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 This paper analyzes the choice of a PISA selector for a Hybrid Algorithm integrating it as a Multi-
Objective Evolutionary Algorithm (MOEA) with a path-dependent search algorithm. The interaction 
between these components provides an efficient procedure for solving Multi-Objective Problems 
(MOPs) in operations scheduling. In order to choose the selector,  we consider both NSGA and 
SPEA as well as their successors (NSGAII and SPEAII). NSGAII and SPEAII are shown to be the 
most efficient candidates. On the other hand, for the path-dependent search at the end of each 
evolutionary phase we use the multi-objective version of Simulated Annealing.  
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1. Introduction 

 
One of the main purposes of production planning is improving the efficiency of processes (Bihlmaier 
et al., 2009). A good plan in an industrial firm can be seen as a solution to a Job-Shop Scheduling 
Problem (JSSP) (Chao-Hsien & Han-Chiang, 2009) although this problem belongs to the NP-Hard 
class (Ullman, 1975; Papadimitriou, 1994). The JSSP involves the allocation of limited resources to 
jobs in order to optimize some given objectives (Armentano & Scrich, 2000; Storer et al., 1992). 
Evolutionary procedures have been designed to address these multi-objective problems (Deb et al., 
2002) (Coello Coello et al., 2006). Most of the work on JSSP has been done on its single objective 
version, but in real-world cases multiple goals are highly frequent (Chinyao & Yuling, 2009). As 
indicated by T`kindt and Billaut (2006), a genuine scheduling problem requires the optimization of 
several simultaneous goals. Along these lines we present the result of searching for an appropriate PISA 
selector, from a small class of candidate Multi-Objective Evolutionary Algorithms (MOEAs) which, joint 
with a local search procedure (MOSA, Multi-Objective Simulated Annealing) addresses the flexible 
instance of JSSP (Cortés Rivera et al., 2003; Park et al., 2003; Tsai & Lin, 2003; Wu et al., 2004). In this 
sense, this paper provides a methodological ground for the design of such a hybrid algorithm, 
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NSGAII+MOSA, as presented in (Frutos et al., 2010). We claim that the combination of these algorithms 
yields a metaheuristic tool that provides a good approximation to the Pareto frontier of multi-objective 
JSSPs without the short-comings of the underlying MOEA. In particular, that NSGAII fares better than 
other alternative candidates. 
 

1.1 Approaches to the JSSP 
 
The large body of work on the JSSP exhibits different solution strategies ranging from priority rules 
to parallel branch-and-bound algorithms. While Muth and Thompson’s (1964) introduced the current 
form of the JSSP, Jackson (1956) presented solution procedures generalizing Johnson’s (1954). Akers 
and Friedman (1955) provided a Boolean representation of the algorithm, which was later simplified 
as a disjunctive graph in Roy and Sussman (1964), while Balas (1959) profited from this 
representation to yield another solution to the JSSP. In more contemporary times, the complexity of 
the JSSP permitted alternative formulations (Li et al., 2011, 2013; Della Croce et al., 2014), which 
allowed the application of particular algorithms like Clonal Selection (Cortés Rivera et al., 2003), 
Hybrid Artificial Bee Colony (Li et al., 2011), Multi-Population Interactive Coevolutionary (Xing et 
al., 2011), Priority Rules (Panwalker & Iskander, 1977), Shifting Bottlenecks (Adams et al., 1988) 
(Mönch & Zimmermann, 2011), etc. The efficiency of these meta-heuristic procedures leaves room 
for further improvement (De Giovanni & Pezzella, 2010) (Al-Hinai & ElMekkawy, 2011) (Shin et 
al., 2008). 
 

1.2 Multi-Objective Optimization: Basic Concepts 
 
Let us assume that several goals (objectives) have to be minimized. Thus, a vector * * *

