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 Flexible job shop scheduling problem is a key factor of using efficiently in production systems.  
This paper attempts to simultaneously optimize three objectives including minimization of the 
make span, total workload and maximum workload of jobs. Since the multi objective flexible 
job shop scheduling problem is strongly NP-Hard, an integrated heuristic approach has been 
used to solve it. The proposed approach was based on a floating search procedure that has used 
some heuristic algorithms. Within floating search procedure utilize local heuristic algorithms; it 
makes the considered problem into two sections including assigning and sequencing sub 
problem. First of all search is done upon assignment space achieving an acceptable solution and 
then search would continue on sequencing space based on a heuristic algorithm. This paper has 
used a multi-objective approach for producing Pareto solution. Thus proposed approach was 
adapted on NSGA II algorithm and evaluated Pareto-archives. The elements and parameters of 
the proposed algorithms were adjusted upon preliminary experiments. Finally, computational 
results were used to analyze efficiency of the proposed algorithm and this results showed that 
the proposed algorithm capable to produce efficient solutions. 
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1. Introduction 

 

Job shop production systems are considered as one of the most common forms of production systems 
in production systems. Therefore, there have been extensive efforts to increase the efficiency of these 
systems. There is also an increasing intensity of competition among manufacturing firms to reduce 
prices, timely delivery and customer satisfaction led to efficient use of resources and to increase 
productivity per unit of production. Strong planning in production systems plays essential role in 
increasing productivity and customer satisfaction. Production scheduling is the problem, which 
effects on timely delivery and efficient use of organization’s resource. In a scheduling problem, start 
and finish time of tasks, machines sequences etc. are determined. Although many researchers have 
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proposed various scheduling models in the past, there is still a need for a comprehensive model to 
address the needs of organizations. Job shop scheduling is one of the production scheduling problems 
and is one of the most important mix optimization problems. 

The n×m classical JSP is an NP-hard problem (Garey et al., 1976) that involves n jobs and m 
machines. Each job is to be processed on each machine in a predefined sequence and each machine 
processes only one job at a time. In practice, the shop-floor setup typically consists of multiple copies 
of the most critical machines so that bottlenecks due to long operations or busy machines could be 
reduced. As such, an operation may be processed on more than one machine having the same 
function. This leads to a more complex problem known as the flexible job-shop scheduling problem 
(FJSP). The extension involves two tasks: assignment of an operation to an appropriate machine and 
sequencing the operations on each machine. In addition, for complex manufacturing systems, a job 
can typically visit a machine more than once, which called as recirculation. These three features of 
the FJSP significantly increase the complexity of finding even approximately optimal solutions 
(Garey et al., 1976). Furthermore, instead of considering only a single objective, most scheduling 
problems in practice involve simultaneous optimization of various competing objectives. Therefore, 
in order to tackle the FJSP problems found in practice, efficient optimization strategies are applied to 
deal with both multiple objectives and exponential search space complexity. 
 

In recent years, for solving the JSP and FJSP many meta- heuristic algorithms such as Tabu-search, 
particle swarm optimization, Ant colony optimization and genetic algorithms are proposed. For 
solving FJSP, different hierarchical and integrated approaches have been implemented. In 
hierarchical approach, the problem is divided into two sub-assignment and sequencing problems and 
they are solved, independently. Pauli (1995) as well as Saidi-Mehrabad and Fattahi (2007) extended 
this approach to solve FJSP. However, in the integrated approach, assignment and sequencing are 
considered, simultaneously. Hurink et al. (1994) and Dauzère-Pérès and Paulli (1997) developed 
tabu-search algorithm to solve FJSP with integrated approach. 

In addition, two approaches are used for solving FJSP problem and type of solution structure is an 
important role in solving process. We could mention to some of solution seed structures used for 
solving FJSP. Mesghouni et al. (1997) proposed the Parallel Jobs Representation in a form of a 
matrix where each row represents a job and each entry is a pair value. An indirect representation 
containing a pair of chromosomes, A and B, was proposed by Chen et al. (1997) where A is a string 
of machine assignments and B is a string of sequencing. Gen et al. (2009) used a multi-stage 
operation-based GA (MOGA) to simplify the chromosome. A MOGA chromosome is basically a 
routing string, one locus for each operation. The Assignment Table is proposed by Kacem et al. 
(2002). The assignment table is an Op (total number of operations) × M table. Each row represents an 
operation. 

