems, 
where the electronic sections consist of non-repairable components while the mechanical sections have 
repairable ones. 

Recently, Zoulfaghari et al. (2014) presented a mathematical model for such a system consisting of 
both repairable and non-repairable components. They developed the model for the case in which the 
reliability or availability of the components are pre-determined. As an extension to that study, a new 
model is developed in this paper to consider the problem for the case in which the reliability and 
availability of the components are not given in advance but they are considered as decision variables. 
This problem can be called the availability-redundancy allocation problem. It is, therefore, assumed 
that some subsystems use non-repairable components while others have repairable ones. In this case, it 
will not be possible to use the reliability formulation for the objective function since some of the 
components are repairable. It follows then that the modeling should be accomplished in such a way that 
the objective function is considered for maximizing system availability.  

In the next subsections, notations and relations used in the proposed mixed integer non-linear 
programming model and the mathematical representation of the model are presented. 

2.1 Notation 

( )sysA t  Availability of the system at time t , 

sysC  Cost of the system, 

( )tiR  Reliability of the component used in the subsystem i  at time t , 

( )tiA  Availability of the component used in the subsystem i  at time t , 

( )tiAv  Availability of the subsystem i  at time t , 

s  Number of total subsystems, 
1s  Number of subsystems that include non-repairable components, 
A  Set of subsystems including repairable components, 
R  Set of subsystems including non-repairable components, 

in  Number of components in subsystem i , 
,i iα β  Constants representing the physical characteristic of each component in 

subsystem i , 
T  Operating time during which the component must not fail, 

, , 0 0i i i ia b q and p≥ ≤  Real numbers used to calculate the cost of repairable component in 
subsystem i , 

( ), ( )E X E Y  Average life time and repair time of repairable components, 
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2,i i iw w v  Real numbers used to calculate the weight and volume of components in 
subsystem i , 

V  Maximum permitted volume of the system, 
W  Maximum permitted weight of the system, 

iN  Maximum permitted number of components in subsystem i , 

iP  Minimum permitted number of components in subsystem i  

,
i iR RL U  Lower and upper bounds of reliability in subsystem i , 

,
i iA AL U  Lower and upper bounds of availability in subsystem i . 

 
3. The mathematical model 
 

In this section, a bi-objective mathematical model is developed and presented for the problem. The 
proposed model is as follows:   
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 in Z +∈ ,       ( )i A R∀ ∈   (6) 

i iR i RL R U≤ ≤ , i R∀ ∈  (7) 

i iA i AL A U≤ ≤ , i A∀ ∈  (8) 

In this model, Eq. (1) denotes the first objective function for maximizing system availability. The 
function is a multiplication of two parts: the first maximizes the reliability of non-repairable subsystems 
while the second maximizes the availability of the subsystems with repairable components. Eq. (2) is 
the second objective function which is related to the total cost of the system. This function also consists 

of two parts: the first one calculates the cost of repairable components. In this part, 1

in
se accounts for the 

interconnecting hardware, iα  and iβ  are the constants representing the physical characteristic of each 
component in subsystem i R∈ , and T is the operating time during which the component must not fail 
(Dhingra, 1992). The second part calculates the cost of repairable components, where ia , ib , and iq  
are positive real numbers, while ip  is negative, ( )i A∀ ∈  (Chiang & Chen ,2007). Eq. (3) shows the 
constraint on maximum weight, while Eq. (4) indicates the constraint of maximum volume for the 
system. Constraint (5) is related to the maximum and minimum numbers of permitted components in 
each subsystem and constraint (6) shows the conditions of the decision variables. Constraint (7) denotes 
the domain of reliability for non-repairable components and constraint (8) denotes the domain of 
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availability for repairable components. For the purposes of system availability analysis and calculation, 
we assume that the life time and repair time are exponential distributions. Therefore: 

(9) 
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(13)  i i ip n N≤ ≤ ,   ( )i A R∀ ∈   
(14)  in Z +∈ ,        ( )i A R∀ ∈   
(15) 

i iiL Uλ λλ≤ ≤ ,  ( ) i A R∀ ∈   
(16) 

i iiL Uµ µµ≤ ≤ ,   i A∀ ∈  

Chern (1992) proved that the redundancy allocation problem in its simplest form of series system was 
an NP-hard problem. Therefore, the proposed model which is more complicated than the model given 
by Chern would also be NP-hard. In order to maximize the objective function of this model, it is 
reasonable to use a meta-heuristic method such as GA as used in this paper. 