1 nx (x ,..., x )  of n 
decision variables (real numbers) is chosen, satisfying q inequalities ig (x) 0 , i 1,..., q  as well as p 
equations ih (x) 0 , i 1,..., p , such that a vector of k functions, 1 kf (x) (f (x),..., f (x))  each one 
corresponding to a particular goal, attains a Pareto optimum. More precisely, the family of decision 
vectors satisfying the q inequalities and the p equations is denoted by   and each x  is a feasible 
alternative. A *x  is Pareto optimal if for any x  and every i=1,…,k, *

i if (x ) f (x) . This means that 
no x  can improve a goal without worsening others. We say that a vector of real numbers 1 nu (u ,..., u )  
dominates another, 1 nv (v ,..., v )  (denoted u v ) if and only if for every i {1,..., k} , i iu v  and for 

some j {1,..., k}  j ju v . The set of Pareto optima is *P {x :  there is no   ' 'x  such that f (x ) f (x)}   

and the associated Pareto frontier is * *FP {f (x) : x P }  . The main goal of Multi-Objective 
Optimization is to find the corresponding *FP . A good approximation should yield a few feasible 
alternatives close enough to the frontier (Frutos & Tohmé, 2009).  
 

2. The Flexible Job-Shop Scheduling Problem 

The Job-Shop Scheduling problem amounts to organizing the execution of a class of n jobs ( n
j j 1{J }  ) on 

a set of m machines ( m
k k 1{M }  ). Each job is described as a sequence of tasks that be performed in 

sequence: 
jj 1 nJ S ,...,S  (assuming that the order of tasks is known we write i jS J . We denote with i

jkO  

that the task iS  of job jJ  is performed on machine kM . i
jkO requires the use of a machine kM  for a 

period i
jk 0   (the processing time) at a cost i

jk . The family of operations to be run on a machine kM  

is denoted kE . In the case of Flexible JSSP (FJSSP), each i
jkO  can be processed by any of the 

machines in M . A key issue here is the scheduling of activities, i.e. the determination of the starting 
time i

jkt  of each i
jkO . (Table 1, FJSSP MF01 (Frutos et al., 2010)). 
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Table 1  
A Flexible Job-Shop Scheduling Problem 
MF01 / Problem 3 × 4 with 8 operations (flexible) 

jJ  
i
jkO  

1M  2M  3M  4M  

i
j1  

i
j1  

i
j2  

i
j2  

i
j3  

i
j3  

i
j4  

i
j4  

1J  

1
1kO  1 10 3 8 4 6 1 9 

2
1kO  3 4 8 2 2 10 1 12 

3
1kO  3 8 5 4 4 6 7 3 

2J  

1
2kO  4 7 1 16 1 14 4 6 

2
2kO  2 10 3 8 9 3 3 8 

3
2kO  9 3 1 15 2 10 2 13 

3J  

1
3kO  8 6 6 8 3 12 5 10 

2
3kO  4 11 5 8 8 6 1 18 

At the start of the process each machine is available and can only carry out an operation at a time. 
Furthermore, no job can use each machine more than once and has to wait until the next machine is 
available (Lin et al., 2011). All the setup and waiting times are included in the initial data and 
machines can remain unused at any step of the plan. The final state is reached when each job has 
completed its last operation (Heinonen & Pettersson, 2007). The FJSSP involves, in turn, two sub-
problems: the allocation of the i

jkO  on the different kM  and the determination of the best way of 

sequencing them, guided by the goals to reach. That is, to find optimal levels of Processing Time 
(Makespan) (f1) stated in Eq. (1), for each job jJ  and Total Operation Costs (f2) stated as Eq. (2). 

 

k
i j

j i i
max jk kj

M M
S J

C  max(t )




    (1) 

and 
 

j i j k

i i
jk jk

J S J M M

x
 

    (2) 

 

where i
jkx = 1 if i

jk kO E  and 0 otherwise. On the other hand i
jkk

x 1 . Besides, starting times satisfy 

the following condition: i (i 1) (i 1) s s
jk jh jh pk pkt max (t ,  t ,  0)       for each pair i 1 s

jh pk kO ,O E  , all machines 

k hM ,M M  and tasks i 1 i jS ,S J   and s pS J . That is, the starting time of an operation i
jkO  should be 

larger or equal than the total time spent on operation i 1
jhO   and on operation s

pkO . 