Gen et al. (2009) represented an assignment Table where each member dedicated the operation and 
included machine number, start and finish time of operation. Fattahi et al. (2007) proposed a method, 
which involves two matrices. The first matrix introduces assignment and the second matrix 
introduces operation’s sequence to machines. Gao et al. (2007) also used a pair of chromosomes, 
where the machine assignment string was a fixed assignment similar to the A-string proposed by 
Chen et al. (1997), with permutations with repetition used for scheduling. Ho et al. (2007) presented 
two-part structure for assignment and sequencing. Based on the dispatching rules, Unachak and 
Adviser-Goodman (2010) presented a two-part structure of strategies for assignment and sequencing. 
In recent years, development of FJSP’s goal function from single-objective to multi-objective has 
been mentioned and it was investigated in both cumulative weighting and Pareto approaches. In the 
first method, each objective has a weight and problem was converted to single objective function, 
which can be solved by using single objective meta-heuristics algorithms.  
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Pareto set approach provided non-dominated solutions for decision maker by using multi objective 
Meta heuristics algorithm. Kacem et al. (2002) presented a hybrid approach based on fuzzy logic and 
multi-objective evolutionary algorithm to the problems of flexible job shop scheduling. They 
provided three objectives: minimization of make span, total workload and maximum workload of 
jobs in the models and prepare an appropriate solution seed structure for solving it. Baykasoğlu and 
Sönmez (2004) presented a tabu-search multi objective algorithm. Xia and Wu (2005) treated this 
problem with a hybrid of particle swarm optimization and simulated annealing as a local search 
algorithm. Tay and Ho (2008) proposed CDR algorithm, showed that CDR algorithm could strikingly 
enhance the quality of production scheduling and used it for scheduling FJSP and took brilliant 
results. Hierarchical approach reduces the complexity of the problem by making the search space 
smaller. The integrated approach considers both sub problems together and search randomly in two 
spaces. After finding an appropriate assignment solution, a job shop problem is solved in hierarchical 
mode. Therefore, some good solutions have driven out because of a job shop problem has solved for 
specific assignment whereas changing the assignment may provide better solution. In an integrated 
mode because there is no particular trend except randomly variations between assignment space the 
sequence, this pattern of searching tends to increase variability in the search space. Thus, it is 
essential to design a trend as well as to decrease complexity of problem by performing a complete 
search in the search space. 
 
In this paper, a meta-heuristic algorithm and a heuristic local search algorithm are combined, and a 
new approach presented. This method reduces variability in search space and it has the benefits of 
both of hierarchical and integrated approaches. The structure of this paper is organized as follows. In 
section 2, assumptions, constraints and objectives of FJSP will be illustrated. In Section 3, Floating 
search approach and NSGAII algorithm will be introduced for solving MOFJSP. The proposed 
algorithm will be presented in Section 4. Computational results, analysis and discussion will be given 
in Section 5. Finally, Section 6 Conclusion and suggestions will be presented for future researches. 
 
2. Problem description 
 
A N×M Flexible Job-shop Scheduling Problem consists of N jobs and M machines. Each job 

J = 1, … ,N has asequence of operations jhj hhO ,...,1,,  , that 
hjO ,
 and jh  in that order represented the 

h operation of job j and the number of operation of job j that is required. The set of machines includes
 mmm ,...,,M 21 . Index j indicates the job h indicates the operation and indicates the machine. The 

operation Oj,h can process on machine ,j hM M   with processing time , ,i j hP . Set ,j hM  is defined on the 

base of , ,i j ha    and index k is identified a set of operations assigned to each machine. According to the 

description, parameters of the model are: 

 
n:  number of jobs 

m:  number of machines 

hjia ,,  : represent the operations assigned to machines, which are defined as follows. 











