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 Big Data Analytics (BDA) provides an important resource for businesses seeking to enhance 
their performance and gain a competitive advantage, although not all organizations are adopting 
BDA techniques, and small and medium-sized enterprises (SMEs) in Jordan have been slow in 
this regard, despite being key players in any healthy economy, and the fact that BDA adoption 
can be facilitated by using the Technology Acceptance Model (TAM). The purpose of this study 
is to investigate the drivers of behavioral intention among managerial-level employees in 
Jordanian ICT SMEs to adopt BDA through a quantitative correlational research approach. The 
TAM questionnaire was used to gather data from 271 online survey participants in Jordan using 
Google Forms. The target group included management level staff working in small and medium-
sized ICT firms (SMEs). Confirmatory factor analysis (CFA) was used to evaluate the research 
instrument's reliability and validity, and structural equation modeling (SEM) was utilized to test 
the study's hypotheses. The findings revealed that perceived usefulness, perceived ease of use, 
and perceived “privacy and security” significantly influenced managerial-level employees' 
behavioral intention to use BDA in their organizations. The research findings also supported the 
application of TAM, and the results of the investigation indicated that managerial-level 
employees would be willing to use BDA techniques providing they were perceived to be useful, 
user-effortless, and posed little concern about privacy and security. Overall, the current study's 
results demonstrate that the suggested model had good predictive power, 51% of the variance in 
behavioral intention, and was therefore capable of predicting managers' intentions to use BDA. 
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1. Introduction 
 

Over the last two decades, the volume of data accessible to organizations has increased rapidly. According to Hariri et al. 
(2019), users create 2.5 quintillion bytes of data every day, Google handles 3.5 billion searches per day, and Facebook users 
upload 300 million photos and post 510,000 comments everyday. As shown by Ahsaan and Mourya (2019), Twitter users 
post 277,000 tweets every 60 seconds, share 3,471,222 WhatsApp images, and post 216,000 new Instagram photographs 
every 60 seconds. 

However, the creation of augmented data is not limited to social media users. The amount of data is a challenge in several 
fields, including manufacturing (Al-Rwaidan et al., 2023; Muda et al., 2022; Harahap et al., 2022 ). According to Tao et al. 
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(2018), production systems create 1000 exabytes of data annually, and production processes were projected to generate 44 
zettabytes of data by 2020. However, as Ahsaan and Mourya (2019) observe, the primary issue among practitioners is that 
data is generated too quickly for any useful analysis. 

Implementing big data analytics technologies is one method for addressing the fast development of data 
production(O'Donovan et al., 2015; Attiany et al., 2023; Rahamneh et al., 2023; Bumblauskas et al., 2017). These 
technologies are often used by IT professionals to manage large data streams, derive value from data patterns, and enhance 
operational efficiency. Large organizations typically perform big data analysis because smaller and medium-sized 
organizations face challenges in adopting and employing such techniques, including data security concerns, the absence of 
organizational models, data protection and privacy concerns, and financial barriers, among others (Coleman et al., 2016). 

This research is significant for broad academic, practitioner, and organization populations interested in Big Data Analytics 
(BDA) technology. Particularly, the larger community of information and communication technologies (ICTs) in small and 
medium-sized enterprises (SMEs) might benefit from the present study. The interest of decision makers in BDA has 
increased rapidly (Dubey et al., 2016; Lu & Xu, 2019), and there is also a rising interest in the prospect that BDA might 
transform enormous amounts of raw data into useful, valued insights (Kache & Seuring, 2017; Müller & Jensen, 2017). 

However, many small and medium-sized enterprises (SMEs) in manufacturing, services, education, and other industries are 
unwilling to employ BDA owing to implementation issues (O'Donovan et al., 2015; AL-Zyadat et al., 2022;  Khalayleh  & 
Al-Hawary , 2022;Verma, 2017). This is significant because, by not using this cost-effective technology, small and medium-
sized enterprises (SMEs) jeopardize their own existence in today's highly competitive marketplace. Indeed, many firms 
depend on BDA to turn huge amounts of raw data into useful information that significantly lowers their operational 
expenses, improves the quality of business choices, and provides solutions to IT issues (Felix et al., 2018; Alolayyan et al., 
2022; Shahbaz et al., 2019; Al-Shormana et al., 2021; Alshawabkeh et al., 2022; Verma, 2017). However, despite the 
advantages of BDA, SMEs are unable to reap the potential benefits as efficiently as big firms (Coleman et al., 2016; Marolt 
et al., 2020). Consequently, the current research offers SMEs information that may support them in their BDA 
implementation and acceptance procedures. 

