
* Corresponding author.
E-mail addresses: azizi912@atu.ac.ir, Mirhabibi912@atu.ac.ir (S. Azizi Boroujerdi)

© 2014 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.dsl.2013.12.001

Decision Science Letters 3 (2014) 157–168

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

A Pareto archive floating search procedure for solving multi-objective flexible job shop
scheduling problem

J. S. Sadaghiania, Soheil Azizi Boroujerdia*, Mohammad Mirhabibia and P. S. Sadaghianib

aDepartment of Management, Allame Tabatabaei University, Tehran, Iran
bDepartment of Management, Qazvin Azad University, Qazvin, Iran

C H R O N I C L E A B S T R A C T

Article history:
Received October 23,2013
Received in revised format
November 25, 2013
Accepted December 12, 2013
Available online
December 14 2013

 Flexible job shop scheduling problem is a key factor of using efficiently in production systems.
This paper attempts to simultaneously optimize three objectives including minimization of the
make span, total workload and maximum workload of jobs. Since the multi objective flexible
job shop scheduling problem is strongly NP-Hard, an integrated heuristic approach has been
used to solve it. The proposed approach was based on a floating search procedure that has used
some heuristic algorithms. Within floating search procedure utilize local heuristic algorithms; it
makes the considered problem into two sections including assigning and sequencing sub
problem. First of all search is done upon assignment space achieving an acceptable solution and
then search would continue on sequencing space based on a heuristic algorithm. This paper has
used a multi-objective approach for producing Pareto solution. Thus proposed approach was
adapted on NSGA II algorithm and evaluated Pareto-archives. The elements and parameters of
the proposed algorithms were adjusted upon preliminary experiments. Finally, computational
results were used to analyze efficiency of the proposed algorithm and this results showed that
the proposed algorithm capable to produce efficient solutions.

© 2014 Growing Science Ltd. All rights reserved.

Keywords:
Flexible job shop scheduling
Variability
Multi-objective Meta-heuristic
algorithm
Floating search procedure

1. Introduction

Job shop production systems are considered as one of the most common forms of production systems
in production systems. Therefore, there have been extensive efforts to increase the efficiency of these
systems. There is also an increasing intensity of competition among manufacturing firms to reduce
prices, timely delivery and customer satisfaction led to efficient use of resources and to increase
productivity per unit of production. Strong planning in production systems plays essential role in
increasing productivity and customer satisfaction. Production scheduling is the problem, which
effects on timely delivery and efficient use of organization’s resource. In a scheduling problem, start
and finish time of tasks, machines sequences etc. are determined. Although many researchers have

 158

proposed various scheduling models in the past, there is still a need for a comprehensive model to
address the needs of organizations. Job shop scheduling is one of the production scheduling problems
and is one of the most important mix optimization problems.

The n×m classical JSP is an NP-hard problem (Garey et al., 1976) that involves n jobs and m
machines. Each job is to be processed on each machine in a predefined sequence and each machine
processes only one job at a time. In practice, the shop-floor setup typically consists of multiple copies
of the most critical machines so that bottlenecks due to long operations or busy machines could be
reduced. As such, an operation may be processed on more than one machine having the same
function. This leads to a more complex problem known as the flexible job-shop scheduling problem
(FJSP). The extension involves two tasks: assignment of an operation to an appropriate machine and
sequencing the operations on each machine. In addition, for complex manufacturing systems, a job
can typically visit a machine more than once, which called as recirculation. These three features of
the FJSP significantly increase the complexity of finding even approximately optimal solutions
(Garey et al., 1976). Furthermore, instead of considering only a single objective, most scheduling
problems in practice involve simultaneous optimization of various competing objectives. Therefore,
in order to tackle the FJSP problems found in practice, efficient optimization strategies are applied to
deal with both multiple objectives and exponential search space complexity.

In recent years, for solving the JSP and FJSP many meta- heuristic algorithms such as Tabu-search,
particle swarm optimization, Ant colony optimization and genetic algorithms are proposed. For
solving FJSP, different hierarchical and integrated approaches have been implemented. In
hierarchical approach, the problem is divided into two sub-assignment and sequencing problems and
they are solved, independently. Pauli (1995) as well as Saidi-Mehrabad and Fattahi (2007) extended
this approach to solve FJSP. However, in the integrated approach, assignment and sequencing are
considered, simultaneously. Hurink et al. (1994) and Dauzère-Pérès and Paulli (1997) developed
tabu-search algorithm to solve FJSP with integrated approach.