elsewhere   0

i  machineon    done    O  if  1 hj,

,,

is

a hji

 

hjiP ,,
: processing time hjO , if the machine i process on it, 

The decision variables are: 

maxC : Make span 
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iw : Workload of machine i  











elsewhere   0

Ofor     selected  is  i  machine if  1 hj,

,, hjiy

 











elsewhere   0

kpriority  in     i  machineon    done    O  if  1 hj,

,,,

is

x khji

 

hjt , : Starting time of operation hjO ,  

kimT ,
: Start time machine i is used in priority k 

iK : The number of operations assigned to machine i  

hjsP ,
: processing time

hjO ,
after choosing the machine for its processing 

According to the items listed above, the linear programming model is presented below: 

max
1 max 2 1 3 1

min ( , )
m

i m i ii
f C f w f w  
      

subject to   

max , , 1,..., ;
j jj h j hc t P s for j n    (1) 

, , , , ,. 1,..., ; 1,..., ;i j h i j h j h ji
y P P s for j n h h    (2) 

, , , 1 11,..., ; 1,..., ;j h j h j h jt P s t for j n h h      (3) 

, , , , , , 1. 1,..., ;j k j h i j h k j kT m P s x T m for i m   1,..., ; 1,..., ; 1,..., 1;  j jj n h h k k     (4) 

, , , , ,(1 ). 1,..., ; 1,..., ; 1,..., ; 1,..., ;j k j h i j h k j iT m t x L for i m j n h h k k        (5) 

, , , , ,(1 ). 1,..., ; 1,..., ; 1,..., ; 1,..., ;i k i j h k j h j iT m x L t for i m j n h h k k        (6) 

, , , , 1,..., ; 1,..., ; 1,..., ;i j h i j h jy a for i m j n h h     (7) 

, , , 1 1,..., ;; 1,..., ;i j h k ij h
x for i m k k     (8) 

, , 1 1,..., ; 1,..., ;i j k ji
y for j n h h    (9) 

, , , , , 1,..., ; 1,..., ; 1,..., ;i j h k i j h jk
x y for i m j n h h     (10) 

, 0 1,..., ; 1,..., ;j h jt for j n h h    (11) 

, 0 1,..., ; 1,..., ;  j h jP s for j n h h    (12) 

, 0 1,..., ; 1,..., ;i k iT m for i m k k    (13) 

 , , , 0,1 1,..., ; 1,..., ; 1,... ; 1,..., ;i j h k j ix for i m j n h h k k      (14) 

 , , 0,1 1,..., ; 1,..., ; 1,..., .  i j h jy for i m j n h h     (15) 
 

The objective function f1 determines make span, objective function f2determines maximum workload 
and finally, the objective function f3 determine total workloads of machines. Constraint (1) is equal to 

the make span.  Constraint (2) determines the process time of operation hjO ,  on the selected machine. 

Constraint (3) limits the predecessor of the operations. Constraints (4), (5) and (6) are associated with 
operation process when the specify machine is free and its predecessor is processed. Constraint (7) 
specifies that the machines can process each operation. A constraint (8) assigns the operations to the 
machine and specifies sequence of operations on each machine. Constraints (9) and (10) specify that 
each operation is processed only in one priority and on one machine. 
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3. NSGA II algorithm 
 
NSGA-II is an elitist multi-objective evolutionary algorithm, which carries out an approximation of 
the Pareto front, based on the non-dominance concept. For achieving different Pareto fronts, a 
ranking procedure is performed at each generation. Now this algorithm is one of the efficient ways to 
solve multi-objective problems. NSGAII is also noticed in some multi-objective flexible job shop 
problems and researchers such as Moradi et al. (2011) and Frutos et al. (2010) have already used it.  
First, a random initial population P0 of size N is generated.This population is sorted based on the non-
domination aspect. In multi-objective optimization, if two objective functions f1 andf2 are to be 
minimized then, for any two decision vector x and y, it is said that x dominates if (f1(x) ≤ f1(y) and 
f2(x) < f2(y)) or (f1(x) < f1(y) and f2(x) ≤ f2(y)). The non-dominated solutions are those that other 
solutions do not dominate them. Besides, a set of non-dominated solution, achieved by an 
evolutionary algorithm is called Pareto front. After initialing the P0, a non-domination level (1 is the 
best level) is employed to evaluate the solutions. Then, child population Q0 of size N is created using 
tournament selection, crossover and mutation operators. For a generation t ≥ 1, the process is totally 
different. At the first phase, the population R� 	= 	Pt ∪ Qt of size 2N is produced and a non-
dominated sortingprocedure (ranking) is applied to return the list of non-dominated fronts. The 
second phase is dedicated to generation of a new parent population Pt+1 contained the N best 
solutions. Completing the Pt+1 with the remaining N	 − |P���| solutions, the crowding procedure is 
utilizedto the first front not included. Finally, a new child population Qt+1 of size N are created 
applying Selection, crossover and mutation operators on the population Pt+1. 