4. The proposed genetic algorithm 
 

Genetic algorithm (GA) was first proposed by Holland (1975) and has been one of the most applicable 
meta-heuristic methods for solving combinatorial optimization problems over the past three decades. 
Generally, GA is employed for solving models with one objective function. In this paper, this algorithm 
is used to solve the proposed bi-objective model. In the first step, theε -constrained method is used to 
determine the optimized value for the second objective function (cost). This value is then used in the 
problem constraints, and the single-objective problem is solved by the genetic algorithm. Since the 
value obtained for the second objective function is the minimum value of the system cost, by the 
optimal value for the first objective function can also be obtained by the gradual increase of this value 
in the constraint. It is clear that whenever the cost increases, due to releases in the added constraint, 
availability of the problem should be better than before. This trend produces different solutions for the 
problem for different levels of costs and availability, which makes the decision makers able to select 
appropriate solutions by considering different criteria. Below is presented a complete description of the 
proposed genetic algorithm. 

4.1 Chromosome definition 

For the proposed GA, each chromosome includes 3 s× genes where the first row presents the number 
of components used in subsystems, the second row presents the life times of the components in each 
subsystem and the third row shows the repair times of the components in the repairable subsystems. 
These genes are randomly produced at given intervals. In other words, the value for each gene should 
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be verified in constraints (13), (15), and (16). Fig. 2 represents the chromosome structure considered 
for this problem. 

 Non-Repairable Repairable 
Components level 

1n  2n  … 
1 1sn −  

1s
n  

1 1sn +  
1 2sn +  … 

1sn −  sn  

Life time 
1λ  2λ  … 

1 1sλ −  
1s

λ  
1 1sλ +  

1 2sλ +  … 
1sλ −  sλ  

Repair Time 0 0 0 0 0 1 1sµ +  
1 2sµ +  … 

1sµ −  sµ  
 

Fig. 2. Chromosome (solution representation) 

4.2 Fitness function 

As mentioned above, to solve the proposed bi-objective model by GA, the second objective is 
considered as a constraint so that the model becomes a single-objective one. Fitness function (ff) is the 
value of the first objective function (system availability) plus the penalty for constraint violation. In 
other words, the problem constraints are added to the objective function in such a way that if one 
solution goes beyond the constraints, a relatively large amount of penalty is added to the objective 
function. This penalty keeps the feasibility of the final solution while it also provides the search in the 
infeasible space of the problem. The search in the infeasible space leads to an appropriate diversity for 
the genetic algorithm. 

4.3 Initial population  

In order to produce an initial population, Pop chromosomes are randomly generated. In this paper, 
population size (Pop) is equal to 100. This number of population has been used in previous studies such 
as Safari (2012) and Debb et al. (2002). Safari (2012) states that in problems with a big solution space, 
the number of primary population should be more than 100. 

4.4 Selection  

In order to select the required chromosomes in the crossover operation, the following steps need to be 
taken. The fitness function (ff) is calculated for all the existing chromosomes (Pop) in the present 
population. Then, from Pop present chromosomes, k  chromosomes are randomly selected and sorted 
based on ff. The chromosome with the largest fitness functions (availability-penalties) is selected as the 
parent for generating a new population. This process will be repeated Pop times until Pop parents are 
finally selected for the crossover and mutation operators. 