This research aims to fill the gap in the literature about BDA usage in ICT SMEs in Jordan. Using the Technology 
Acceptance Model (TAM) as its theoretical framework, this research explores the behavioral intention to use BDA among 
Jordanian ICT SME's. No sufficient investigation of the direct correlations between the TAM major factors and the usage 
of BDA by ICT SMEs has been conducted to date (Coleman et al., 2016; Marolt et al., 2020; Ajimoko, 2018; Verma et al., 
2018). 

2. Literature review and hypotheses development 
 

2.1   Big data and big data analytics (BDA) 

Given the complexity of big data and the continual development of big data application, it is expected that the body of 
knowledge in this area will continue to expand (Alsghaier et al., 2017; Al-Nawafah et al., 2022; Al-Azzam & Alazzm, 2019; 
Yang & Bayapu, 2020; Al-Hawary  & Obiadat, 2021; Al-Alwan et al., 2022). However, academics are presently 
experiencing difficulties establishing key theories and a general understanding of big data. 

Nizam and Hassan (2017) defined big data as having five Vs: volume, variety, velocity, value, and veracity. Volume reflects 
the size of the data, variety indicates the multiple data sources, velocity characterizes the rate of data flow, value indicates 
the importance of the data, and veracity relates to the trustworthiness of the data sources. According to Jain (2016), big data 
is considered as huge volumes of data that potential users are unable to collect, keep, process, and analyze using traditional 
database applications and software package solutions. 

As shown by Adnan and Akbar (2019), big data refers to huge data collections that include structured, semi-structured, and 
unstructured data. Nonetheless, Bayraktaroglu et al. (2019) reported that structured data is discussed in the majority of the 
existing research literature. Sebalj et al. (2016) advised that fast data growth will undoubtedly continue alongside advances 
in science and increased data output from unstructured data sources. Furthermore, Halaweh and Massry (2015) stated that 
the use of new technologies, such as BDA, produces uncertainty as a result of unrecognized opportunities and challenges 
that may lead to obstacles and issues for enterprises in today's extremely competitive market. 

2.2 Big Data Analytics (BDA) Adoption 

A review of the existing research reveals that BDA adoption is important not just for larger manufacturing organizations 
(Coleman et al., 2016), but also for SMEs; nevertheless, as stated by Coleman et al. (2016), SMEs have been highly 
suspicious adopters of BDA. While 25% of major enterprises in the United States have implemented BDA, Coleman et al. 
(2016) report that just 2% of SMEs have followed suit. This hesitant attitude among SMEs is frustrating since 99% of 
organizations are classified as SMEs, and these firms contributed $5.9 trillion to the US economy in 2014(Kobe and 
Schwinn, 2018). Furthermore, in Jordan, SMEs account for almost 90% of all firms, contribute about half of the national 
GDP, and employ 60% of the workforce. As a result, the application of technology that might boost SMEs' competitiveness 
is critical for the Jordanian economy as well as global competitiveness (Kobe & Schwinn, 2018; Al-Tamimi & Jaradat, 
2019). Literature review reveals that BDA presents both economic possibilities and obstacles for companies (Alsghaier et 
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al., 2017, Felix et al., 2018), but that SMEs have greater hurdles in handling and exploiting big data in their endeavors to 
achieve competitive advantage than their much bigger counterparts (Ajimoko, 2018). However, the reluctance of SMEs to 
embrace BDA may constitute a significant threat to their competitiveness, and in instances where BDA has been introduced, 
implementation has been tardy (Ogbuokiri et al., 2015). Consequently, it is necessary to investigate the variables promoting 
BDA adoption. Indeed, the knowledge gathered from such research may increase awareness of how to establish the optimal 
circumstances for technology adoption, enabling IT professionals employed by SMEs to develop the optimal BDA-use 
alternatives for those businesses (Ajimoko, 2018). 

