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 Several Multivariate Adaptive Regression Spline (MARS) approaches are available to model 
categorical and numerical (especially continuous) data. Currently, there are other numerical data 
types—discrete or count data—that call for specific consideration in modeling. Additionally, 
spatially correlated count data is frequently observed. This has been seen in the case of health 
data, for example, the number of newborn fatalities, tuberculosis patients, hospital visitors, etc. 
However, currently no structurally consistent nonparametric regression and MARS model for 
count data incorporating spatial lag autocorrelation. The SAR-MAGPRS estimator (Spatial 
Autoregressive - Multivariate Adaptive Generalized Poisson Regression Spline) is developed to 
fill this gap. Although it can be applied to different count distributions, the estimator was 
developed in this study under the assumption of a Generalized Poisson distribution. This paper 
provides an information-theoretic framework for incorporating knowledge of the spatial structure 
and non-parametric regression models, especially MARS for the count data types. Moreover, the 
proposed method can assist in modeling the number of diseases while health policies are being 
developed. The framework presents an application of the Penalized Least Square (PLS) method 
to estimate the SAR – MAGPRS model. 
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1. Introduction 

 
A non-parametric regression tool called MARS uses an adaptive regression spline technique to solve the multiple regression 
problem (Friedman, 1991; Kooperberg, 2014). MARS employs an adaptive algorithm called stepwise, which consists of 
two processes, i.e., forward and backward. Forward stepwise will increase the basis function until it reaches the maximum 
number, while backward stepwise will eliminate the basis function, which does not significantly affect the response variable 
in the model based on the minimum GCV value criterion (Friedman, 1991). MARS has an advantage over other 
nonparametric regression techniques in that it can efficiently handle many predictor variables, many of which have a 
nonlinear relationship to the response variable. While the model selection method employs regression splines as a basis 
function within the least-squares framework (Stoklosa & Warton, 2018), it can also handle multidirectional interactions 
with flexibility. According to supplementary research, the MARS approach proved effective in modeling the nonlinear 
relationship between many variables with multicollinearity and high-level interaction (Raj & Gharineiat, 2021). The original 
MARS commonly used for prediction in data with continuous (numerical) or categorical responses (Friedman, 1991). It is 
presently widely applied in a wide range of applications, including computer science, medical research, geoscience, 
engineering, science, etc. (Ampulembang et al., 2015; Dey & Das, 2016; Liu et al., 2019; Otok et al., 2020; Wang et al., 
2021; Yasmirullah, Otok, Purnlmo, et al., 2021; Yasmirullah, Otok, Purnomo, et al., 2021; York et al., 2006; Zheng et al., 
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2019). Meanwhile, when conducting empirical research, researchers frequently extract information that results in small 
positive integer values — count outcomes. Examples include the number of newborn fatalities, tuberculosis patients, 
hospital visitors. Then, it categorized the count data types. 
  
We are motivated by the type of discrete or count data with spatial correlation. In an empirical study, the count data type is 
usually over-dispersed or under-dispersed and possibly spatially correlated across responses. For example, when observing 
the number of tuberculosis cases in a regency, there may be a spatial correlation between data from the sub-regency 
(Makalew, Kuntoro, et al., 2019; Makalew, Otok, et al., 2019). One major drawback of the original MARS is that it was not 
suited for such a situation, the original MARS was created for independent Gaussian responses. Additionally, compared to 
a standard cross-sectional study, the theory and implementation of spatial econometrics in discrete or count data are 
considerably less established. (Glaser, n.d.; Lambert et al., 2010; Suhartono et al., 2012). In order to close this gap, a Spatial 
Autoregressive–Multivariate Adaptive Generalized Poisson Regression Spline (SAR–MAGPRS) estimator is suggested. 
Although the estimator is designed under the assumption of a generalized Poisson distribution, it can be applied to other 
count distributions as well. This study provides an information-theoretic framework that presents an application of the 
Penalized Least Square (PLS) method to estimate the SAR–MAGPRS model. 
 