4.5 Crossover  

Crossover takes place at a certain rate. Using the crossover operation, six offspring are generated from 
each two parents. The two parents and the six offspring create eight chromosomes and the two premier 
chromosomes based on ff are selected to transfer to the next generation. As a result, there will be Pop 
population at the end of the crossover operations. In order to produce these six offspring from the two 
selected parents, the following steps are taken: 

Step 1: Two random numbers ( )1 2,  m m  are selected such that 1m is in the interval (1 to 1 1s − ) and 2m  
is selected from 1 1s + to 1s − . 
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Step 2: The genes in the interval (1 to 1m ) for each parent are exchanged to produce two offspring. 

Step 2: The genes in the interval ( 1 1s + to 2m ) for each parent are exchanged to produce two other 
offspring. 

Step 3: The genes in the interval (1 to 1m ) and those in the interval ( 1 1s + to 2m ) for each parent are 
exchanged at the same time to produce the last two offspring. 

This kind of crossover leads to in the enhanced capability of the algorithm for finding better solutions. 
Here, an illustrative example is used to explain the crossover operation. Suppose that for the case in 
Fig. 3, there is a system with 6 subsystems, 3 of which include non-repairable components and 3 include 
repairable ones while: '2 , 4m m= = ; 1 5 1,2,...,6in i≤ ≤ ∀ = ; 0.0004 0.002 1,2,...,6i iλ≤ ≤ ∀ = ; 
0.02 0.35 4,5,6i iµ≤ ≤ ∀ = .  

Now, there are eight chromosomes and we should select two superior ones. For this selection, ff is 
calculated for all the eight chromosomes and they are compared with each other. Finally, two 
chromosomes with the highest value of ff are selected. 

4.6 Mutation  

The mutation operator is also used at a certain rate which is less than that of the crossover operator. 
The main purpose of applying the mutation operator is to increase diversity and to avoid trapping in 
the local optimization. In this operator, one offspring is randomly selected from among two 
chromosomes produced by the crossover operator. 

repairable repairable-Non  
1 4 3 1 3 2 

First Parent 0.002 0.0004 0.0005 0.002 0.004 0.001 
0.34 0.27 0.2 0 0 0 

       
2 4 2 1 4 1 

Second Parent 0.001 0.002 0.001 0.0004 0.0005 0.001 
0.29 0.31 0.3 0 0 0 

       
1 4 3 1 4 1 

First Child 0.002 0.0004 0.0005 0.002 0.0005 0.001 
0.34 0.27 0.2 0 0 0 

       
2 4 2 1 3 2 

Second Child 0.001 0.002 0.001 0.0004 0.0004 0.001 
0.29 0.31 0.3 0 0 0 

       
1 4 2 1 3 2 

Third Child 0.002 0.0004 0.001 0.002 0.0004 0.001 
0.34 0.27 0.3 0 0 0 

       
2 4 3 1 4 1 

Fourth Child 0.0001 0.0002 0.0005 0.0004 0.0005 0.001 
0.29 0.31 0.2 0 0 0 

       
1 4 2 1 4 1 

Fifth Child 0.002 0.0004 0.001 0.001 0.0005 0.001 
0.34 0.27 0.3 0 0 0 

       
2 4 3 1 3 2 

Sixth Child 0.001 0.002 0.0005 0.0004 0.0004 0.001 
0.29 0.31 0.2 0 0 0 

Fig. 3. Crossover Operation 
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Two random numbers ' '
1 2( , )m m are considered such that '

1m is selected from (1 to 1s ) and '
2m  is selected 

from ( 1 1s + to s ) and the values of these two genes are exchanged. Then, ff is calculated for the muted 
offspring and compared with the value for ff of the pre-mutation chromosome. If the value for ff of the 
new offspring is greater than that of the previous one, it will then be replaced by the newly generated 
offspring. Otherwise, the previous offspring remains as the superior ones. For example, suppose that in 
Fig. 4, the offspring has been selected for mutation, '

1 3m = and '
2 5m = . Fig. 4 represents the mutation 

operator for these random values. 

repairable repairable-Non  
1 4 2 1 4 1  Child before 

mutation 0.002 0.0004 0.001 0.002 0.0005 0.001 
0.34 0.27 0.3 0 0 0 

       
1 3 2 2 4 1  Child after 

mutation 0.002 0.00035 0.001 0.004 0.0005 0.001 
0.34 0.24 0.3 0 0 0 

Fig. 4. Mutation Operation 

4.7 Stopping criteria 

The GA process will continue until a predefined number of iterations (Gen). In this paper, the number 
of iterations is set equal to 500 generations. 