In addition, two approaches are used for solving FJSP problem and type of solution structure is an
important role in solving process. We could mention to some of solution seed structures used for
solving FJSP. Mesghouni et al. (1997) proposed the Parallel Jobs Representation in a form of a
matrix where each row represents a job and each entry is a pair value. An indirect representation
containing a pair of chromosomes, A and B, was proposed by Chen et al. (1997) where A is a string
of machine assignments and B is a string of sequencing. Gen et al. (2009) used a multi-stage
operation-based GA (MOGA) to simplify the chromosome. A MOGA chromosome is basically a
routing string, one locus for each operation. The Assignment Table is proposed by Kacem et al.
(2002). The assignment table is an Op (total number of operations) × M table. Each row represents an
operation.

Gen et al. (2009) represented an assignment Table where each member dedicated the operation and
included machine number, start and finish time of operation. Fattahi et al. (2007) proposed a method,
which involves two matrices. The first matrix introduces assignment and the second matrix
introduces operation’s sequence to machines. Gao et al. (2007) also used a pair of chromosomes,
where the machine assignment string was a fixed assignment similar to the A-string proposed by
Chen et al. (1997), with permutations with repetition used for scheduling. Ho et al. (2007) presented
two-part structure for assignment and sequencing. Based on the dispatching rules, Unachak and
Adviser-Goodman (2010) presented a two-part structure of strategies for assignment and sequencing.
In recent years, development of FJSP’s goal function from single-objective to multi-objective has
been mentioned and it was investigated in both cumulative weighting and Pareto approaches. In the
first method, each objective has a weight and problem was converted to single objective function,
which can be solved by using single objective meta-heuristics algorithms.

J.S. Sadaghiani et al. / Decision Science Letters 3 (2014)

159

Pareto set approach provided non-dominated solutions for decision maker by using multi objective
Meta heuristics algorithm. Kacem et al. (2002) presented a hybrid approach based on fuzzy logic and
multi-objective evolutionary algorithm to the problems of flexible job shop scheduling. They
provided three objectives: minimization of make span, total workload and maximum workload of
jobs in the models and prepare an appropriate solution seed structure for solving it. Baykasoğlu and
Sönmez (2004) presented a tabu-search multi objective algorithm. Xia and Wu (2005) treated this
problem with a hybrid of particle swarm optimization and simulated annealing as a local search
algorithm. Tay and Ho (2008) proposed CDR algorithm, showed that CDR algorithm could strikingly
enhance the quality of production scheduling and used it for scheduling FJSP and took brilliant
results. Hierarchical approach reduces the complexity of the problem by making the search space
smaller. The integrated approach considers both sub problems together and search randomly in two
spaces. After finding an appropriate assignment solution, a job shop problem is solved in hierarchical
mode. Therefore, some good solutions have driven out because of a job shop problem has solved for
specific assignment whereas changing the assignment may provide better solution. In an integrated
mode because there is no particular trend except randomly variations between assignment space the
sequence, this pattern of searching tends to increase variability in the search space. Thus, it is
essential to design a trend as well as to decrease complexity of problem by performing a complete
search in the search space.

In this paper, a meta-heuristic algorithm and a heuristic local search algorithm are combined, and a
new approach presented. This method reduces variability in search space and it has the benefits of
both of hierarchical and integrated approaches. The structure of this paper is organized as follows. In
section 2, assumptions, constraints and objectives of FJSP will be illustrated. In Section 3, Floating
search approach and NSGAII algorithm will be introduced for solving MOFJSP. The proposed
algorithm will be presented in Section 4. Computational results, analysis and discussion will be given
in Section 5. Finally, Section 6 Conclusion and suggestions will be presented for future researches.