2. Materials and Methods 
 

2.1  MAGPRS 
 
Two adaptations to the original MARS (Friedman, 1991) that help to relax the Gaussian assumption are 'Marge' (Stoklosa 
& Warton, 2018) and 'Earth' (Milborrow, 2021). The R package 'marge' extends MARS to handle responses from well-
known exponential families and to manage clusters of correlated data. The 'earth' package enables the fitting of models to 
non-normal responses by a generalized linear model over a number of basis functions. MAGPRS is a study that combines 
MARS and Generalized Poisson Regression (Hidayati, 2019; Hidayati et al., 2019; Otok et al., 2019; Yasmirullah, Otok, 
Trijoyo Purnomo, et al., 2021). The general model of MAGPRS: 
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2.2    SAR-MAGPRS 
 
The new model of SAR-MAGPRS, which combines the spatial, MARS, and Generalized Poisson models, is the subject of 
the theoretical framework we developed in this research. The SAR-MAGPRS model in general: 
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ρ   : spatial lag parameter for the response variable 
W   : weighted matrix 

iy   : response variable 
 
2.3 PLS 
Estimating the regression curve is the challenge with nonparametric regression. Minimizing the penalized least squares 
function is one method for estimating the regression curve (Wahba, 1990). The first step is to construct the penalized least 
square function: 
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Then, find the first and second derivative of iμ  in equation (2) with respect to ix . 
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According to Eq. (4) and Eq. (5), the iψ  function for the SAR-MAGPRS model is: 
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The next step is to determine the smoothing parameter, then estimate the basis function coefficient, ( )â , and the spatial lag,
( )ρ̂ . 

3. Results 
3.1    Parameter Estimation 
 
The SAR-MAGPRS model can be estimated using the PLS function in Eq. (6). If the smoothing parameter is zero, then Eq. 
(6) becomes: 
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After obtaining the function, the next step is slightly easier to find the estimated parameters of the model. 
 
Theorem 1. Suppose the MARS model can support the count data type and incorporate spatial lag autocorrelation, where 
the response variable is assumed to have a Generalized Poisson distribution, then the model is SAR-MAGPRS. Also, the 
estimated coefficient parameter of the basis function for SAR-MAGPRS, â , is:  

( )( ) ( )( ) ( )( )1
ˆ ˆ ˆ ˆexp ' exp exp 'ρ ρ ρ

−
 = + + + a Wy Ba Wy Ba Wy Ba y  (8)

Proof of Theorem 1. The estimated coefficient parameter of the basis function for SAR-MAGPRS can be found by the 
penalized least squares function in equation (7). 

( )
( )

( )( )
( )( ) ( )( )

( )
( )( )

( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

0

' 2 exp '1
exp ' exp

2 exp '10
2 exp ' exp

1 12 exp ' 2 exp ' exp

2 exp ' 2 exp ' exp

SAR
n

n

n n

η

ρ

ρ ρ

ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ

=

  − +
  ∂
  + + +∂   =

∂ ∂

 − +
 =
 + + + 

   + = + +   

+ = + +

y y Wy Ba y

Wy Ba Wy Baψ
a a

B Wy Ba y

Ba Wy Ba Wy Ba

B Wy Ba y Ba Wy Ba Wy Ba

B Wy Ba y Ba Wy Ba Wy B( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )1 1

exp ' exp ' exp

exp ' exp ' exp

ρ ρ ρ

ρ ρ ρ− −

+ = + +

+ = + +

a

B Wy Ba y Ba Wy Ba Wy Ba

B B Wy Ba y B Ba Wy Ba Wy Ba  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )1

exp ' exp ' exp

ˆ ˆ ˆ ˆexp ' exp exp '

ρ ρ ρ

ρ ρ ρ
−

+ = + +

 = + + + 

Wy Ba y a Wy Ba Wy Ba

a Wy Ba Wy Ba Wy Ba y
 

(9)