3. A Multi-Objective Hybrid Evolutionary Algorithm 
 
Evolutionary algorithms have been intensively applied to optimization problems (Coello Coello et al., 
2006; Gao et al., 2008;  Chiang & Lin, 2013; Rabiee et al., 2012). But for the FJSSP the high rate of 
convergence of some of them increase the evaluation costs on multi-objective instances, leading to a low 
diversity in the solutions. So, poorly distributed Pareto frontiers are sometimes obtained under these 
procedures. But if efficient local search procedures are added in the process, very few evaluations of the 
fitness functions yield acceptably distributed Pareto frontiers (see Fig. 1). Our take on this issue is to 
present a Multi-Objective Hybrid Evolutionary Algorithm (MOHEA) for the FJSSP combining a Multi-
Objective Evolutionary Algorithm (MOEA), and Multi-Objective Simulated Annealing (MOSA) 
(Varadharajan & Rajendran, 2005). 
 

 

3.1 The Evolutionary Phase 
 

Individuals are represented by means of a variant of (Wu et al., 2004). Given that the FJSSP has two 
subproblems our MOHEA operates over two chromosomes. The first one represents the allocation of 
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given operation i
jkO  to a machine kM . For instance, for m = 4, we might have something like 0→ 1M , 

1→ 2M , 2→ 3M  and 3→ 4M . 

 

Fig. 1. Makespan vs. Total Operation Costs (MF01-3x4, (Frutos et al., 2010)). MOEA, without Local 

Search ( ) and with Local Search ( )  
 

The second chromosome represents the sequencing of the i
jkO  already assigned to a machine 

i

k jk k
M ( O E )  . We denote with values between 0 and (n!-1) the sequence of jJ  at a given kM . That is, 

for n = 3, we may have 0→1│2│3, 1→1│3│2, 2→2│1│3, 3→2│3│1, 4→3│1│2 and 5→3│2│1 
(Table 2). The initial values are generated in a random way up from uniform distributions: integer 
numbers between 0 and m-1, for the allocation chromosome and between 0 and n!-1, for the 
sequencing chromosome. After that, a crossover and a mutation operator are applied segment-wise on 
the population of combined allocation-sequencing chromosomes. After some preliminary runs, we 
selected the Uniform Crossover operator, because it yields the best results. The mutation operator is 
needed because the crossover alone does not allow reaching certain areas of the search space of the 
FJSSP. We chose the Two-Swap mutation operator, which takes the chain of integers corresponding 
to two chromosomes and selects at random two genes, swapping their positions. 

Table 2  

Allocation and Sequencing Chromosomes for the FJSSP 
MF01 / Problem 3 × 4 with 8 operations (flexible) 

jJ  
i
jkO  

kM  1M  2M  3M  4M  

Chr. 3 3 0 5 

1J  

1
1kO  2     

2
1kO  1     

3
1kO  0     

2J  

1
2kO  1     

2
2kO  2     

3
2kO  3     

3J  

1
3kO  0     

2
3kO  3     

 
3.2 Simulated Annealing as a Local Search Process 
 
Simulated Annealing provides a search procedure based on thermodynamic principles. To avoid local 
optimum traps, that tend to arise with traditional local search algorithms, random jumps to (possibly 

f2 

25

50

75

0 20 40

f1 

 



M. Frutos and F. Tohmé / Decision Science Letters 4 (2015) 
 

251

worse) alternative solutions are allowed. Simulated Annealing controls the frequency of jumps by means 
of the probability function ( T)e  , where δ is the difference among values of the objective function, T is 
the “temperature” at the k-th iteration, starting at a high value (called the initial temperature) Ti, that cools 
down according to k 1 kT T    until a final temperature, Tf, is reached. Since higher temperatures increase 
the probability of getting poor solutions, the procedure diversifies them at its initial phase but improves 
them in the final stages. At the k-th iteration a class of close neighbors M (T,ω) is obtained, depending on 
the temperature and a control parameter ω. Each time a neighbor is generated, an acceptation criterion 
determines whether the current solution is kept or not. In the case of N objectives, there exist several 
alternative definitions of δ. We take δ as the normalized maximum deviation,  i i imax f (x’) f (x) f (x)     . 

If a new solution is rejected, a slight variant is tried. The probability of accepting a bad solution makes the 
algorithm less prone to get caught in a local minimum. On the other hand, during the execution T 
decreases according to a cooling velocity α, lowering the chances of upward displacements in the space of 
solutions and keeping the alternatives close to the optimal ones. The algorithm stops if no improvement 
has been obtained after a certain number of tries or if the final temperature Tf has been reached. Van 
Laarhoven et al. (1992), show that under appropriate conditions, the algorithm explores efficiently the 
neighborhood of the actual solution. Our version of the MOSA algorithm (Multi-Objective Simulated 
Annealing) generates, up from a given one, a class of close-enough alternative solutions by taking one of 
the genes of the chromosome and changing its value at random (Frutos et al., 2010), representing the 
exchange of several operations on a single machine. This procedure is applied M times. The pseudo-code 
of the MOSA used here is presented in Fig. 2. 