2. Problem description

A N×M Flexible Job-shop Scheduling Problem consists of N jobs and M machines. Each job

J = 1, … ,N has asequence of operations jhj hhO ,...,1,,  , that
hjO ,
 and jh in that order represented the

h operation of job j and the number of operation of job j that is required. The set of machines includes
 mmm ,...,,M 21 . Index j indicates the job h indicates the operation and indicates the machine. The

operation Oj,h can process on machine ,j hM M with processing time , ,i j hP . Set ,j hM is defined on the

base of , ,i j ha and index k is identified a set of operations assigned to each machine. According to the

description, parameters of the model are:

n: number of jobs

m: number of machines

hjia ,, : represent the operations assigned to machines, which are defined as follows.











elsewhere 0

i machineon done O if 1 hj,

,,

is

a hji

hjiP ,,
: processing time hjO , if the machine i process on it,

The decision variables are:

maxC : Make span

 160

iw : Workload of machine i











elsewhere 0

Ofor selected is i machine if 1 hj,

,, hjiy











elsewhere 0

kpriority in i machineon done O if 1 hj,

,,,

is

x khji

hjt , : Starting time of operation hjO ,

kimT ,
: Start time machine i is used in priority k

iK : The number of operations assigned to machine i

hjsP ,
: processing time

hjO ,
after choosing the machine for its processing

According to the items listed above, the linear programming model is presented below:

max
1 max 2 1 3 1

min (,)
m

i m i ii
f C f w f w  
   

subject to

max , , 1,..., ;
j jj h j hc t P s for j n   (1)

, , , , ,. 1,..., ; 1,..., ;i j h i j h j h ji
y P P s for j n h h   (2)

, , , 1 11,..., ; 1,..., ;j h j h j h jt P s t for j n h h     (3)

, , , , , , 1. 1,..., ;j k j h i j h k j kT m P s x T m for i m   1,..., ; 1,..., ; 1,..., 1; j jj n h h k k    (4)

, , , , ,(1). 1,..., ; 1,..., ; 1,..., ; 1,..., ;j k j h i j h k j iT m t x L for i m j n h h k k       (5)

, , , , ,(1). 1,..., ; 1,..., ; 1,..., ; 1,..., ;i k i j h k j h j iT m x L t for i m j n h h k k       (6)

, , , , 1,..., ; 1,..., ; 1,..., ;i j h i j h jy a for i m j n h h    (7)

, , , 1 1,..., ;; 1,..., ;i j h k ij h
x for i m k k    (8)

, , 1 1,..., ; 1,..., ;i j k ji
y for j n h h   (9)

, , , , , 1,..., ; 1,..., ; 1,..., ;i j h k i j h jk
x y for i m j n h h    (10)

, 0 1,..., ; 1,..., ;j h jt for j n h h   (11)

, 0 1,..., ; 1,..., ; j h jP s for j n h h   (12)

, 0 1,..., ; 1,..., ;i k iT m for i m k k   (13)

 , , , 0,1 1,..., ; 1,..., ; 1,... ; 1,..., ;i j h k j ix for i m j n h h k k     (14)

 , , 0,1 1,..., ; 1,..., ; 1,..., . i j h jy for i m j n h h    (15)

The objective function f1 determines make span, objective function f2determines maximum workload
and finally, the objective function f3 determine total workloads of machines. Constraint (1) is equal to

the make span. Constraint (2) determines the process time of operation hjO , on the selected machine.

Constraint (3) limits the predecessor of the operations. Constraints (4), (5) and (6) are associated with
operation process when the specify machine is free and its predecessor is processed. Constraint (7)
specifies that the machines can process each operation. A constraint (8) assigns the operations to the
machine and specifies sequence of operations on each machine. Constraints (9) and (10) specify that
each operation is processed only in one priority and on one machine.

J.S. Sadaghiani et al. / Decision Science Letters 3 (2014)

