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 The MEWMA chart is one of the traditional multivariate charts which are widely employed in 
inspecting the quality of manufacturing and services. This chart is created through monitoring 
the small shifts of mean vectors of variable quality characteristics.  Often in practice, the 
measurement of a quality characteristic produces uncertain, incomplete values, so that 
ambiguous numbers are obtained. In this condition, a neutrosophic-based control chart can 
overcome the problem resulting from the ambiguous data. The paper’s objective is to construct 
a new multivariate monitoring scheme based on a neutrosophic chart, namely the neutrosophic 
Multivariate EWMA (NMEWMA). Furthermore, the performance of the new multivariate 
monitoring scheme is evaluated in detecting process shifts employing the Average Run Length 
(ARL) and Standard Deviation Run Length (SDRL). This control chart is an innovation in the 
quality monitoring of uncertain data. The research result obtained indicates that the NMEWMA 
chart performs better than the MEWMA in finding the small mean shifts as well as in the real 
case application. 
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1. Introduction 

One of the methods which are used to discover process shifts is the control chart. This technique is extensively utilized in 
industry to observe the manufacturing process. The multivariate charts that are commonly used in the manufacturing process 
include 𝑇  Hotelling (Chong et al., 2019; Tiryaki & Aydin, 2022), MCUSUM (Xie et al., 2021; Imran et al., 2022), and 
MEWMA (Ajadi et al., 2021). In the service industry, one of the multivariate charts that is extensively applied is the 
MEWMA chart, which is designed to investigate the process mean vector and is more efficient for detecting small shifts 
(Montgomery, 2020). The MEWMA control chart involves information on current and previous observations and is an 
expansion of the EWMA univariate chart. While the traditional MEWMA chart is appropriate when the observations are 
correct, certain, or precise, in practice, the results of observations or measurements of quality characteristics often produce 
ambiguous data. In this situation, the use of conventional charts is not appropriate. When there is ambiguity or randomness 
in the observed characteristics, the traditional charts are not appropriate to use. In case the observations or parameters 
studied are vague or have ambiguity, control charts based instead on fuzzy logic are a suitable choice for monitoring the 
process. Zadeh discusses how the fuzzy-logic method has been widely used in the unpredictability of a situation (Zadeh, 
2005). Senturk and Erginel (2009) state that “Human judgments, evaluations, and decisions are included in observations, 
and a numerical random variable of a manufacturing process consists of the variability due to the measurement devices, 
environmental conditions, or human subjectivity”. The variables cause ambiguity in the measurement system. As a result, 
fuzzy charts have generally been used in situations where there is uncertainty. According to Khademi and Amirzadeh, 
“fuzzy data lies in the present manufacturing and service process” (Khademi & Amirzadeh, 2014), so many researchers 
have concentrated on such control charts, such as (Khan et al., 2018; Rowlands & Wang, 2000). Several actual examples 
of the implementation of fuzzy control charts involve the manufacture of synthetic buttons by a clothing business in Turkey, 
the creation of piston rings for automobile engines through a forging process to ensure statistical control of the rings' interior 
diameter, and a food industry operation in Pakistan that fills cooking oil containers. Smarandache explained that the fuzzy 
approach is a part of neutrosophic analysis (Smarandache, 2010). Several fundamental works on neutrosophic statistics are 
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cited in (Smarandache, 2014). Neutrosophic statistics are applicable when the samples or parameters are fuzzy, inexact, 
indecisive, or vague, whereas the classical statistics method assumes that all data observations are determined, precise, and 
certain. For the analysis of imprecise data, neutrosophic statistics are more powerful than conventional statistics.  
 