In addressing such settings, Sharma and Mishra (2014) observed that research has shown that the usage of a new technology 
may involve “soft skills” in addition to behavior intention, technical abilities, and technical knowledge. Additionally, 
societal influence, beliefs, and mitigating circumstances must be considered while promoting the usage of new technology. 
Brock and Khan (2017) concur with Sharma and Mishra (2014), adding that the technology acceptance model (TAM) has 
been an integral part of BDA adoption research. However, they also demonstrate that the TAM does not account for human 
capabilities and practical knowledge, despite describing an individual's motivations for using the system. According to 
Ajimoko (2018), the TAM disregards business requirements, such as the cost of technology, which have a significant effect 
on the capacity and desire of SMEs to embrace particular technologies. In addition, Ajimoko (2018) observed that the TAM 
did not take into account crucial acceptance requirements for major organizational technologies, such as the support of top 
management, the perception of privacy and security, and organizational culture. 

Despite these limitations, the TAM is well accepted by researchers in its many modifications and replications (Davis, 1989; 
Razmak & Bélanger, 2018; Al-Azzam et al., 2019). The TAM, which was derived from two prior theories, the Theory of 
Reasoned Action (TRA) and the Theory of Planned Behavior (TPB), is said to be a more trustworthy prediction of actual 
behavior than either of those theories (Davis, 1989; Olushola & Abiola, 2017). Furthermore, Yudhistira and Sushandoyo 
(2018) claimed that a considerable number of studies have shown the TAM's effectiveness in predicting individuals' 
behavioral intentions. 

Davis (1989) suggests that, in addition to PU and PEOU, external factors be added since they may increase the TAM's 
capacity to predict technology users' adoption behavior. As a result of these suggestions, BDA adoption researchers added 
additional variables to the original model in an effort to increase its prediction potential (Shahbaz et al., 2019). As a result, 
it was determined that employing the TAM in the current study would be advantageous in establishing technology adoption 
variables that would aid in gaining a better understanding of BDA implementation in Jordanian ICT SMEs.  

2.2.1 Perceived usefulness (PU) 

Perceived usefulness is described as an individual's belief that using a new system would enhance his or her performance 
(Davis, 1989; Brock and Khan, 2017), and it is the most often employed factor and the primary driver of technology adoption 
(Venkatesh and Davis, 2000; Claes et al., 2015). In this research, PU is also expected to be the main factor influencing ICT 
SMEs' behavioral intentions to use BDA in Jordan. Previous research has also shown a positive relationship with reuse 
intention, which has been effectively quantified in a number of fields, including the big data domain (Weerakkody et al., 
2017; Shin and Bohlin, 2020). The user will not have a favorable view of benefit until he or she has experienced the practical 
usefulness of BDA in SMEs. According to the TAM model principles, the present research posits that PU correlates 
positively with BI, which leads to the following hypothesis: 

H1: PU positively influences managerial-level employees’ BI to use BDA in ICT SMEs in Jordan. 

2.2.2 Perceived ease of use (PEOU) 

Davis (1989) described PEOU as the degree to which one perceives that using a certain information system would be simple. 
Later, he argued that the simplicity of use of information systems and technologies will aid in increasing customer 
acceptability (Soon et al., 2016). Using an easy-to-use system will help in the improvement of both organizational and 
individual performance (Venkatesh and Davis, 2000; Brock and Khan, 2017). In the case of BDA, firms may enjoy 
advantages such as cost savings, risk management, and improved decision-making. BDA adoption is said to be driven by 
user preferences for simplicity of use in circumstances requiring varied and vast volumes of data (Shin and Bohlin, 2020). 
Furthermore, BDA adoption researchers noted a direct relationship between PEOU and PU. According to such studies, the 
greater the perceived ease of use a new technology has, the more likely it is to be considered advantageous to the user's 
performance (Sivarajah et al., 2017; Shin and Bohlin, 2020). Theoretically, directly, and indirectly, PEOU impacts the 
behavioral intention of management to use BDA PU. The next hypotheses were offered to examine the claim: 

H2: PEOU positively influences managerial-level employees’ BI to use BDA in ICT SMEs in Jordan. 

H3: PEOU positively influences the PU of BDA use in ICT SMEs in Jordan. 

2.2.3 Perceived privacy and security (PPS) 

Privacy and security refer to the extent to which a user feels a certain system is secure and effective for transmitting and 
storing sensitive and/or personal information (Arpaci et al., 2015; Kurdi et al., 2023; Mohammad, 2019; Aityassine et al., 
2022; Cui et al., 2018). Privacy and security are key components of every information system (Sivarajah et al., 2017), since 
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worries about privacy and security prohibit the user from considering the system's advantages and discourage him or her 
from using it (Eldahamsheh et al., 2021). 