161

3. NSGA II algorithm

NSGA-II is an elitist multi-objective evolutionary algorithm, which carries out an approximation of
the Pareto front, based on the non-dominance concept. For achieving different Pareto fronts, a
ranking procedure is performed at each generation. Now this algorithm is one of the efficient ways to
solve multi-objective problems. NSGAII is also noticed in some multi-objective flexible job shop
problems and researchers such as Moradi et al. (2011) and Frutos et al. (2010) have already used it.
First, a random initial population P0 of size N is generated.This population is sorted based on the non-
domination aspect. In multi-objective optimization, if two objective functions f1 andf2 are to be
minimized then, for any two decision vector x and y, it is said that x dominates if (f1(x) ≤ f1(y) and
f2(x) < f2(y)) or (f1(x) < f1(y) and f2(x) ≤ f2(y)). The non-dominated solutions are those that other
solutions do not dominate them. Besides, a set of non-dominated solution, achieved by an
evolutionary algorithm is called Pareto front. After initialing the P0, a non-domination level (1 is the
best level) is employed to evaluate the solutions. Then, child population Q0 of size N is created using
tournament selection, crossover and mutation operators. For a generation t ≥ 1, the process is totally
different. At the first phase, the population R� 	= 	Pt ∪ Qt of size 2N is produced and a non-
dominated sortingprocedure (ranking) is applied to return the list of non-dominated fronts. The
second phase is dedicated to generation of a new parent population Pt+1 contained the N best
solutions. Completing the Pt+1 with the remaining N	 − |P���| solutions, the crowding procedure is
utilizedto the first front not included. Finally, a new child population Qt+1 of size N are created
applying Selection, crossover and mutation operators on the population Pt+1.

NSGA-II Algorithm:
Step 0: Produce initial population (P0) randomly in a size of N and then use famous genetic selection to
produce children and children population (q0) are produced.

Step1: Population of children and parents are combined, and (Rt) is built:
ttt QPR 

Step2: Set  1,1 tPi , and then until NFP it 1
repeat the following operations:

 1,11   iiFPP itt

Step 3: Run Crowding distance procedure for the ranked solutions in (Fi) sets and complete set (Pt+1) for

)(1 tPN remained solutions

Step 4: Create the population of children (Qt+1) by using the Crowding distance procedure and also the

operators of crossover and mutation.

The Crowding distance procedure

Step 1: put FL  or L equal to size of F set, for each solution i from F set, we put 0id .

Step 2: for each objective function 3,2,1i sorting
if set by descending order and in term of their value. The index

sort vector
iI that)( i

i fSortI is produced in it.

Step 3: from 1m to Mm  dedicate a large amount for limitations of solutions or  mm II
dd

21

 and for all

other solutions)1(,...,3,2  lj put: f mf m

f I m
jmf I m

jm
m
jI

dm
jI

d minmax

)1()1(






 162

Non-dominated sorting procedure:

Step 1: For Pqp , (P current population) if p dominated q, put:  qSS qp  .
Ifq dominated p, put: 1 qp nn
If ()pn put  pFF  11

Step2: put i=1, until 1F

Put 1H

For each
iFp and each

psq : 1 qq nn

If ()pn put:  qHH 

1 ii HF 1
 (Deb, 2001)

In order to generate an initial population, random generation and heuristic’s algorithms (Ho et al.,
2007) is used. In this method, for each random permutations of job, a feasible solution is produced by
using dispatching rules.

3.1. Crossover and mutation algorithms

Heuristics methods are used for matching floating search approach with NSGAII observed in Fig 1.
In these methods, two heuristics local search algorithms, sequence and assignment neighborhood
search algorithms, were designed to set crossover based on the critical path method. The critical path
search is a procedure that does an effective neighborhood search around the detected feasible
solution. Critical path method was introduced by Adams et al. (1988) in JSP. A critical path begins
from the operation that has a finishing time equal to make span and it continues each time on the
operations where their finishing time is equal to the operation starting time, which exist in the critical
path to be first. This algorithm is based on the following steps:

 Produce random number)1,0(r .
 If 5.0r then run the crossover operation assignment part.
 Run the neighborhood search algorithm for sequence. If the solution is improved

then replace with First solution, otherwise the first solution is remained.
 If 5.0r then run the crossover operator on the sequence part.
 Run the neighborhood search algorithm for assignment. If the solution is improved

then replace with First solution, otherwise the first solution is remained.

3.2 Neighborhood search algorithms for sequence

Step 1: determine Critical path for the current solution and order operations to public critical , critical and
non-critical. Public critical operations are in two or more critical paths.

Step 2: Make a list of capable machines for all operations of jobs and specify the allocated machine for
each one.

Step 3: For the critical operations that exist in the list choose the machine with least process time (if more
than one choose the least workload) and replace. If there wasn’t such a machine, the next operation in the
list is considered.

Step 4: If the entire list were reviewed and there was no change, please stop.