Several authors focused on the development of a control chart based on neutrosophic sets. They performed a rock study 
based on neutrosophic statistics (NS) and they present the efficacy of these statistics (Chen, Ye, & Du, 2017; Chen, Ye, Du, 
et al., 2017). Another researcher suggested the 𝑋 chart based on the neutrosophic exponentially weighted moving average 
(NEWMA) to monitor quality under an uncertain environment (Aslam et al., 2019). Aslam et al. developed variable charts 
and neutrosophic-based attributes. Aslam and Khan (2019) suggested the 𝑋  chart by using neutrosophic statistics. Using 
the NS, both variable and attribute charts were proposed by Aslam, employing resampling (Aslam, 2019). This chart 
contains two statistics and two pairs of control limits (𝐿𝐶𝐿 ,𝑈𝐶𝐿 ) 𝑎𝑛𝑑  (𝐿𝐶𝐿 ,𝑈𝐶𝐿 ).  However, so far, the development 
of neutrosophic control charts has been limited. Several researchers have developed such control charts based on univariate 
cases, such as NEWMA (Aslam et al., 2019), neutrosophic control charts S (Z. Khan, Gulistan, Chammam, et al., 2020), 
and neutrosophic mean deviation (Khan, Gulistan, Hashim, et al., 2020). Recently, for univariate control charts, researchers 
have suggested monitoring scheme with X-Bar chart by employing the Neutrosophic-Based Generalized Multiple 
Dependent State Sampling (Khan et al., 2022), Neutrosophic Maxwell Distribution based chart (Shah et al., 2023), and 
Moving average control chart with neutrosophic statistics (Aslam et al., 2023). Meanwhile, cases of multivariate quality 
characteristics require handling with multivariate neutrosophic control charts. When used to test the mean of two 
populations, neutrosophic 𝑇  Hotelling statistics are more sensitive compared to the conventional 𝑇  Hotelling statistics. A 
neutrosophic 𝑇 Hotelling chart has been developed based on the neutrosophic 𝑇  Hotelling statistics, and used in 
investigating abnormality in the glass manufacturing process (Wibawati et al., 2022), while other researchers also proposed 
the Multivariate T2 Chart for Neutrosophic Data applied to the chemical sector (Saritha & Varadharajan, 2023). 
Neutrosophic control charts, on average, are more sensitive than conventional control charts. Meanwhile, Hotelling's 𝑇  
control chart is ineffective for small process shifts, whereas the MEWMA control chart can handle this problem. 
 
According to the background, this research focuses on developing a neutrosophic-based multivariate EWMA chart that can 
overcome the problem of ambiguous data. The proposed chart is named as NMEWMA and its ability to observe process 
shifts is investigated using the Average Run Length (ARL) and Standard Deviation Run Length (SDRL). The suggested 
chart is used to track data from the glass manufacturing process.  

 

2. Materials and Methods 
 
The Multivariate EWMA (MEWMA) chart was first suggested by Lowry et al. MEWMA charts perform well for monitoring 
a small shift in the mean process (Lowry et al., 1992).  Let 𝑿𝒊, 𝑖 = 1,2,3, . . . ,𝑛,  , be a p×1 random vector and follow a p-
variate normal distribution, 𝑿 ∼ 𝑁 (𝝁,Σ). The MEWMA control chart statistics are stated as follows: 
 𝒁 = 𝜆𝑿 + (1 − 𝜆)𝒁  (1) 
 where  0 < 𝜆 ≤ 1,  
𝑇 = 𝒁𝒊∑𝒁𝒊𝟏𝒁𝒊 (2) 

with 𝜮𝒁𝒊 = 1 − (1 − 𝜆) 𝜮.  

The samples are stated as control if, for all i, 𝑇 < 𝐻; if at least one observation falls beyond the control limit, the process 
is called out-of-control. MEWMA control limits for some smoothing parameters ( 𝜆)  and the number of quality 
characteristics (𝑝) are presented in Table 1, which contains the ARL performance for MEWMA for various values of 𝜆 for 
quality characteristics (𝑝) equal to  2, 4, 6, 10, and 15. The control limit (H) is estimated to produce an in-control 𝐴𝑅𝐿  = 
200 (Montgomery, 2020). 

Table 1  
MEWMA control limits 

p λ 
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 

2 7.35 8.64 9.65 10.08 10.31 10.44 10.52 10.58 
4 11.22 12.73 13.87 14.34 14.58 14.71 14.78 14.85 
6 14.60 16.27 17.51 18.01 18.26 18.39 18.47 18.54 
10 20.72 22.67 24.07 24.62 24.89 25.03 25.11 25.17 
15 27.82 30.03 31.59 32.19 32.48 32.63 32.71 32.79 

 
The design of the suggested chart is developed according to the traditional MEWMA chart through the following steps:  
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Let 𝑋 ∈ 𝑋 ,𝑋  be a neutrosophic vector random variable with a sample size 𝑛 ∈ 𝑛 ,𝑛 , where 𝑋  and 𝑋  are the 
minimum and maximum observations, respectively. The neutrosophic vector random variable can be written as (Aslam & 
Arif, 2020): 