3.3 Combining the Algorithms  
 

We focus here on how the aforementioned pieces are assembled (see Fig. 3). First, the memetic 
procedure generates the initial population. Later, to evaluate the fitness of the individuals in the 
population, the value of each goal is computed and a binary tournament selection is performed. The 
selected candidates are subject to the genetic operators and create a new and smaller population. 
Then, the simulated annealing procedure performs a local search on each individual, replacing it with 
a new one. This is repeated until a given generation number is reached.  

0. Take an initial x   

i 1
Q  

1. while T > Tf  

2. Compute M 1 T      

3. for i = 1 to M 

4. Change x and obtain x’ 

5. Decodify and evaluate f1(x’) and f2(x’) 

6. if  f1 and  f2  improve 

7. then Change x’ 

8. if  f1 or f2 improve without worsening either f2 or f1  

9. then Change x’ 

10. if either f1 or f2 gets worse 

11. then 

12. if ξ (0, 1) < e-δ/T 

13. then Change x’ 

14. end if                      

15. end if 

16. end for 

17. T = α (T) 

18. end while 

19. end 

Fig. 2. Pseudo-code of the Simulated Annealing procedure 
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4.  Implementation and Design of Experiments 
 

The whole algorithm was implemented on PISA (A Platform and Programming Language 
Independent Interface for Search Algorithms) (Bleuler et al., 2003), an algorithm interface that 
distinguishes between two modules: variator and selector. The former takes all the specificities of the 
problem at hand to code and decode the solutions (to compute their fitness values). The selector 
module is independent of the problem and acts by selecting candidates. These modules exchange 
messages, coded as text files, independently of the programming language and the platform on which 
the algorithm runs. PISA provides a library of evaluations as well as statistical tools that allow 
evaluating and comparing alternative optimization methods (Knowles et al., 2005). For this work we 
considered the following MOEAs (Multi-objective Evolutionary Algorithms): the Non-dominated 
Sorting Genetic Algorithm (NSGA) (Srinivas, 1994), the Strength Pareto Evolutionary algorithm 
(SPEA) (Zitzler & Thiele, 1999) and their successors, the Non-dominated Sorting Genetic Algorithm 
II (NSGAII) (Deb et al., 2002) and the Strength Pareto Evolutionary algorithm II (SPEAII) (Zitzler et 
al., 2002). 

0. Generate an initial population ( 0
P ) of size N 

1. Decodify and evaluate  f1(x) and f2(x) on every 
0

x P  

2. Select Parents from 0
P  

3. 0
Q  = Cross ( 0

P ) 

4. 
0
Q  = Mutate ( 0

Q ) 

5. 
0
Q  =Local Search ( 

0
Q ) 

6. for i = 0 to G - 1 do 

7. Decodify and evaluate  f1(x) and f2(x) on every individual 

i 1

x Q  

8. Select out of 


i i 1
P Q  the N best elements and eliminate the rest 

9. Create the next generation i 1P  

10. Select Parents from i 1P  

11. i 1Q  = Cross ( i 1P ) 

12. 

i 1Q  = Mutate ( i 1Q ) 

13. 

i 1
Q  = Local Search ( 


i 1
Q ) 