Several studies have shown the significance of privacy and security in encouraging users to embrace different information 
system technologies (e.g., e-health record systems, Zandieh et al., 2008; cloud computing, e-markets, B2C e-commerce, 
Hartono et al., 2014; and healthcare, Shahbaz et al., 2019). Furthermore, BDA consumers continue to have concerns about 
data privacy and security as a result of information fraud, sensitive data hacking, and other forms of digital piracy (Ferguson, 
2016; Broeders et al., 2017). Previous research on BDA adoption has not clearly highlighted the importance of data privacy 
and security in ICT SMEs (Broeders et al., 2017), but it does suggest that these concerns are major elements that may 
influence BDA adoption by SMEs. 

Positive user perceptions of the technology's security and privacy level may influence its usefulness and ease of use, leading 
to higher adoption rates. As a result, companies with strong data security and privacy capabilities will be able to build more 
confident behavioral intentions to employ BDA. As a result, the following PPS hypotheses are presented in this research to 
examine the impact of this component on BI, PU, and PEOU: 

H4: PPS positively influences managerial-level employees’ BI to use BDA in ICT SMEs in Jordan. 

H5: PPS positively influences the PU of BDA use in ICT SMEs in Jordan. 

H6: PPS positively influences the PEOU of BDA use in ICT SMEs in Jordan. 

3. The research model 

Following an analysis of the relevant literature, the TAM was utilized to depict the probable causality relationships between 
the predictor variables (PU, PEOU, and PPS)and the dependent variable (managerial-level employees' BI to use BDA in 
their organizations). The suggested model (Fig. 1) depicts BDA behavioral intention by postulating three immediate 
determinants: PU, PEOU, and PPS. It also suggests three indirect impacts on behavioral intention: PEOU through PU, PPS 
via PU, and PPS via PEOU. Figure 1 depicts the assumed correlations among the research variables. 

 

                                                       Fig. 1. The Research Model  
 
4. Methodology 

4.1 Research design 

A quantitative correlation research methodology was utilized to examine if PU, PEOU, and PPS influence managerial-level 
employees' behavioral intention to use BDA in Jordanian ICT SMEs. The correlation research method enables the researcher 
to predict the value of one variable based on changes in another (Radhakrishnan, 2013). As a result, a correlation study 
approach was used.  

During the data collection phase, participants completed a web-based survey that evaluated their understanding of the 
present study's parameters. Confirmatory factor analysis (CFA) using IBM AMOS software was used in the current study 
to examine correlations between observable and latent variables and to verify the measurement model's goodness-of-fit. 
Furthermore, structural equation modeling (SEM) (IBM AMOS) was used to evaluate the hypothesized correlations among 
the different constructs in the proposed model and to assess the goodness-of-fit of the structural model (Field, 2018; Hair 
et al., 2018; Byrne, 2013). 

4.2 Target Population and Sample 
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According to ITAJ (2018), the study's target population was managerial-level employees in Jordanian ICT SMEs, who 
totaled about 2,000. A convenient sample of 271 participants was drawn from this population of SMEs in the ICTsector, 
including manufacturing, wholesale and retail trade, information and communication services, administrative and support 
service activities, and other service activities such as telecom value added services and modem repair. Employees at the 
management level of the selected SMEs were asked to participate by completing an online questionnaire containing relevant 
topics derived from a careful evaluation of the literature. 

5. Results  

From a distribution of 420 questionnaires using Google Forms invitations, 271 responses were obtained and considered 
valid for later quantitative analysis. 

5.1 Demographic analysis 

The pie charts in Fig. 2 summarize demographic characteristics such as gender, age, education, and management level; from 
this, it can be deduced that there were 72% males and just 28% females in the sample, closely resembling the gender 
distribution in the Jordanian ICTs sector. According to the ITAJ (2018), most management employees in ICT SMEs are 
men, with women representing only 28.4% of the sector’s managerial workforce. 

Figure 2 also shows that the number of respondents was greatest among those aged 51 to 60 (45%) and least among those 
older than 60 (8.3%). It also reveals that most participants (87%) are over the age of 41. This finding reflects the fact that 
the target group consists of individuals at the management level who typically do have many years of work experience. 