𝑋 𝜖 𝑥 ⋯ 𝑥 ⋯ 𝑥⋯ ⋯ ⋯ ⋯ ⋯𝑥 ⋯ 𝑥 ⋯ 𝑥 , 𝑥 ⋯ 𝑥 ⋯ 𝑥⋯ ⋯ ⋯ ⋯ ⋯𝑥 ⋯ 𝑥 ⋯ 𝑥   

 

By adopting the traditional MEWMA, we define the vectors of NMEWMA: 𝒁 = 𝜆𝑿 + (1 − 𝜆)𝒁 ( ), (3) 
 

where initially 𝑍 = 𝜇 ,  𝒁 ∈ 𝑍 ,𝑍  and  0 < 𝜆 ≤ 1  is the smoothing constant, and the NMEWMA statistics 
are defined as: 𝑇 = 𝒁 ∑ 𝒁𝒊𝟏 𝒁 𝒊         (4) 

The process sends an out-of-control (OOC) if 

 𝑇 𝑈𝐶𝐿 , 

where 𝑈𝐶𝐿 ∈  𝑈𝐶𝐿 ,𝑈𝐶𝐿 . 
 

The ARL metrics are employed to assess the suggested chart’s performance. The following are the detailed performance 
evaluation steps for this control chart:  
 
1. Generating n data from a normal multivariate neutrosophic distribution, 𝑿𝑁 (𝝁,Σ), 𝝁𝜖(𝝁  ,𝝁𝑼), 𝚺𝜖(𝚺  ,𝚺𝑼), where 𝝁 = 𝟎𝟎 ; 𝚺 = 1 𝑟𝑟 1 ; 𝑟 = 0.5, 𝑟 = 0.25, 𝑟 = 0.5, and  𝑟 = 0.9. 
2. Select the value of 𝜆 = 0.1, 0.2, and 0.3,  and  𝑈𝐶𝐿  depends on the number of p = 2, 3, and 4. 
3. Calculate the statistics of NMEWMA (𝒁 ).  
4. Calculate 𝐴𝑅𝐿  NMEWMA and 𝑆𝐷𝑅𝑅𝐿   NMEWMA for 10,000 replications. 
5. Repeat step (1) for the level shift of the parameter 𝝁 = 𝝁 + 𝜹, for 10,000 replications. 

The level shift of the mean vector is 𝝁 = 𝝁 + 𝜹; 𝜹 =  (0.1, 0,1) ; (0.2,0.2) ; . . . , (2,2)′. 
6. Calculate 𝐴𝑅𝐿  NMEWMA and 𝑆𝐷𝑅𝐿  NMEWMA. 

3. Discussion 

3.1. Performance of Neutrosophic MEWMA (NMEWMA) Control Chart 
 
The neutrosophic MEWMA control chart's performance was investigated by employing the ARLs and SDRLs, and using 
various process shifts, parameter smoothing (λ), the number of characteristics (p), and correlation of the quality 
characteristics (r). The NMEWMA's performance is compared to that of the classical MEWMA. In this simulation, several 
scenarios are given for parameter smoothing (λ), including 0.1, 0.2 and 0.3. The suggested chart is made up of two charts, 
NMEWMA lower (𝑁𝑀𝐸𝑊𝑀𝐴 ) and NMEWMA upper (𝑁𝑀𝐸𝑊𝑀𝐴 ). The value of ARL and SDRL is obtained from the 
first out-of-control signal from 𝑁𝑀𝐸𝑊𝑀𝐴  or 𝑁𝑀𝐸𝑊𝑀𝐴  for each level shift as the run length (RL) for 10,000 
replications. This section compares the proposed chart’s performance with MEWMA chart. The comparison of various 
shifts 𝜹 = (0.1, 0,1) ; (0.2,0.2) ; . . . , (2,2)′  with r = 0.25; p = 2 and λ = 0.3 is shown in Fig. 1 and Table A (Appendix). 
 