 
NSGA-II Algorithm: 
Step 0: Produce initial population (P0) randomly in a size of N and then use famous genetic selection to 
produce children and children population (q0) are produced. 

Step1: Population of children and parents are combined, and (Rt) is built:  
ttt QPR   

Step2: Set  1,1 tPi , and then until NFP it 1
repeat the following operations: 

 1,11   iiFPP itt  

Step 3: Run Crowding distance procedure for the ranked solutions in (Fi) sets and complete set (Pt+1) for 

)( 1 tPN remained solutions 

Step 4: Create the population of children (Qt+1) by using the Crowding distance procedure and also the 

operators of crossover and mutation. 

 
The Crowding distance procedure 

Step 1: put FL  or L equal to size of F set, for each solution i from F set, we put 0id . 

Step 2: for each objective function 3,2,1i  sorting 
if  set by descending order and in term of their value. The index 

sort vector
iI  that )(  i

i fSortI is produced in it. 

Step 3: from 1m to Mm   dedicate a large amount for limitations of solutions or  mm II
dd

21

 and for all 

other solutions )1(,...,3,2  lj put: f mf m

f I m
jmf I m

jm
m
jI

dm
jI

d minmax

)1()1(




   
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Non-dominated sorting procedure: 

Step 1: For Pqp , (P current population) if p dominated q, put:  qSS qp  . 
Ifq dominated p, put: 1 qp nn  
If ()pn  put  pFF  11  

Step2: put i=1, until  1F  

Put 1H  

For each 
iFp  and each 

psq   : 1 qq nn  

If ()pn  put:  qHH   

1 ii HF 1
 (Deb, 2001) 

 
 

In order to generate an initial population, random generation and heuristic’s algorithms (Ho et al., 
2007) is used. In this method, for each random permutations of job, a feasible solution is produced by 
using dispatching rules. 

3.1. Crossover and mutation algorithms 
 

Heuristics methods are used for matching floating search approach with NSGAII observed in Fig 1. 
In these methods, two heuristics local search algorithms, sequence and assignment neighborhood 
search algorithms, were designed to set crossover based on the critical path method. The critical path 
search is a procedure that does an effective neighborhood search around the detected feasible 
solution.  Critical path method was introduced by Adams et al. (1988) in JSP. A critical path begins 
from the operation that has a finishing time equal to make span and it continues each time on the 
operations where their finishing time is equal to the operation starting time, which exist in the critical 
path to be first. This algorithm is based on the following steps: 

 Produce random number )1,0(r . 
 If 5.0r then run the crossover operation assignment part. 
 Run the neighborhood search algorithm for sequence. If the solution is improved 

then replace with First solution, otherwise the first solution is remained. 
 If 5.0r then run the crossover operator on the sequence part. 
 Run the neighborhood search algorithm for assignment. If the solution is improved 

then replace with First solution, otherwise the first solution is remained. 
 

3.2 Neighborhood search algorithms for sequence 
 

Step 1: determine Critical path for the current solution and order operations to public critical , critical and 
non-critical. Public critical operations are in two or more critical paths. 

Step 2: Make a list of capable machines for all operations of jobs and specify the allocated machine for 
each one. 

Step 3: For the critical operations that exist in the list choose the machine with least process time (if more 
than one choose the least workload) and replace. If there wasn’t such a machine, the next operation in the 
list is considered. 

Step 4: If the entire list were reviewed and there was no change, please stop. 
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3.3 Neighborhood search algorithm to assignment 
 
Step 1: Find the critical paths for the current solution, 

Step 2: Arrange machines on the base of building period in descending order, 

Step 3: choose the first machine in the list and two critical operations, which are not belong to 
a same job are swapped.  If it’s not possible, check the next machine in the list. 