5. A numerical example 
 

This part of the paper includes an example whose data is a combination of those applied in Zou et al. 
(2011) and Chiang and Chen (2007). In this example, the system includes 10 subsystems where 
subsystems 1 to 5 have non-repairable components while subsystems 6 to 10 have repairable 
components. Maximum allowable weight and volume for the system are 300 (units of weight) and 380 
(units of volume), respectively. Maximum and minimum numbers of allowable components in each 
subsystem have been considered as 5 and 1, respectively. Other details are presented in Table 1. 

To solve this problem, the improved genetic algorithm proposed in this paper has been used. The 
improved GA designed here has been coded by MATLAB software and run on a computer with 2G of 
RAM. In this paper, some preliminary experiments were used and the crossover and mutation rates 
were set to 0.9 and 0.3, respectively. Also, the population size and maximum generations were taken 
to be 100 and 500, respectively. 

Table 1  
details of problem 

  iw  2
i iw v  

iα
510×  

iβ  ia  ib  ip  iq  
i

Lλ  
i

Uλ  
i

Lµ  
i

Uµ  

no
n-

re
pa

ir
ab

le
 Sub.1 7 1 2.33 1.5 - - - - 0.0004 0.002 - - 

Sub.2 8 2 1.45 1.5 - - - - 0.0005 0.002 - - 
Sub.3 8 3 0.541 1.5 - - - - 0.0004 0.002 - - 
Sub.4 6 4 8.05 1.5 - - - - 0.0005 0.002 - - 
Sub.5 9 2 1.95 1.5 - - - - 0.0003 0.002 - - 

R
ep

ai
ra

bl
e Sub.6 5 4 - - 0.040 0.04 -0.32 0.34 0.0004 0.002 0.20 0.340 

Sub.7 5 1 - - 0.20 0.02 -0.16 0.17 0.0005 0.002 0.35 0.595 
Sub.8 6 2 - - 0.50 0.10 -0.80 0.85 0.0004 0.002 0.40 0.680 
Sub.9 7 2 - - 0.80 0.08 -0.64 0.68 0.0005 0.002 0.45 0.765 

Sub.10 7 3 - - 0.12 0.12 -0.96 1.02 0.0003 0.002 0.35 0.595 
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In order to show the capability of the genetic algorithm, the problem has also been solved by the 
Improved Particle Swarm Optimization (IPSO) algorithm proposed in Wu et al. (2011), which is 
considered as one of the best algorithms in RAP so far. They demonstrated that IPSO is an algorithm 
with a great capability for solving these problems. Therefore, this algorithm was selected as suitable 
for making comparisons. Also, for the IPSO, the population size was selected to be  100PS = , maximal 
number of iterations was set at K=500 , and the mutation probability to 0.05mp = . The two algorithms 
were run 20 times for each value of cost moving from 1000 to 4500 and the results were presented in 
Table 2. In this Table, SD represents standard deviation which is based on the 20 converging values of 
the objective function. SD is expressed as follows: 

20
2

1

1 ( )
20 1 k

k
SD f f

=

= −
− ∑  (17) 

where, kf  is the thk  converging value of the objective function, and f  represents the average value 
(median) of the objective function. Based on the four criteria (Best, Worst, Median, and SD) in Table 
2, the improved GA proposed here outperformed IPSO for all groups of cost values. The 
outperformance of the improved GA is due to the use made of the crossover and mutation operations 
designed here. These results also show that the availability of the system increases with increasing cost. 
The solutions thus obtained are shown in Table 2 and the detailed solution for the cost value of 1000 is 
presented in Table 3. 