 
Fig. 1. ARL of NMEWMA and MEWMA with r = 0.25; p = 2, and λ = 0.3. 
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Fig. 1 shows that the ARLs produced by NMEWMA are smaller than MEWMA for small shifts (0.1–0.6). The value of 𝐴𝑅𝐿  equals to 200, and the value of 𝑆𝐷𝑅𝐿  NMEWMA is close to 200 for high correlation (𝑟 = 0.9). This chart indicates 
that, for larger shifts, NMEWMA is quicker to detect an out-of-control process.  The other schemes of quality characteristics 
correlation (r) are shown in Fig. 2. There are three schemes of correlation, 𝑟 = 0.25, 𝑟 = 0.5, and  𝑟 = 0.9, representing 
small, medium, and high correlation, respectively. 
 

 
Fig. 2. (a) ARL MEWMA; (b) ARL NMEWMA (p = 2 and λ = 0.3). 

Based on Fig. 2, Table A, and Table D, among the scheme of correlations, the performance of NMEWMA is more sensitive 
than the MEWMA charts. For both NMEWMA and MEWMA, the higher the correlation in the chart, the more sensitive it 
is. The suggested chart's ability in detecting shift is also compared with the MEWMA chart for various values of parameter 
smoothing (λ) and the number of quality characteristics (p), as shown in Fig. 3 and Fig. 4.  

 
Fig. 3. (a) ARL MEWMA; (b) NMEWMA (r = 0.5 and p = 2). 

The efficiency of the NMEWMA and MEWMA control charts is similar, as illustrated in Fig. 3, Table B, and Table E, 
where the smaller λ, the more sensitive is the performance of NMEWMA and MEWMA for small-to-medium process mean 
shifts. This is because the control chart's ARL shrinks at small smoothing parameters/weights. For the larger shifts, both of 
these charts have the same performance.  

 
Fig. 4. (a) ARL MEWMA; NMEWMA (for p = 2,3,4 ; r = 0.5; λ = 0.1). 

According to Fig. 4, Fig. 5, and Table C, it is visible that MEWMA and NMEWMA have the same performance for the 
various numbers of quality characteristics.  

 
Fig. 5.  ARL MEWMA and ARL NMEWMA; r = 0.5 and λ = 0.1. (a) p = 2; (b)  p = 3; (c)  p = 4. 
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3.2. Application of Neutrosophic MEWMA (NMEWMA) Control Chart 
 
The NMEWMA chart was used on simulated data to assess how well the control chart detects out-of-control observations 
on modest and large process mean shifts. The data was generated by following a normal multivariate distribution of 50 
samples with a number of quality characteristics equal to 4. In this simulation, the data is separated into two parts. The first 
80% of the initial sample had a normal multivariate distribution with a neutrosophic mean vector 𝝁  and a covariance 
matrix 𝚺 . The next 20% of samples had a normal multivariate distribution with a mean vector 𝝁 = 𝝁 + 𝛿𝚺 , where 𝛿 0. These samples were classified as either in-control or out-of-control. In this simulation, the in-control sample is 
generated from a normal multivariate distribution with parameter 𝝁 = 𝟎 . Meanwhile, the out-of-control sample is 
generated from a normal multivariate distribution with parameter 𝝁 , using 𝛿 = 0.75 for small process shifts and 𝛿 = 3 for 
large process shifts, respectively. The smoothing parameter/weight λ is equal to 0.1. Based on the synthetic data, the results 
of the NMEWMA chart for small process shifts are depicted in Fig. 6. 

 

                  Fig. 6. MEWMA (a) NMEWMA lower, (b) upper, (c) for small shifts 
 
Fig. 6 shows that both the MEWMA and the NMEWMA control charts indicate that the mean process has been controlled. 
This is because, in the resulting control chart, there are no out-of-control points. Therefore, based on these simulation data, 
both the MEWMA control chart and the NMEWMA control chart are insensitive in identifying small process mean changes. 
The results of utilizing the NMEWMA chart for the simulated observation for large process shifts are shown in Fig. 7. The 
neutrosophic MEWMA (NMEWMA) control chart application uses data from the Quality Assurance division for glass 
production quality characteristics in 2022. Four quality characteristics are used: zebra left (𝑋 ), zebra right (𝑋 ), cutter 
line (𝑋 ), and edge distortion (𝑋 ). The zebra's left and right targets are 60 mm, the cutter line is 115 mm, and the edge 
distortion is 40 mm. Table 2 displays data from the four quality characteristics.  
 