J.S. Sadaghiani et al. / Decision Science Letters 3 (2014)

163

3.3 Neighborhood search algorithm to assignment

Step 1: Find the critical paths for the current solution,

Step 2: Arrange machines on the base of building period in descending order,

Step 3: choose the first machine in the list and two critical operations, which are not belong to
a same job are swapped. If it’s not possible, check the next machine in the list.

Step 4: Finish

Fig. 1. Structure of the proposed algorithm

 Run the crossover operator
on the sequence part
Run the Neighborhood search
algorithm for assignment

 Run the crossover operator
on assignment part.

Run the neighborhood search
algorithm for sequence

Run the

mutation

operator

� ≤ 0.5

Pass the

final

Finish

Ye

N

N

Ye

Start

Generate primary population (��)

Generate children population (��)

�� = �� ∪ ��

���� = �	, � = 1

Make Non Dominated

solutions set ��from ��

���� = ���� ∪ ��

|����| + |�� | < n

Run Crowding

distance procedure

and then select

parents from ����

� = � + 1 , Make Non

Dominated solutions set

��from �� − ⋃ �����

 Produce a pair of

stochastic number for

parent � ∈ (0,1)

 164

Fig. 2. Encoding the structure presented by Ho et al. (2007)

For doing crossover on the assignment part, two point crossovers were used. Crossover on the
sequence part is in the following steps:

 one job is randomly chosen and all operations of it are removed from parent 2
 Put the remain operations from parent 2 in empty places in a way that their place don’t change
 Repeat step 1 and 2 for the parent 1.

In Fig. 3(a) and Fig. 3(b) crossover operators of the assignment and sequence are shown on an
example.

1 2 2 3 2 3 1 Parent1

2 3 1 2 2 1 3 Parent1

 2 2 2

 3 1 1 3

3 2 2 1 2 1 3 Child1

 2 3 2 2 3

1 2 3 2 2 3 1 Child2

Fig. 3(a). Example of crossover on the sequence part

001 1 01 10 010 Parent1

100 1 01 10 100 Parent2

100 1 01 10 100 Child1

001 1 01 01 010 Child2

Fig. 3(b). Example of crossover on assignment part

Mutation operator is also performed on two parts of chromosomes. Doing mutation on operation

order part, two random numbers are selected:)1(2 21  mrr where m is the length of operation

order part. The value of substring between two positions is then inverted. For instance, suppose the
chromosome (1 2 1 1 2) and r1 = 2 and r2 =4 then the new chromosome will be (1 1 1 2 2).

J.S. Sadaghiani et al. / Decision Science Letters 3 (2014)

165

For the machine selection part, a predefined number of operations are selected and for each operation
selected, from its available machine list, a machine is randomly selected and assigned to it.

4. Computational results

A metric is defined to test the performance of our algorithm with different parameters. First, for each
algorithm, the non-dominated solutions are chosen from all external achievements obtained by the
algorithm in all runs and stored in a set H. Then the non-dominated solutions are chosen from the set
H. Suppose that ntot is the total number of non-dominated solutions in H, if algorithm Yi produces nYi

solutions of ntot, the metric qYi of algorithm Yi is the ratio of nYi to ntot,

tot

n

p
n

Yi

Yi


The number of population 50, 60,70,80,90 and 100 are considered and the algorithm is run on 6
problems with various number of jobs and machines. These problems were generated, randomly.
Table 1 shows the results. In this Table, the metric were calculated for each problem and each number
of populations.

Table 1
PYi Computational results for 6 problems

Number of populations
Operation × Machines 50 60 70 80 90 100

Ms01 4×5 0.33 0 0.133 0.133 0.133 0.268
Ms02 5×6 0.9 0.1 0 0 0 0
Ms03 7×7 0.367 0.67 0 0.167 0.167 0.1
Ms04 10×10 0.154 0.231 0.154 0.454 0.0776 0.231
Ms05 10×12 0.285 0 0 0.643 0.571 0
Ms06 12×15 0.084 0.416 0.5 0.1 0.134 0.166

As shown in this table, for the problems in small and medium sizes, number of population of 50 is
better than others and for problems in big sizes, number of population of 80 is better than others, so
for solving the problem in small and medium size we generated 50 populations and for big ones, we
generated 80 populations. The proposed algorithm was solved for 10×15 in size problem in Kacem et
al. (2002). Final solution is shown in Fig. 4. Three benchmark problems in Kacem et al. (2002) were
used for comparing proposed algorithm with such Al+CGA provided by Kacem et al. (2002), PSO+
SA provided by Xia and Wu (2005), PSO+ TS introduced by Gen et al. (2009) and P-DABC is
compared by Li et al. (2011). The solutions of our algorithm for 3 benchmark problems consist of
Kacem et al. (2002), 3 objective functions (Make span (MS), Total workload (TW), Maximum
workload (W) have compared with another algorithm that described in previous paragraph.