14. end for 

15. end 

Fig. 3. Pseudo-code of the Multi-Objective Hybrid Evolutionary Algorithm 

NSGA classifies the individuals in layers grouping all the non-dominated individuals in a single front 
that comprises the individuals with the same value of fitness. This value is proportional to the size of 
the population, providing reproduction potential for all the individuals in the front. The procedure is 
repeated on the remaining individuals until all the individuals in the population are classified. Since 
the candidates in the first front have higher fitness they get more attention than the rest of the 
individuals. NSGAII is a more efficient version of NSGA that applies an elitist replacement strategy 
choosing the best individuals from the union between parent and child generations. All the solutions 
are ranked in terms of their degrees of non-dominancy, being the better ones those with lowest rank. 
SPEA is an algorithm that at each generation keeps in memory the non-dominated individuals and 
deletes those that became dominated. For each individual in the external system, a strength value is 
computed, proportional to the number of solutions in which it is dominant. The fitness of a member 
of the current population is computed by adding the strengths of the external non-dominated solutions 
that dominate it. SPEAII instead, applies a fine-tuning procedure according to which the fitness of an 
individual is obtained as a balance between the number of solutions that it dominates and the number 
that dominate the individual. Besides, it uses the “nearest neighbor” for valuing the density of feasible 
solutions, leading to a more efficient search. In Figure 4 we can see the PISA architecture adapted to 
the FJSSP. 
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Fig. 4. The architecture of PISA 

4.1 Experiments and results 
 

A preliminary analysis of the improvement process showed that it tended to become stable at the 
200th generation. We chose then the limit of 250 generations, just to leave room for any later 
improvement. The parameters and characteristics of the computing equipment used during these 
experiments were as follows: size of the population: 200, type of cross-over: uniform; probability of 
cross-over: 0.90, type of mutation: two-swap, probability of mutation: 0.01, type of local search: 
simulated annealing (Ti: 850, Tf: 0.01, α: 0.95, ω: 10), probability of local search: 0.01, CPU: 3.00 
GHZ and RAM: 1.00 GB. Initially we consider four solutions, two dominated solutions (see Table 3 
and Table 5) and two undominated solutions (see Table 4 and Table 6) for problem MF01 (Frutos et 
al., 2010). 
 
Table 3  
Scheduling of MF01 (MOHEA) (f1: 6, f2: 78) 

jJ  i
jkO  

Scheduling (MF01) - f1: 6, f2: 78 

i
jkA  i

jkt  i i
jk jkt    i

jk  

1J  

1
1kO  4M  0 1 9 

2
1kO  4M  1 2 12 

3
1kO  1M  2 5 4 

2J  

1
2kO  2M  0 1 14 

2
2kO  2M  1 4 3 

3
2kO  4M  4 6 13 

3J  
1
3kO  3M  0 3 5 

2
3kO  4M  3 4 18 

 
Table 4  
Scheduling of MF01 (MOHEA) (f1: 6, f2: 66) 

jJ  i
jkO  

Scheduling (MF01) - f1: 6, f2: 66 

i
jkA i

jkt i i
jk jkt    i

jk

1J  

1
1kO  4M  0 1 4 
2
1kO  4M  1 2 12 

3
1kO  1M  3 6 4 

2J  

1
2kO  2M  0 1 4 
2
2kO  2M  1 3 9 

3
2kO  4M  3 4 10 

3J  
1
3kO  3M  1 4 5 
2
3kO  4M  4 5 18 
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Table 5  
Scheduling of MF01 (MOHEA) (f1: 57, f2: 35) 

jJ  i
jkO  

Scheduling (MF01) - f1: 57, f2: 35 

i
jkA  i

jkt  i i
jk jkt    i

jk  

1J  

1
1kO  4M  0 4 6 

2
1kO  4M  4 12 2 

3
1kO  1M  12 19 3 

2J  

1
2kO  2M  19 23 6 

2
2kO  2M  23 32 3 

3
2kO  4M  32 41 3 

3J  
1
3kO  3M  41 49 6 

2
3kO  4M  49 57 6 

 
Table 6  
Scheduling of MF01 (MOHEA) (f1: 29, f2: 35) 

jJ  i
jkO  

Scheduling (MF01) - f1: 29, f2: 35 

i
jkA  i

jkt  i i
jk jkt    i

jk  

1J  

1
1kO  4M  0 4 6 

2
1kO  4M  4 12 2 

3
1kO  1M  12 19 3 

2J  

1
2kO  2M  0 4 6 

2
2kO  2M  16 20 3 

3
2kO  4M  20 29 3 

3J  
1
3kO  3M  0 8 6 

2
3kO  4M  8 16 6 

The procedure has been applied to problems MF01 (Fig. 5 (a)), MF02 (Fig. 6 (a)), MF03 (Fig. 7 (a)), 
MF04 (Fig. 8 (a)) and MF05 (Fig. 9 (a)) (Kacem et al., 2002) and the non-dominated solutions (S) 
reached under a number of generations (G) are obtained. Then, a multi-objective analysis based on 
Makespan (f1) and Total Operation Costs (f2) is iterated 30 times. For each algorithm the sets of 
undominated solutions 1 2 30P ,  P ,...,  P  were obtained as well as the super-population T 1 2 30P P P ... P    . 
From each superpopulation a class of undominated solutions was extracted, constituting the Pareto 
frontier for each algorithm: NSGAIIY , NSGAY , SPEAIIY  and SPEAY . The mean times required for completing 
250 generations by the different algorithms are shown in Table 7. 
 