 
Fig. 2. Demographic Data of Study Respondents 

 
Details of the educational backgrounds of the respondents show that most possess a bachelor’s degree (61%), with graduate 
and post-graduate degree holders representing 30% and 8% of the whole sample, respectively. Two respondents, however, 
reported academic and technical college credentials as their educational backgrounds. This result reflects the high 
educational level attained by this managerial population. Responses came mainly from first-line managers, with only 16 
top-level managers participating in the study. 
 
5.2 Inferential Analysis 

Confirmatory factor analysis (CFA) and structural equation modeling (SEM) for hypothesis testing make up inferential 
analysis (SEM). The following results were achieved after two stages of analysis: 

5.2.1 Measurement Model: CFA 

5.2.1.1 Measurement Model fit 

Using IBM AMOS software, the measurement model depicted in Fig. 3 was constructed. Detailed goodness-of-fit results 
are shown in Table 1.It can be seen from reviewing Fig. 3 and Table 1 that all model indices exceeded levels of acceptance 
as suggested by earlier research thus demonstrating that the measurement model exhibited a good fit compared to the 
empirically collected data (Fornell & Larcker, 1981). 
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Fig. 3. The Measurement Model 
 

Table 1  
Goodness-of-Fit results (measurement model) 

Fit index Cut-off point  Achieved 
Normed Chi-square (χ²) 0 ≤ χ²/df ≤ 2 1.273 

RMSEA ≤ 0.05 0.024 
SRMR ≤ 0.05 0.0218 
RMR ≤ 0.05 0.024 
GFI ≥ 0.90 0.951 

AGFI ≥ 0.90 0.942 
NFI ≥0.90 0.976 

NNFI (TLI) ≥ 0.95 0.987 
CFI ≥ 0.95 0.972 

 

5.2.1.2. Composite Reliability (CR) 

It is widely agreed that CFA is preferable to Cronbach's alpha for estimating the composite reliabilities of the model 
components (Peterson & Kim, 2013; Boudlaie et al., 2022; Mukhlis et al., 2022; Mohammad et al., 2022). All constructs in 
the current research had CR coefficients above the threshold of 0.7 (Hair et al., 2018; Zahran et al., 2023; Pallathadka et al., 
2023; Majdy et al., 2023), as shown in Table 2, showing strong levels of internal consistency. 

Table 2  
CR results 

Factor Items  
 PU 6 0.943 

PEOU 6 0.901 
BI 3 0.922 

PPS 3 0.963 
 

5.2.1.3 Construct Validity 

At this stage, the construct validity analysis was performed. Construct validity, according to Hair et al. (2018), may be 
measured using two kinds of measures: both convergent and discriminant validity. 
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5.2.1.3.1 Convergent validity 

Convergent validity is the extent to which the observed variables on a given scale are related to each other. CR, average 
variance extracted (AVE), and standardized regression weights (SRW) results are usually used to evaluate convergent 
validity. In order to prove convergent validity, the following values are suggested: CR > 0.70, SRW > 0.70, and AVE > 
0.50. (Hair et al., 2018; Dwijendra et al., 2023; AlBrakat et al., 2023). 

The SRW and AVE results for all constructs are shown in Tables 3 and 4. Tables 2, 3, and 4 show that the findings indicate 
a good degree of convergent validity for all study's variables. 
 
Table 3  
Standardized regression weights (SRW) 

Observed Latent SRW Observed Latent SRW 
PU-1 PU 0.938 PEOU-4 PEOU 0.915 
PU-2 PU 0.953 PEOU-5 PEOU 0.917 
PU-3 PU 0.916 PEOU-6 PEOU 0.890 
PU-4 PU 0.943 BI-1 BI 0.986 
PU-5 PU 0.923 BI-2 BI 0.882 
PU-6 PU 0.932 BI-3 BI 0.963 