Step 4: Finish 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 

Fig. 1. Structure of the proposed algorithm 
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Fig. 2.  Encoding the structure presented by Ho et al. (2007) 

 
For doing crossover on the assignment part, two point crossovers were used. Crossover on the 
sequence part is in the following steps: 
 

 one job is randomly chosen and all operations of it are removed from parent 2 
 Put the remain operations from parent 2 in empty places in a way that their place don’t change 
 Repeat step 1 and 2 for the parent 1. 

In Fig. 3(a) and Fig. 3(b) crossover operators of the assignment and sequence are shown on an 
example. 

1 2 2 3 2 3 1 Parent1 
 

2 3 1 2 2 1 3 Parent1 

 
 2 2  2   

 

 3 1   1 3 

 
3 2 2 1 2 1 3 Child1 

 

 2 3 2 2 3  
 

1 2 3 2 2 3 1 Child2 

Fig. 3(a). Example of crossover on the sequence part 
 
 

001 1 01 10 010 Parent1 
 

100 1 01 10 100 Parent2 

 
100 1 01 10 100 Child1 

 

001 1 01 01 010 Child2 

Fig. 3(b).  Example of crossover on assignment part 
 
Mutation operator is also performed on two parts of chromosomes. Doing mutation on operation 

order part, two random numbers are selected: )1(2 21  mrr where m is the length of operation 

order part. The value of substring between two positions is then inverted. For instance, suppose the 
chromosome (1 2 1 1 2) and r1 = 2 and r2 =4 then the new chromosome will be (1 1 1 2 2). 
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For the machine selection part, a predefined number of operations are selected and for each operation 
selected, from its available machine list, a machine is randomly selected and assigned to it. 
 
4. Computational results 
 
A metric is defined to test the performance of our algorithm with different parameters. First, for each 
algorithm, the non-dominated solutions are chosen from all external achievements obtained by the 
algorithm in all runs and stored in a set H. Then the non-dominated solutions are chosen from the set 
H. Suppose that ntot is the total number of non-dominated solutions in H, if algorithm Yi produces nYi 

solutions of ntot, the metric qYi of algorithm Yi is the ratio of nYi to ntot, 

tot

n

p
n

Yi

Yi


 

The number of population 50, 60,70,80,90 and 100 are considered and the algorithm is run on 6 
problems with various number of jobs and machines. These problems were generated, randomly. 
Table 1 shows the results. In this Table, the metric were calculated for each problem and each number 
of populations.  

Table 1  
PYi Computational results for 6 problems 

Number of populations 
Operation × Machines 50 60 70 80 90 100 

Ms01 4×5 0.33 0 0.133 0.133 0.133 0.268 
Ms02 5×6 0.9 0.1 0 0 0 0 
Ms03 7×7 0.367 0.67 0 0.167 0.167 0.1 
Ms04 10×10 0.154 0.231 0.154 0.454 0.0776 0.231 
Ms05 10×12 0.285 0 0 0.643 0.571 0 
Ms06 12×15 0.084 0.416 0.5 0.1 0.134 0.166 

 

As shown in this table, for the problems in small and medium sizes, number of population of 50 is 
better than others and for problems in big sizes, number of population of 80 is better than others, so 
for solving the problem in small and medium size we generated 50 populations and for big ones, we 
generated 80 populations. The proposed algorithm was solved for 10×15 in size problem in Kacem et 
al. (2002). Final solution is shown in Fig. 4. Three benchmark problems in Kacem et al. (2002) were 
used for comparing proposed algorithm with such Al+CGA provided by Kacem et al. (2002), PSO+ 
SA provided by Xia and Wu (2005), PSO+ TS introduced by Gen et al. (2009) and P-DABC is 
compared by Li et al. (2011). The solutions of our algorithm for 3 benchmark problems consist of 
Kacem et al. (2002), 3 objective functions (Make span (MS), Total workload (TW), Maximum 
workload (W) have compared with another algorithm that described in previous paragraph.  
 