Table 7  
Mean running times of the algorithms. Each algorithm is iterated 30 times 

Mean Running Time (in seconds) 

 NSGAII NSGA SPEAII SPEA 

MF01 112,3 98,5 110,9 102,5 

MF02 195,8 175,2 185,7 181,1 

MF03 221,3 197,9 214,2 204,6 

MF04 402,9 360,4 382,0 372,6 

MF05 531,8 475,7 514,8 491,9 

 

The fronts obtained are shown in Fig. 5 (b) (MF01), Fig. 6 (b) (MF02), Fig. 7 (b) (MF03), Fig. 8 (b) 
(MF04) and Fig. 9 (b) (MF05). To obtain an approximation to the true Pareto front (Approximate 
Pareto Frontier, APF) we take the entire class NSGAII NSGA SPEAII SPEAY Y Y Y   , from which all the 
dominated solutions are eliminated. 
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4.2 Comparison Procedure 
 

In order to compare the results of the algorithms and establish the better option for the FJSSP, several 
tests were applied over the solutions. 

 

Fig. 5. MF01. NSGAII , NSGA , SPEAII , SPEA  and APF  

 
Fig. 6. MF02. NSGAII , NSGA , SPEAII , SPEA  and APF  

 
Fig. 7. MF03. NSGAII , NSGA , SPEAII , SPEA  and APF  
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Fig. 8. MF04. NSGAII , NSGA , SPEAII , SPEA  and APF  

 
Fig. 9. MF05. NSGAII , NSGA , SPEAII , SPEA  and APF  

We considered unary quality indicators using normalized approximation sets. Then, we applied the 
unary indicators (unary epsilon indicator Ie

1, unary hypervolume indicator IH and R indicator IR2
1) on 

the normalized approximation sets as well as on the reference set generated by PISA (Ie
1, IH, and IR2

1, 
Table 8 (MF01), Table 9 (MF02), Table 10 (MF03), Table 11 (MF04) and Table12 (MF05). 
 
Table 8  
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF01) 

Test for Problem MF01 

Ie
1 

 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,02837 0,38665 0,36578 

NSGA 0,97163 - 0,72365 0,70856 

SPEAII 0,61335 0,27635 - 0,49144 

SPEA 0,63422 0,29144 0,50856 - 

IH 

 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,02802 0,38193 0,36131 

NSGA 0,97198 - 0,71481 0,69990 

SPEAII 0,61807 0,28519 - 0,48543 

SPEA 0,63869 0,30010 0,51457 - 

IR2
1 

 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,02802 0,38193 0,36131 

NSGA 0,97198 - 0,71481 0,69990 

SPEAII 0,61807 0,28519 - 0,48543 

SPEA 0,63869 0,30010 0,51457 - 
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Table 9  
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF02)  

Test for Problem MF02
Ie

1 
 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,03649 0,47696 0,04688 
NSGA 0,96351 - 0,89319 0,55750 
SPEAII 0,52304 0,10681 - 0,59746 
SPEA 0,95312 0,44250 0,40254 - 

IH 
 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,03726 0,48697 0,04786 
NSGA 0,96274 - 0,91195 0,56921 
SPEAII 0,51303 0,08805 - 0,61001 
SPEA 0,95214 0,43079 0,38999 - 

IR2
1 

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,03702 0,48387 0,04756 
NSGA 0,96298 - 0,90614 0,56558 
SPEAII 0,51613 0,09386 - 0,60613 
SPEA 0,95244 0,43442 0,39387 - 

 
Table 10  
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF03) 

Test for Problem MF03 
Ie

1 
 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,03739 0,48868 0,04803 
NSGA 0,96261 - 0,91515 0,57121 
SPEAII 0,51132 0,08485 - 0,61215 
SPEA 0,95197 0,42879 0,38785 - 