PEOU-1 PEOU 0.888 PPS -1 PPS 0.879 
PEOU-2 PEOU 0.875 PPS -2 PPS 0.855 
PEOU-3 PEOU 0.892 PPS -3 PPS 0.928 

 
Table 4 
Average variance extracted AVE  

Construct                        AVE 
PU 0.861 

PEOU 0.824 
BI 0.881 

PPS 0.747 
 
 
5.2.1.3.2 Discriminant Validity 

Discriminant validity means that there is no high correlation between two sets of measures intended to evaluate different 
variables(Hair et al., 2018). Discriminant validity was determined by combining the AVE of each concept with its squared 
inter-construct correlations. The concept is considered to have discriminant validity if the inter-construct correlations are 
less than 0.85 and the AVE outputs are more than the squared inter-construct correlations for the same construct(Hair et al., 
2018). Table 5 displays the discriminant validity findings. In the table, diagonal components reflect AVE values for each 
construct, inter-construct correlations are under the diagonal, and squared inter-construct correlations are above the 
diagonal. According to the data shown in Table 5, the inter-construct correlation coefficients were all less than 0.85. 
Additionally, each individual AVE score was higher than the corresponding squared inter-construct correlations. As a result, 
the analysis shows that all study constructs are discriminately valid. 

Table 5  
Discriminant validity results 

Construct PU PEOU BI PPS 
PU 0.861 0.271 0.356 0.207 

PEOU 0.521 0.824 0.334 0.274 
BI 0.597 0.578 0.881 0.355 

PPS 0.455 0.524 0.596 0.747 
 
 
5.2.2. The Structural Model: SEM 

After confirming the composite reliability and construct validity of key constructs, the investigation shifted to examining 
the relationships between these constructs as outlined in the study's model. 

5.2.2.1 The Structural Model Fit 

Fig. 4 below depicts the construction of a structural model for additional SEM analysis. The structural model may be 
observed to include three endogenous variables (perceived usefulness, perceived ease of use, and behavioral intention) and 
one exogenous variable (perceived privacy and security). Following that, SEM using AMOS was used to assess the 
goodness-of-fit of the structural model output to the empirical data. As seen in Table 6, the findings reveal that the structural 
model offers a good overall match with the data. 
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Table 6 
Goodness-of-Fit results (Structural Model) 

Fit index Cut-off point  Achieved Fit index Cut-off Achieved 
Chi-square (χ²) 0 ≤ χ²≤ 2df(2*124) 157.876 GFI ≥ 0.90 0.964 

Normed Chi-square (χ²) 0 ≤ χ²/df ≤ 2 1.266 AGFI ≥ 0.90 0.951 
RMSEA ≤ 0.05 0.026 NFI ≥0.90 0.985 

Associated p-close ≥ 0.5 1.000 NNFI (TLI) ≥ 0.95 0.996 
SRMR ≤ 0.05 0.0227 CFI ≥ 0.95 0.997 
RMR ≤ 0.05 0.030    

 
6.  Hypothesis Testing 
 

The research hypotheses were put to the test using the SEM output report once the structural model's goodness-of-fit had 
been successfully validated. Fig. 4 and Table 7 display the results, which demonstrate that each suggested causal path in the 
structural model was significant at the 0.001 level.In order to evaluate the final research model shown in Fig. 4 below 
explanatory power and gain better understanding of the nature of the interactions between its various components, Squared 
Multiple Correlations (SMC) for the model variables were collected. (Table 8 below). Based on Table 8 and Fig. 4, it is 
clear that PU, PEOU, and PS strongly predict BI, accounting for 51% of the variation in BI. Furthermore, the SMCs imply 
that, whereas PEOU and PS would explain 33.4% of the variation in PU, PPS would explain 26.8% of the variance in 
PEOU. 

  

 
                    Fig. 4. The Structural Model 

Table 7  
Results of hypotheses testing 

Hypothesis Estimate CR* 
 

p-
 

Code Path Comment 
H1 PU →  BI 0.290 7.123 *** Accepted 
H2 PEOU  →   BI 0.214 5.567 *** Accepted 
H3 PPS → BI 0.312 6.992  Accepted 
H4 PEOU  →   PU 0.403 8.139 *** Accepted 
H5 PPS →  PU 0.276 5.334 *** Accepted 
H6 PPS → PEOU 0.538 10.969  Accepted 

*Cut off (CR >±1.96) (Hair et al., 2018) 
                                              *** p< 0.001          

 
 
Table 8  
Model predictive power  

Factor SMC 
PU 0.334 
BI 0.510 
PEOU 0.268 

 