 

Fig. 7. MEWMA (a), NMEWMA lower (b), and upper (c) for large shifts. 
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Table 2  
Neutrosophic data of the four quality characteristics. 

Subgroup Zebra Left Zebra Right Cutter line Edge distortion 𝑋  𝑋  𝑋  𝑋  𝑋  𝑋  𝑋  𝑋  
1 59 61 60 62 140 158 25 30 
2 60 62 59 60 170 198 72 73 
3 60 60 60 62 139 145 28 30 
4 60 61 60 64 122 166 50 52 
5 58 62 60 63 115 145 18 21 
6 60 61 60 65 112 152 15 37 
7 60 60 60 60 136 143 30 37 
8 60 61 60 61 141 149 34 38 
9 60 62 60 61 120 155 21 26 
10 60 60 60 60 136 143 30 37 
11 59 60 60 61 128 144 34 40 
12 64 64 62 63 117 145 20 30 
13 60 60 60 60 136 143 30 37 
14 58 60 61 61 118 160 38 48 
15 60 60 58 60 106 155 28 38 
16 60 60 60 62 116 155 23 30 
17 60 61 60 61 141 149 34 38 
18 60 60 60 62 139 145 28 30 
19 60 60 60 60 136 143 30 37 
20 61 62 60 63 137 161 32 39 
21 57 60 60 62 131 146 42 55 
22 61 62 60 65 130 151 31 49 
23 60 61 60 61 141 149 34 38 
24 61 62 59 64 139 151 33 42 
25 60 60 58 59 133 162 36 38 
26 61 66 61 64 123 138 34 37 
27 60 60 60 62 139 145 28 30 
28 59 60 57 59 143 166 17 30 
29 60 61 60 61 141 149 34 38 
30 56 59 57 59 140 142 20 28 
31 59 60 60 60 136 137 29 37 
32 58 61 61 61 141 149 24 30 
33 60 60 60 62 139 145 28 30 

 
The statistical value of the neutrosophic MEWMA (NMEWMA) is obtained (shown in Table 3), and the control limit 𝑈𝐶𝐿 = 12.73. Based on the performance evaluation, when 𝑝 equals 4, the NMEWMA is more sensitive for the 
parameter smoothing. In this case, 𝜆 equals 0.1, so in this case study, we use 𝜆 = 0.1.  Fig. 8 shows the findings of the 
neutrosophic MEWMA (NMEWMA) control chart. 
 
Table 3  
Statistics of neutrosophic MEWMA (NMEWMA) lower and upper. 

Subgroup 𝑇  𝑇  Subgroup 𝑇  𝑇  

1 1.83 2.66 18 0.52 2.65 
2 9.36 12.87 19 0.84 1.94 
3 6.34 5.65 20 0.26 1.83 
4 6.73 8.69 21 1.14 1.90 
5 2.99 6.29 22 3.02 1.77 
6 1.37 9.58 23 2.36 1.24 
7 0.72 4.33 24 3.54 1.07 
8 0.50 2.45 25 1.45 2.14 
9 0.38 2.68 26 4.14 2.82 
10 0.24 0.74 27 2.50 1.85 
11 0.63 0.12 28 0.59 2.55 
12 3.02 1.02 29 0.62 2.12 
13 2.62 0.65 30 0.62 3.97 
14 3.96 0.21 31 1.88 3.09 
15 5.26 0.41 32 1.93 3.30 
16 6.74 0.41 33 1.60 3.42 
17 4.31 0.28    

 
Fig. 8. (a) Neutrosophic MEWMA lower; (b) Neutrosophic MEWMA upper.  
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Fig. 8 shows the MEWMA neutrosophic control chart (NMEWMA), indicating that the mean of the glass production process 
has not been controlled. The NMEWMA control chart produces 1 point that is out of the 𝑈𝐶𝐿  control limit, namely the 
upper NMEWMA control chart. The comparison of the neutrosophic MEWMA control chart with the conventional 
MEWMA control chart is shown in Fig. 9.  By using NMEWMA, the second observation is detected as an out-of-control 
observation, while, by using MEWMA, the second observation is still detected as in-control. This is because NMEWMA 
involves two control charts with two control limits, meaning that this chart is more sensitive.  