 
Theorem 2. Suppose the MARS model can support the count data type and incorporate spatial lag autocorrelation, where 
the response variable is assumed to have a Generalized Poisson distribution, then the model is SAR-MAGPRS. Also, the 
estimated spatial lag parameter of the response variable for SAR-MAGPRS, ( )ρ̂ , is:  
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Proof of Theorem 2. The estimated spatial lag parameter of the response variable for SAR-MAGPRS can be found by the 
penalized least squares function in Eq. (7). 
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3.2 GCV for SAR-MAGPRS 
 
Generalized cross-validation (GCV) is utilized in the MARS algorithm to select the optimal basis function (Friedman, 
1991). This GCV formula is expressed in the following equation: 
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where, 
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n  : number of data 
iy  : response variable or actual value of data 

( )f̂ ix  : predicted value for data 

( )C M  : complex function 

( )C M  : number of constant and non-constant basis functions 
M  : number of non-constant basis functions  
d  : degree of interaction 
The GCV formula for the SAR-MAGPRS model has ( )ˆ

if x  in the equation below. 
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If Eq. (14) substitutes for Eq. (12), then we have found the equation below. 
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3.3    Application of the SAR-MAGPRS Model 
 
Using the SAR-MAGPRS model, the number of tuberculosis cases in Lamongan, Indonesia, was analyzed. This analysis 
utilizes secondary data from the 2017 Lamongan health profile. Table 1 presents the research variables.  
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Table 1  
Research Variables 

Notation Research Variables 
Y The number of tuberculosis 
X1 Population density (people/km2) 
X2 HIV/AIDS prevalence (per 10,000 population) 
X3 Percentage of households with PHBS (%) 
X4 Percentage of healthy house (%) 
X5 Ratio of primary health facilities (per 10,000 population) 
X6 Ratio of health workers (per 10,000 population) 
X7 Percentage of the population enrolled in school (%) 

 

The data visualization has been shown in the figure below. 

 
Fig. 1 Visualization of Research Variables 

Fig. 1 illustrates the nonlinear relationship that exists between response and predictor variables; hence, the pattern of the 
plot appears random and does not follow a particular pattern. Therefore, nonparametric regression is the appropriate method 
for this study. This study compares two nonparametric regression approaches: MAGPRS and SAR-MAGPRS. Also, 
compare with the generalized linear model (GLM). The AIC value for the modeling results has been shown in Table 2. 
 
Table 2  
Comparison of GLM, MAGPRS, and SAR-MAGPRS 

Model AIC 
GLM 607.36 

MAGPRS 475 
SAR-MAGPRS 294.2 

The best model according to the AIC criterion is the one with the lowest AIC value. Therefore, the best model is the SAR-
MAGPRS model with an AIC value of 294.2. 
 
The best model of SAR-MAGPRS for the number of tuberculosis cases in Lamongan has a GCV value of 3325.457, where 
the model is: 

( )1 2exp 0.1461 78.4905 0.2239 8.9728BF BF= − + + −μ Wy  

where,  
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( )
( )

1 1

2 5

-738.94

18.98

BF h x
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=

= −  

Next, we will interpret one of the basis functions from the model, which is ( )1 1-738.94BF h x= . This indicates that if the 
population density exceeds 738.94, the BF1 coefficient will have a considerable impact. In addition, if BF1 increases by one 
unit and all other basis functions remain unchanged, the number of tuberculosis cases will increase by 0.2239. 

4. Conclusions 
 
We have developed a spatial and non-parametric regression model, which is the SAR-MAGPRS model. We have 
demonstrated how to estimate the SAR-MAGPRS model parameter. The same method for constructing the SAR-MAGPRS 
model can easily be used to the other MARS models based on other distributions. The parameter estimation developed in 
this study using penalized least squares (PLS) methods is then necessary for the development of other estimation methods 
for further studies. 
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