7. Conclusion 

Based mostly on Davis’s (1989) TAM, a widely used model in the technology adoption literature, this research investigated 
the variables impacting managers' behavioral intention to utilize BDA in ICT SMEs in Jordan, as well as the causality 
relationships between these variables. CFA was employed to validate and verify the factor structure as well as examine 
construct validity and composite reliability for the components. In addition, SEM was applied to investigate the 
hypothesized causal associations between the various study variables. The dependent variable was behavioral intention to 
use BDA, which was assessed by three items (BI-1, BI-2, and BI-3). The CFA findings validated the expected underlying 
structure of this factor, as well as statistical evidence of its composite reliability and construct validity. 
The perceived usefulness concept has a high composite reliability and a high rate of construct validity, according to CFA 
findings. In terms of PU's impact on BI, hypothesis testing found that the causal association between the two variables was 
significant at a level of p 0.001. As a result, the idea that PU favorably affects BI to use BDA is validated. As a result, PU 
is regarded as a crucial driver of managers' behavioral intentions toward implementing BDA. So, in order for BDA to be 
implemented in SMEs, managers' perceptions of its capacity to bring benefits in terms of productivity, performance, and 
profitability must be improved. Any such upgrade would have a beneficial impact on managers' behavioral intention to use 
BDA. 
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The results of the current research are in line with previous findings(Soon et al., 2016; Brock & Khan, 2017; Weerakkody 
et al., 2017; Shin & Bohlin, 2020; Surbakti et al., 2020). They show the importance of training and education programmes 
for BDA users in order to facilitate the approval and use of the system. Obviously, the more that users (managers) managers 
are convinced of its value to the firm, the more likely those users are to adopt the system. 
The second hypothesis is supported by the findings of the SEM hypothesis testing (PEOU positively influences BI). Thus, 
the importance of PEOU in influencing managerial behavioral intention to use BDA is supported by empirical data. This 
suggests that if operators believe big data systems to be trouble-free or not requiring much effort, they will most likely adopt 
them (Shin and Bohlin, 2020). These findings also emphasize the importance of designing BDA to be user-friendly and 
easy to use (Soon et al., 2016; Weerakkody et al., 2017). In this respect, managers should search for easy-to-use and operate 
BDA systems and to ensure that they provide adequate training for employees in how to efficiently deal with related new 
technologies. 
Hypothesis testing revealed that managers’ concerns about privacy and security had a significant positive impact on BI. 
This finding suggests that the higher the managers’ perception of BDA privacy and security, the greater their behavioral 
intention toward its adoption is likely to be. In other words, high security and privacy risk serves as an inhibitor to the 
implementation of BDA in businesses (Park & Kim, 2021). Many previous research studies have found that high privacy 
and security related risks negatively affect the diffusion of big data in organizations (Salleh and Janczewski 2019; Shahbaz 
et al., 2019). 
Moreover, the results of this work clearly show that prior to introducing a BDA system, the organisation needs to 
communicate the simplicity and usefulness of the technology and promote organisational change to enhance learning and 
communication in order to guarantee the productive application of such a system.In order to motivate workers to adopt a 
BDA system and learn about its associated advantages, businesses should choose one that is simple to use and 
understand(Weerakkody et al., 2017; Shahbaz et al., 2019). Also, the current study findings revealed the significant 
influence of perceived privacy and security on both perceived ease of use and the perceived usefulness of the new 
technology.  
Higher levels of perceived privacy and security are normally associated with lower levels of uncertainty in relation to the 
successful adoption of new technology (Grover, 1993).Therefore, in the BDA context, the need for privacy and security 
controls that are flexible enough to effectively address changing requirements will enhance managers’ attitudes towards the 
technology’s overall benefits as well as its usability (Salleh and Janczewski, 2019). 
8. Directions for future research 
With the addition of a new independent variable, namely perceived privacy and security, this research has effectively 
validated Davis's technological acceptance model. Regarding independent variables, the TAM has not been extensively 
examined in the perspective of big data. This study offers some key observations and research suggestions for the future, 
starting with the fact that it was conducted with Jordanian managers to give a window into attitudes in a developing 
economy. Hence, conducting a comparative analysis of BDA adoption in a similar economy could provide some useful 
insights. 
Additionally, the research instrument was designed for first, middle, and top managers. As part of future research, that 
instrument could be adapted for use with the actual users of BDA applications, which would provide light on whether and 
how obtaining input from actual users vs management team makes a difference. Furthermore, although the current research 
model has the ability to offer useful insights concerning the use of BDA, Future research might focus on expanding its 
prediction performance by incorporating additional external aspects, such as: top management support, organizational 
readiness, social influence, competitive pressure, and government IT policies. 
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