Table 2
Comparison results between proposed method and other algorithms

Proposed
 algorithm

P-DABC PSO+TS PSO+SA AL+CGA
Objective
functions

Problem size

16 15 14 16 15 14 15 14 16 15 16 15 14 MS
8×8 77 72 77 73 75 77 75 77 73 75 75 79 77 TW

11 11 12 13 12 12 12 12 13 12 13 13 12 W
8 8 7 8 7 8 7 7 7 7 MS

10×10 41 42 42 42 43 41 43 44 45 43 TW
7 5 6 5 5 7 6 6 5 5 W

 11 11 11 12 11 12 24 23 11 MS
15×10 91 93 93 91 93 91 91 95 93 TW

 11 10 11 11 11 11 11 11 11 W

 166

As shown in Table 2, NSGA II algorithm with floating search procedure (our suggested algorithm)
has better results than other algorithms. In the case of 8×8 problem size maximum workload
objectives function, the results were improved and decreased considerably. The results for 10×10
problem sizes our presented results was better than resemble methods and finally in the 10×15
problem size, not only maximum workload objectives function was improved but also new Pareto
solution has superior on the others.

Fig. 4. Final solution for problem 10×15 Kacem et al. (2002)

Metric C is used to compare the approximate Pareto optimal set, respectively, obtained by fore
algorithms �(�, �)	Measures the fraction of members of B that are dominated by members of L
(Zitzler & Thiele1999),

�(�, �) =
|{� ∈ �: ∃ℎ ∈ �, ℎ > �}|

|�|

If Y1, Y2, Y3,Y4, Y5 are used to denote proposed algorithm, Al+ CGA, PSO+ SA , PSO+ TS and P-
DABC, then ���,��

indicates the fraction of all non-dominated solutions stored in the archive of��in 20

runs that are dominated by the non-dominated ones obtained by Y�in all runs. Table 2 shows the
computational results. In Table 2, the data in all columns except the first column is related to
C��,��

and consists of two parts: the first is the value of C��,��
 and the second the number of non-

dominated solutions finally obtained by Y�after the archive members of Y�have compared with those

of Y�. As shown in Table 5, for problem 8×8, proposed algorithm produces more non-dominated

solutions rather than PSO+SA, PSO+TS and P-DABC, in fig 5 (a) we can see this advantage. Also
for problem 10×10 our proposed algorithm has better solutions than AL+CGA and PSO+SA, we can
see it in fig 5(b), and for problem 10×15 our proposed algorithm produces more non-dominated
solutions than other algorithms and is shown in fig 5(c).

Table 2
Comparing metric C Parameter for five algorithms running on three benchmark problems

Metric C 1<=>2 Metric C 1<=>3 Metric C 1<=>4 Metric C 1<=>5
Pt Damnation C(Y1,Y2) C(Y2,Y1) C(Y1,Y3) C(Y3,Y1) C(Y1,Y4) C(Y4,Y1) C(Y1,Y5) C(Y5,Y1)
P1 8*8 0.41 0.62 0.67 0.24 0.75 0.42 0.45 0.3
P2 10*10 0.3 0.12 0.15 0.12 0.23 0.36 0.1 0.2
P3 10*15 0.35 0.15 0.38 0.32 0.62 0.45 0.31 0.3

J.S. Sadaghiani et al. / Decision Science Letters 3 (2014)

167

(a) (b)

(c)

Fig. 5. Final result for problems of Kacem et al. (2002)