 
Fig. 9. MEWMA control chart. 

5. Conclusions 
 

This work develops a new Neutrosophic Multivariate EWMA (NMEWMA) control chart. The performance of the proposed 
NMEWMA chart was assessed using the ARL and SDRL. The performance of the proposed NMEWMA chart is measured 
using various process shifts (𝛿), parameter smoothing correlation of quality characteristics (𝑟). Based on ARL and SDRL, 
NMEWMA is more sensitive than MEWMA. Control charts are used for both simulation and real data. Based on the real-
life application and simulation studies, the proposed NMEWMA chart shows better performance when compared to the 
conventional chart. The Neutrosophic MEWMA for the subgroup will be investigated in other performance analyses and 
also for different uncertainty levels for future research. 
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Appendix A 
 

Table A  
The ARLs of MEWMA and NMEWMA when 𝑝 = 2 and 𝜆 = 0.3 (𝐴𝑅𝐿 = 200) 

Shift (𝛿) 
𝑟 = 0.25  𝑟 = 0.5  𝑟 = 0.9 

MEWMA NMEWMA  MEWMA NMEWMA  MEWMA NMEWMA 
0.1 193.8 155.3  163 153.7  172.8 148.4 
0.2 118.5 96  125.6 110.4  136.6 118.4 
0.3 66.4 59.1  67.3 63.1  95 75.7 
0.4 33.1 44.4  49.5 39  60.7 57 
0.5 25.6 23.2  34.2 32  36.8 38.3 
0.6 23 18.2  23.4 23.8  28.9 22.4 
0.7 15 14.1  13.4 13.8  20.6 20 
0.8 9.6 9.3  13.5 11.5  14.6 14 
0.9 8.6 8.5  9.7 10.1  11.3 11.2 
1 7.3 6.8  7.2 8.2  9.9 11.1 

1.1 5.3 5.1  7 6  8.1 7.7 
1.2 4.4 4.5  5.6 5.9  6.3 6.7 
1.3 4.4 4.1  4.8 4.4  5.8 6.2 
1.4 3.5 3.7  4.4 3.9  4.7 4.8 
1.5 3.1 3.2  3.5 3.7  5 4.7 
1.6 2.7 2.8  3.3 3.4  3.7 3.9 
1.7 2.6 2.6  2.9 2.9  3.7 3.7 
1.8 2.4 2.4  2.7 2.7  3.1 3.2 
1.9 2.1 2.1  2.4 2.6  3.4 3.2 
2 2 2  2.4 2.2  2.9 2.8 
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Appendix B 
 
Table B  
The ARLs of MEWMA and NMEWMA when 𝑝 = 2 and 𝑟 = 0.5.  

Shift (𝛿) 
λ=0.1  λ=0.2  λ=0.3 

MEWMA NMEWMA  MEWMA NMEWMA  MEWMA NMEWMA 
0 200 200  200 200  200 200 

0.1 143.5 147.3  157.7 159.6  163 153.7 
0.2 81.4 75.4  112.4 98.3  125.6 110.4 
0.3 41.9 40.8  67.2 57.6  67.3 63.1 
0.4 26 26.1  39.3 39.5  49.5 39 
0.5 17.1 20.6  22.4 23.8  34.2 32 
0.6 12.8 14.9  20 17  23.4 23.8 
0.7 9.9 10.7  12.4 13.9  13.4 13.8 
0.8 9.6 8.5  9.6 9.8  13.5 11.5 
0.9 6.8 6.9  8 7.4  9.7 10.1 
1 5.5 6  7.6 7.2  7.2 8.2 

1.1 5.1 5.1  6.4 5.1  7 6 
1.2 4.1 4.2  5.2 4.6  5.6 5.9 
1.3 4.2 4  4.2 4.3  4.8 4.4 
1.4 3.8 3.4  4.1 3.8  4.4 3.9 
1.5 3 3  3.5 3.1  3.5 3.7 
1.6 2.8 2.6  2.8 3.1  3.3 3.4 
1.7 2.4 2.3  3 2.8  2.9 2.9 
1.8 2.4 2.3  2.7 2.5  2.7 2.7 
1.9 2.2 2.1  2.5 2.3  2.4 2.6 
2 2.1 2.1  2.2 2  2.4 2.2 
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