IH

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,03793 0,49577 0,04873 
NSGA 0,96207 - 0,92842 0,57949 
SPEAII 0,50423 0,07158 - 0,62103 
SPEA 0,95127 0,42051 0,37897 - 

IR2
1

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,03690 0,48233 0,04740 
NSGA 0,96310 - 0,90326 0,56378 
SPEAII 0,51767 0,09674 - 0,60420 
SPEA 0,95260 0,43622 0,39580 - 

 
Table 11  
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF04)  

Test for Problem MF04 
Ie

1

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,07868 0,49118 0,10167 
NSGA 0,92132 - 0,92328 0,63990 
SPEAII 0,50882 0,07672 - 0,10063 
SPEA 0,89833 0,36010 0,89937 - 

IH 
 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,07679 0,47939 0,09923 
NSGA 0,92321 - 0,90113 0,62454 
SPEAII 0,52061 0,09887 - 0,09821 
SPEA 0,90077 0,37546 0,90179 - 

IR2
1

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,07868 0,49118 0,10167 
NSGA 0,92132 - 0,92328 0,63990 
SPEAII 0,50882 0,07672 - 0,10063 
SPEA 0,89833 0,36010 0,89937 - 

 

On problems MF01, MF04 and MF05, NSGAII showed statistically significant differences with NSGA 
and SPEA at the α=0.05 level. On MF02 and MF03, NSGAII and SPEAII had differences with 
NSGA y SPEA of an overall significance level α=0.05. Thus, NSGAII and SPEAII address better the 
FJSSP. As a further step in the analysis, we establish the percentage of contribution of each algorithm to 
the Approximate Pareto Frontier (see Table 13). From this we can conclude that NSGAII is the best 
selector we can apply to our problem.  
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Table 12  
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF05) 

Test for Problem MF05 
Ie

1 
 NSGAII NSGA SPEAII SPEA 

NSGAII - 0,02906 0,39616 0,37477 
NSGA 0,97094 - 0,74145 0,72598 
SPEAII 0,60384 0,25855 - 0,49648 
SPEA 0,62523 0,27402 0,50352 - 

IH

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,02838 0,38691 0,36602 
NSGA 0,97162 - 0,72413 0,70903 
SPEAII 0,61309 0,27587 - 0,48488 
SPEA 0,63398 0,29097 0,51512 - 

IR2
1

 NSGAII NSGA SPEAII SPEA 
NSGAII - 0,02869 0,39101 0,36990 
NSGA 0,97131 - 0,73181 0,71654 
SPEAII 0,60899 0,26819 - 0,49002 
SPEA 0,63010 0,28346 0,50998 - 

 
Table 13 
Percentage of solutions contributed by NSGAII, NSGA, SPEAII and SPEA to the Approximate 
Pareto Frontier 

Percentage of solutions in the Approximate Pareto Frontier
 NSGAII NSGA SPEAII SPEA 

MF01 83,33% 27,78% 66,67% 66,67% 
MF02 85,71% 21,43% 82,14% 53,57% 
MF03 95,45% 31,82% 86,36% 63,64% 
MF04 92,59% 55,56% 88,89% 62,96% 
MF05 93,55% 48,39% 77,42% 77,42% 

 

5. Conclusions 
 
We presented a Multi-Objective Hybrid Evolutionary Algorithm (MOHEA) to solve the Flexible Job-
Shop Scheduling Problem (FJSSP). The application of the MOHEA required the calibration of parameters 
to yield valid values. Our algorithm integrates two meta-heuristic procedures: a Multi-Objective 
Evolutionary Algorithm (MOEA) and a Multi-Objective Simulated Annealing (MOSA) algorithm. 
Individuals are coded in a way that facilitates the application of two basic genetic operators. Different 
MOEAs were tested for this task. It was shown that the performance of NSGAII is at least as good as 
SPEAII and it improves largely over NSGA and SPEA, validating the results in (Frutos et al., 2010). We 
are currently running a comparison between the MOHEA presented in this paper and recently developed 
approaches like the Hybrid Artificial Bee Colony Algorithm (Li et al., 2011) and the Multi-population 
Interactive Co-evolutionary Algorithm (Xing et al., 2011). Furthermore, we plan, in the future, to explore 
the performance of the MOHEA on other MOPs. We believe that it provides a strong and efficient 
approach to this kind of problems. 
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