5. Conclusion

In this paper, the problem of multi-objective flexible manufacturing job shop was studied. A new
approach was presented to improve the search space with floating search to solve the problem. In
addition, this approach of wider search in solution space (Likewise the hierarchical approach)
decreases the hardness of problem and changes the reach path to final solution. Furthermore, this
approach gives useful insight to search upon population and Pareto NSGAII methodologies. Results
of experiments suggest an efficient algorithm to reduce variability and to improve pervious methods.
Within the formulation, Kacem sample issues were presented in reviewing the efficiency of proposed
model and a comparison study has been performed with some recent methods developed by the other
researchers. As shown in results, the proposed algorithm has been capable of producing better
solutions. Additionally, developing a Pareto set can be followed for the development of the proposed
method in future.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop

scheduling. Management science, 34(3), 391-401.
Baykasoğlu, A., & Sönmez, A. İ. (2004). Using multiple objective tabu search and grammars to

model and solve multi-objective flexible job shop scheduling problems. Journal of Intelligent
Manufacturing, 15(6), 777-785.

Chen, H., Ihlow, J., & Lehmann, C. (1999). A genetic algorithm for flexible job-shop scheduling.
In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on (Vol. 2,
pp. 1120-1125). IEEE.

 168

Dauzère-Pérès, S., & Paulli, J. (1997). An integrated approach for modeling and solving the general
multi-processor job-shop scheduling problem using tabu search. Annals of Operations Research,
70, 281–306.

Deb, K. (2001), Multi-Objective Optimization using Evolutionary Algorithms. Indian Institute of
Technology, Kanpur, India.

Fattahi, P., Mehrabad, M. S., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to
flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331-342.

Frutos, M., Olivera, A. C., & Tohmé, F. (2010). A memetic algorithm based on a NSGAII scheme for
the flexible job-shop scheduling problem. Annals of Operations Research, 181(1), 745-765.

Gao, J., Gen, M., Sun, L., & Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting
for multiobjective flexible job shop scheduling problems. Computers & Industrial
Engineering, 53(1), 149-162.

Garey, M.R., Johnson, D.S., Sethi, R., (1976). The complexity of flow shop and job shop scheduling.
Mathematics of Operations Research, 1, 117–129.

Gen, M., Gao, J., & Lin, L. (2009). Multistage-based genetic algorithm for flexible job-shop
scheduling problem. In Intelligent and Evolutionary Systems(pp. 183-196). Springer Berlin
Heidelberg.

Ho, N. B., Tay, J. C., & Lai, E. M. K. (2007). An effective architecture for learning and evolving
flexible job-shop schedules. European Journal of Operational Research, 179(2), 316-333.

Hurink, E., Jurisch, B., & Thole, M. (1994). Tabu search for the job shop scheduling problem with
multi-purpose machines. Operations Research Spectrum, 15, 205–215.

Kacem, I., Hammadi, S., & Borne, P. (2002). Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 32(1), 1-13.

Li, J. Q., Pan, Q. K., & Gao, K. Z. (2011). Pareto-based discrete artificial bee colony algorithm for
multi-objective flexible job shop scheduling problems. The International Journal of Advanced
Manufacturing Technology, 55(9-12), 1159-1169.

Mesghouni, K., Hammadi, S., & Borne, P. (1997, October). Evolution programs for job-shop
scheduling. In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation.,
1997 IEEE International Conference on (Vol. 1, pp. 720-725).

Moradi, E., Fatemi Ghomi, S. M. T., & Zandieh, M. (2011). Bi-objective optimization research on
integrated fixed time interval preventive maintenance and production for scheduling flexible job-
shop problem. Expert systems with applications, 38(6), 7169-7178.

Paulli, J. (1995). A hierarchical approach for the FMS scheduling problem. European Journal of
Operational Research, 86(1), 32–42.

Saidi-Mehrabad, M., & Fattahi, P. (2007). Flexible job shop scheduling with tabu search algorithm.
International Journal of Advanced Manufacturing Technology, 32, 563-570.

Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic programming for solving
multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54(3), 453-473.

Unachak, P., & Adviser-Goodman, E. (2010). An adaptive representation for a genetic algorithm in
solving flexible job-shop scheduling and rescheduling problems. Michigan State University in
partial fulfillment of the requirements for the degree of DOCTOR OF PHILSOPHY Computer
Science.

Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible
job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409-425.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study
and the strength pareto approach. Evolutionary Computation, IEEE Transactions on, 3(4), 257-
271.