Table 2  
Comparison of results for example between GA and IPSO 

Solution 
number Cost Algorithm Best Worst Median SD 

1 1000 GA 0.99875429 0.99412757 0.99674852 6.819e-004 
IPSO 0.99377264 0.98675214 0.99474125 5.437e-005 

2 1500 GA 0.99928294 0.99884234 0.99914824 5.932e-005 
IPSO 0.99919742 0.99823549 0.99861254 3.833e-004 

3 2000 GA 0.99959213 0.99908954 0.99938541 5.937e-005 
IPSO 0.99937157 0.99842713 0.99903917 2.048e-005 

4 2500 GA 0.99975197 0.99929437 0.99957136 6.328e-004 
IPSO 0.99961843 0.99908291 0.99947126 7.994e-004 

5 3000 GA 0.99989534 0.99942671 0.99982591 3.092e-005 
IPSO 0.99980216 0.99934901 0.99965731 3.296e-004 

6 3500 GA 0.99991759 0.99957593 0.99989315 3.909e-005 
IPSO 0.99987174 0.99940917 0.99969427 6.393e-004 

7 4000 GA 0.99996429 0.99970286 0.99990973 2.061e-004 
IPSO 0.99990197 0.99951024 0.99971907 8.001e-004 

8 4500 GA 0.999989271 0.99990814 0.99995716 1.043e-005 
IPSO 0.999941826 0.99962794 0.99989716 3.073e-004 

       

Fig. 5 shows the convergence of the objective function value in each generation. This solution belongs 
to one of the 20 iterations for a cost equal to 2000. The near-optimal solution (objective function value 
= 0.99935684) was achieved after approximately 425 generations. 

Table 3  
Details of solution number 1with cost=1000 

 Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6 Sub.7 Sub.8 Sub.9 Sub.10 

in  3 3 4 3 4 3 2 2 2 2 

iλ  0.000883 0.000796 0.001521 0.001251 0.001621 0.0004 0.0003 0.0005 0.0004 0.0003 

iµ  - - - - - 0.3285 0.5950 0.7650 0.6800 0.5950 
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Fig. 5. Objective function value convergence 

The Pareto front results are illustrated in Fig. 6 by using the median of availability. This Figure shows 
that for each value of cost, the availability obtained by GA is better than that obtained by IPSO.  

 

Fig. 6. Pareto front of results for GA and IPSO 

These results also demonstrated that the convergence and stability of the proposed GA are better than 
those of the IPSO algorithm. Fig. 7 shows that in 7 out of 8 cases, the value of SD for GA was smaller 
than that for IPSO. The precision of the genetic algorithm is also observed to be higher than that of the 
IPSO algorithm. These indicate that the proposed GA is a robust optimization algorithm. 

 

Fig. 7. Compare stability algorithms  
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6. Summary and Conclusions 
 

In redundancy allocation problems (RAPs), it is commonly assumed that the system consists of either 
only repairable or non-repairable components. As an extension to this assumption, a system consisting 
of both repairable and non-repairable components was considered in this paper and a new mathematical 
model was developed for the system. The problem has been formulated as a nonlinear integer 
programming model subject to a number of given constraints. Since the RAPs belong to the NP-hard 
class of optimization problems, it is not easy to solve the proposed model in real cases, especially for 
large systems. Therefore, meta-heuristic methods are suggested for solving such a hard and complex 
problem. In this paper, an improved genetic algorithm (GA) was developed as an effective meta-
heuristic algorithm for solving the RAP. The results obtained by the genetic algorithm showed the 
satisfactory and appropriate availability of the system. In addition, the precision of the genetic 
algorithm was shown to be high when compared with one of the best algorithms reported in the 
literature. For future work, the authors are investigating the extension of the proposed model by 
introducing fuzzy numbers. 
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