Table 2  
Comparison results between proposed method and other algorithms  

Proposed 
 algorithm 

P-DABC  PSO+TS  PSO+SA  AL+CGA  
Objective 
functions  

Problem size 

16  15  14  16  15  14  15  14  16  15  16  15  14  MS  
8×8 77  72  77  73  75  77  75  77  73  75  75  79  77  TW  

11  11  12  13  12  12  12  12  13  12  13  13  12  W  
8  8  7  8  7  8    7    7    7  7  MS  

10×10  41  42  42  42  43  41    43    44    45  43  TW  
7  5  6  5  5  7    6    6    5  5  W  

  11  11    11  12    11    12  24  23  11  MS  
15×10    91  93    93  91    93    91  91  95  93  TW  

  11  10    11  11    11    11  11  11  11  W  
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As shown in Table 2, NSGA II algorithm with floating search procedure (our suggested algorithm) 
has better results than other algorithms. In the case of 8×8 problem size maximum workload 
objectives function, the results were improved and decreased considerably. The results for 10×10 
problem sizes our presented results was better than resemble methods and finally in the 10×15 
problem size, not only maximum workload objectives function was improved but also new Pareto  
solution has superior on the others. 
 

 
Fig. 4. Final solution for problem 10×15 Kacem et al. (2002) 

 

Metric C is used to compare the approximate Pareto optimal set, respectively, obtained by fore 
algorithms �(�, �)	Measures the fraction of members of B that are dominated by members of L 
(Zitzler & Thiele1999), 

 

�(�, �) =
|{� ∈ �: ∃ℎ ∈ �, ℎ > �}|

|�|
 

If Y1, Y2, Y3,Y4, Y5  are used to denote proposed algorithm, Al+ CGA, PSO+ SA , PSO+ TS and P-
DABC, then ���,��

indicates the fraction of all non-dominated solutions stored in the archive of��in 20 

runs that are dominated by the non-dominated ones obtained by Y�in all runs. Table 2 shows the 
computational results. In Table 2, the data in all columns except the first column is related to 
C��,��

and consists of two parts: the first is the value of C��,��
 and the second the number of non-

dominated solutions finally obtained by Y�after the archive members of Y�have compared with those 

of Y�. As shown in Table 5, for problem 8×8, proposed algorithm produces more non-dominated 

solutions rather than PSO+SA, PSO+TS and P-DABC, in fig 5 (a) we can see this advantage. Also 
for problem 10×10 our proposed algorithm has better solutions than AL+CGA and PSO+SA, we can 
see it in fig 5(b), and for problem 10×15 our proposed algorithm produces more non-dominated 
solutions than other algorithms and is shown in fig 5(c).  
 
Table 2 
Comparing metric C Parameter for five algorithms running on three benchmark problems  

Metric C 1<=>2 Metric C 1<=>3 Metric C 1<=>4 Metric C 1<=>5 
Pt Damnation C(Y1,Y2) C(Y2,Y1) C(Y1,Y3) C(Y3,Y1) C(Y1,Y4) C(Y4,Y1) C(Y1,Y5) C(Y5,Y1) 
P1 8*8 0.41 0.62 0.67 0.24 0.75 0.42 0.45 0.3 
P2 10*10 0.3 0.12 0.15 0.12 0.23 0.36 0.1 0.2 
P3 10*15 0.35 0.15 0.38 0.32 0.62 0.45 0.31 0.3 
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(a) (b) 

 
(c) 

Fig. 5. Final result for problems of Kacem et al. (2002) 
 

5. Conclusion 
 
In this paper, the problem of multi-objective flexible manufacturing job shop was studied. A new 
approach was presented to improve the search space with floating search to solve the problem. In 
addition, this approach of wider search in solution space (Likewise the hierarchical approach) 
decreases the hardness of problem and changes the reach path to final solution. Furthermore, this 
approach gives useful insight to search upon population and Pareto NSGAII methodologies. Results 
of experiments suggest an efficient algorithm to reduce variability and to improve pervious methods. 
Within the formulation, Kacem sample issues were presented in reviewing the efficiency of proposed 
model and a comparison study has been performed with some recent methods developed by the other 
researchers. As shown in results, the proposed algorithm has been capable of producing better 
solutions.  Additionally, developing a Pareto set can be followed for the development of the proposed 
method in future. 
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